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Abstract. Input-output systems are characterized
by applying time series analysis techniques developed for
autonomous systems to the input and the output time
series separately and using the results as nonlinear sta-
tistics of the time series distributions. Two examples
are presented using the correlation integral as a non-
linear statistic: the first one examines the change in
the statistic when several sample input time series are
passed through a nonlinear filter. The rectifier is chosen
as the filter because it models, at first approximation,
the effect of dayside magnetospheric reconnection to the
interplanetary magnetic field and solar wind input. The
changes in the correlation integral are used to charac-
terize the filter response. A second example compares
a linear filter of the rectified solar wind input to the
observed auroral geomagnetic activity in terms of their
correlation integrals, Implications for models of the so-
lar wind-magnetosphere coupling are discussed.

1 Introduction

Input-output dynamical systems are systems where
one or more input signals are measured simultaneously
with the system’s output. The input is a nontrivial, usu-
ally irregular. function of time. Studies of stability and
prediction of such systems (Hunter and Theiler, 1992:
Casdagli, 1992) have extended the notions of dynamical
state and Lyapunov exponent originally developed for
autonomous systems. Specific applications have been
made in experimental and observational environments
(Hunter, 1992: Hunter and Theiler, 1992; Vassiliadis et
al., 1892; Price and Prichard, 1993; Vassiliadis et ai.,
1994).

A linear input-cutput system is characterized and
identified by the power and phase spectra of the input
and output time series. In the frequency domain the ra-
tio of output to input power spectrum gives the transfer
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function of the system (Rugh, 1993). In the time do-
main the Fourier transform of the transfer function is
the impulse response which gives a “black-box” descrip-
tion of the linear system.

For nonlinear systems the characterization with
spectral techniques is not possible. In the case of
autonomous systems (where the “input” is zero, con-
stant or periodic) several techniques have been devel-
oped to obtain invartants: the spectra of dimensions,
entropies and Lyapunov exponents (Abarbanel et al.,
1993). These techniques are used to characterize and
identify system properties in ways analogous to the spec-
tral approach for linear systems (Table 1 in (Abarbanel
et al., 1993)).

In order to characterize a nonlinear input-outpus
system, autonomous system analysis sechniques are ap-
plied to the input and output time series separately.
The results of the analysis (“dimensions”, “entropies”,
etc.) are considered as nonlinear statistics that char-
acterize the probability distribution of the time series.
The changes in the statistics between input and output
characterize the input-output system or “filter”. Sec-
ondly the nonlinear statistics can be used to discrimi-
nate between several outputs of different models which
are driven by the same input. The statistics can be used
as measures of similarity between the model outputs
and observations. Both applications are related to the
approach of Theiler et al. (1992a,b) who used nonlin-
ear statistics to quantify the similarity of model-derived
(“surrogate”) data with observations and thus establish
a hypothesis testing methodology to detect nonlinear
structure in time series.

In the following sections two nonlinear statistics,
the correlation integral and its local slope are computed
for the input and output time series of a model nonlinear
system, the rectifier. The rectifier sets the negative part
of the input time series to zero while leaving the positive



part intact. The two statistics are in general changed
under the action of the rectifier in characteristic ways
which are accounted for by an analytical modeling of
the rectifier’s effect on a class of stochastic signals.

In magnetospheric physics a rectifier is a simple way
to model the dominant process in the coupling of the so-
lar wind input to the terrestrial magnetosphere. When
the interplanetary magnetic field (IMF) encounters the
terrestrial field on the dayside of the magnetosphere,
their field lines open and reconnect (merge) to lines of
the opposite field (Dungey, 1961). The bulk of solar
wind energy that is transferred to the magnetosphere
enters it through merged field lines (Russell, 1986). The
reconnection rate is highest when the time-dependent
IMF field is antiparallel to the fixed (Northward at the
equator) direction of the terrestrial field. At first ap-
proximation the reconnection acts as a rectifier, being
on when the B, component of the IMF points Southward
and turning off when it is parallel to the magnetospheric
field. Theenergy input rate to the magnetosphere is pro-
porticnal to the solar wind’s convection electric field vB,
passed through a negative rectifier:

~vB,, B,<0

'UBSouth. = {0? Bz 2 0 (1)

The flow speed v gives the convection rate of IMF and
its changes are much slower than the autocorrelation
time for the rectified IMF B, component (1-3 h).

The solar wind and IMF energy that enters the
magnetosphere during reconnection is stored in the mag-
netosphere. Geomagnetic storm and substorm activity
depends on the rectified solar wind electric field as well
as the stored earlier input (McPherron, 1991). The mag-
netospheric dynamics acts as a further nonlinear filter
on the rectified input and produces geomagnetic activ-
ity as its output. The dynamical relation between the
solar wind input and geomagnetic activity has been ex-
amined using linear (e.g. Bargatze et al., 1985}, nonlin-
ear autonomous {e.g., Baker et al., 1990: Roberts, 1991;
Pavlos et al., 1992; Prichard and Price, 1992) and non-
linear input-output (Goertz et al., 1993; Price et al.,
1993; Klimas et al., 1094; Vassiliadis et al., 1994) tech-
niques. Using a discriminating nonlinear statistic one
can determine the appropriateness of a class of input-
output systems in modeling the coupling between solar
wind and geomagnetic activity. Therefore comparative
examination of the statistical properties of solar wind
input and geomagnetic output have been important in
solar wind-magnetosphere coupling studies.

2 The correlation integral

The correlation integral was introduced in the cal-
culation of the correlation dimension Ds of a time series
(Grassberger and Procaccia, 1983a). After the time se-
ries data are embedded in an m-dimensional space as
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vectors X using the time-delay technique (Grassberger
and Procaccia, 1983a), the correlation integral is defined
as the double sum

9 N N
C{r;m,N) = el Zl _Zle(r -Xi X0 (@
= +

and measures the distribution of distances r between
pairs of embedding vectors X. The time delay is set
to 7=Tjs¢, the autocorrelation time of the input time
series. (The correction for effects of autocorrelation
(Theiler. 1986) removes the fractal scaling of 1/f® noise
and does not affect results significantly for the deter-
ministic time series considered below so it will not be
used here). If the integral scales exponentially

C ~ rl2 {3)

with the phase space distance, r, the exponent D, is the
correlation dimension for that distribution. For deter-
ministic autonomous systems the dimension is related to
the system’s degrees of freedom. For a class of stochas-
tic systems (Gaussian linearly correlated 1/f noise) the
dimension is related to the fractal structure of the trajec-
tory in the embedding space (Osborne and Provenzale,
1989) when the length of the time series points is low
(Theiler, 1991). Here, instead of the definition of Da, the
local slape of log{C) with log(r) will be considered as a
second statistic in addition to the correlation integral.

Apart from the correlation dimension several quan-
tities are calculated from the correlation integral. If the
time series come from a deterministic autonomous sys-
tem, these quantities are related to the system stability
(K2 entropy {Grassberger and Procaccia, 1983b)), the
complexity of its dynamics (the dimension as well as
the BDS statistic (Brock, 1988)), etc. For an arbitrary
time series they are used as scalar nonlinear statistics.
It is still preferable to use the correlation integral than
the derived statistics, since it contains more information
than each one of these statisties and it has a simple in-
terpretation because it is related to the average relative
distribution of points in the embedding space.

3 Description of the time series data

The effect of the rectifier on the correlation inte-
gral is examined using several input time series sepa-
rately. The first input, R{t), of 5000 points has a power
spectrum decreasing roughly as 1/f'®, its distribution
is roughly Gaussian and its Fourier phases are random.
For this random signal the average is negative and com-
parable to the standard deviation (-76:143). The neg-
ative part of the time series (R(t)<0) carries most of
the power and this asymmerry gives different results for
a “positive rectifier” (taking the positive part) and a
“negative” one (taking the negative part}. Both cases
are shown to examine the effect of the bias,
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The second type of input, L{t), is a determinis-
tic signal namely the x coordinate of the Lorenz flow
(Lorenz, 1963). The parameters o=10, p=28, and
B3=8/3 result in a widely studied chaotic regime. The
L(t) time series is symmetric with respect to zero and
the rectifier is used to extract the positive part. Its
length is also 5000 points.

Finally the analysis is applied to space physical time
series. For the nonlinear solar wind- magnetosphere cou-
pling these time series are the solar wind electric field
vB,, the rectified field vBg,yp and the simultanecus au-
roral geomagnetic activity index, AL. Each time series
contains the first 5000 points from the data base com-
piled by Clauer et al. (1983).

4 Using the correlation integral to
characterize an input-output system

4.1 Autocorrelation functions

The random signal R(t) has an autocorrelation
time of 40 time units (solid line in Fig. 1), which
decreases when taking the absolute value [R(t)| drops
faster {dot—dashed line}. The positive part of R(t)
(dashed line), has an intermediate behavior: initially
its autocorrelation coincides with that of |R{t)| while
for time scales longer than the autocorrelation scale it
switches over to the autocorrelation of the unrectified
signal. The negative part of R(t) (dotted line) carries
most of the signal power and the negative rectifier leaves
it unchanged so that its autocorrelation is very similar
to that of the original signal.
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Fig. 1. The autocorrelation time of the random signal R{t) time
series, of its positive and negative parts, and its absolute value.

The corresponding autocorrelation functions for
L(t) are shown in Fig. 2. There is a small quantitative
difference between the positive and the negative parts
and thev are both quite different from the autocorre-
lation of L(t).
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Fig. 2. The autocorreiation time of the deterministic signal L(t), of
its positive and negative parts, and its absolute value.
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Fig. 3. The correiation integral and slope for the random signal R(t).

4.2 Correlation integrals

The correlation integral logC(logr) graph for R(t)
shows a saturation at high embedding dimension m (Fig.
3). The local slope of the correlation integral (lower
panel} has a maximum arcund 6. The fractal scaling of
a stochastic 1/f% spectrum time series observed by Os-
borne and Provenzale (1991} and explained by Theiler
(1991).  The correlation integral of |[R(t)| does not
change significantly (Fig. 4). It increases more umni-
formly and shows a higher correlation dimension (>7)
at m=10.

The positive part, R(t)>0., has a very different
correlation integral profile (Fig. 5). There are two
distinct regimes, both of which have a lower local slope
than the original time series. The first regime appears
at low m=2-6, while the other one is at high m=7-10.
Because the embedding coordinates are lagged versions
of the time series the first regime corresponds to short
time scales, (m~1)7 = 40-200 units, while the second one
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Fig. 4. Same as Fig. 3 for the absolute value {R{t)|.
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Fig. 5. Same as Fig. 3 for the positive part, R{t)>0.

to long scales, 240-360 units. Choosing a lower delay 7
further decreases the slope of logC(logr).

The negative part, R{t)<0, shows an intermediate
effect between Figs. 3 and 5. Because the negative part
carries a much larger part of the signal power than the
positive part (4:1), the local slope decreases (Fig. 6),
but not as strongly as in the positive part. In addition
there is no transition between two different regimes.
The maximum slope is slightly lower (5.5), but there
is a qualitative difference from the logC(logr) diagram
of the original R(t) in that the slope increases smoothly
with r and m, due to the presence of zeros in the time
series which contribute to the low-r region even at high
embedding dimensions.

The second time sertes (Lorenz flow) has a dimen-
sion of 2.1 {Fig. 7) which strongly decreases when its
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Fig. 6. Same as Fig. 3 for the negative part, R{t)<0.
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Fig. 7. The correlation integral and slope for the deterministic signal
L(t).

positive part is taken (Fig. 8). The original correlation
integral is not recovered for m<10. A similar effect is
observed for the negative part..

4.3 The effect of the rectifier

The rectifier acts on the input signal u producing
an output x

_Ju, u>0
m‘{a u<0 (4)

and decreases the autocorrelation of the input signal
(Figs. 1-2). Embedding the input time series gives a set
of vectors U=(u{n}, u(n-7}, u(n-27), ..., u(n-(m-1)7))
which are mapped by the rectifier to a set of vectors
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Fig. 8. Same as Fig. 7 for the positive part of the deterministic
signal L(t).

constructed from x, X=(x(
(m-1)7) ).

Consider a set of successive negative points in the
input u which are all mapped to x=0 by the rectifier.
For m=1, the corresponding vectors X are also mapped
to the origin of the embedding space. They are nearest
neighbors with all vectors mapped to zero from negative
inputs. If the positive and negative parts of u are
assumed to occur egually frequently and there are very
few zeroes in u, the probability density function p(x) is

n), x(n-7), x(n-27), ..., x(n-

olz) = %5(3) 4Pz =u>0) (5)

This is also the distribution of vectors X in the
m=I1-dimensional embedding space. Their number is
designated by Ny which for m=1

NO o~ ?, m=1. (6)

There is a high contribution to C(r) at all spatial scales r
which makes the correlation integral profile with r flatter
than for the input signal, u.

As m is increased, additional coordinates are at-
tached to X and the number of X=0, N;, decreases
until there are almost no points left at the origin. At
that embedding dimension the correlation integral scales
similarly for the original and the rectified signals (there
are still differences between the original vectors U and
the rectified vectors X, but the scaling of C(r) is not
observed to be affected significantly). Depending on the
relative length of the embedding vector’s window in time
(m-1)7 versus the average length of the string of zeros
due to the rectifier, there is a transition from the low
correlation integral to recovering the correlation inte-
gral of the input signal. If the window (m-1)7 is small

(large) compared to the average length of zeros in the x
time series the transition is smooth (sharp) as shown in
Figs. 6, 8 (Fig. 5). The transition from the correlation
integrals for the input in Figs. 3 and 7 to those of the
output in Figs. 5, 6, and 8 characterize the rectifier.

4.4 Modeling the effect of the rectifier on the
correlation integral of a 1/f* noise

The action of the rectifier on C(r) is calculated an-
alytically for a Gaussian 1/f% linearly correlated noise.
This is an input time series u(t) with a power spec-
trum 1/f* (constant below a frequency fy to avoid an
infrared catastrophe} where 1 < « < 3, Gaussian prob-
ability distribution, and random phases. For that type
of signal and using the maximum norm, Theiler (1991)
calculates the correlation integral

~ Tyert(r/V3or)"  (7)

where the subscript I refers to the input time series and
¢% is the rate of separation of two inputs with time.
The correlation integral of the output x(t) consists
of three terms:
Co(rim,N)=Coo + Co1 + C11 (8)
Coo contains correlations between vectors at the origin;
Cm contains correlations between pairs of a vector at the
origin and a nonzero vector. The last term, similar to
(7}, contains the correlations between pairs of nonzero

vectors. Weighting the three types of correlations by the
respective numbers of vector pairs gives Cp.

The weight of each correlation is based on the num-
ber of vectors at or off the origin, Ny and N; = N-Nj,
respectively. The average rate at which vectors are re-
moved from Ny and added to N; is estimated as the
autocorrelation function or or

a. m=l1.

N/2NJ2 Ng

=Y 00— X - Xi) =38 = 1.

=1 j>e

Coo(?‘ 1 N}

N/2 N/2

- S Y e —iX - (K= 0))) =

i=1 j=1

001(7' 1 N

T

/P(x)dm = %erf(r/\/ﬁa)

0

[ W]

(10)
and

N2

Ci1(r; 1, N) ;2 Z (E —T)el‘f(r/\/iﬂr) (11



Thus the correlation integral for the output is

Co(rim =1,N)= i--f—
N/2

+%erf(’r/x/§a) + % ; (i} - T) erf (7'/\/2-"’!‘)

(12)

b. m>1.

To calculate the vectors that move from Ny to N; as
the embedding dimension is increased from m to m+1,
one considers the window length, (m-1)r, versus the au-
tocorrelation. If the window length is large enough so
that some of the u(t) in U are positive, then the corre-
sponding X leaves Ny. The window length is modeled
with the diffusion time of the process necessary to reach
0 from u. Thus Au=u and if the process diffuses with
characteristic time

op = (Au*(T)) = o*R% (13)

where o is the standard deviation, then the time neces-
sary is Rt !(u/e). Conversely in time (m-1)7 the points
O<u<or will have diffused to 0 and the corresponding
vectors will move from Ny to N;.

Thus the i-th embedding dimension will contribute
the following number of points to Ny

[ev) oo

/P(u)d’u = V_;I-T;/e_(”/")zdu = é—(l - erf(%))

Uy U
(14)
And the number of points in Ny from all m dimensions is:

%= (3) (- (3) (oo (222)) 9

The limit of integration ugy is found for two cases:
i) In the case of a Gaussian 1/f% noise

Um = o7 = o R[{m — 1)7] (16)

where R(T) is the normalized rate of separation caicu-
lated in Theiler (1991). The population of points at the
origin becomes

]—VA?G = (%) (1—erf(R(T))...
o (L—erf(R[(m - 271 — erf(R[{m — 1)1-])217)
ii) In the case of a Brownian motion diffusing as
(Au(T))/* ~ TH (Mandelbrot and Van Ness, 1968)

T, — Tye\ #/2
U = a(—iq) =o(m-1)7? (18)
Tac

and thus the population Ny is:

ﬁ - G)mu —erf(1))...

y (19)
(1 - e'r'f((m - 2)”/2)) (1 - erf((m - 1)”/2))
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To calculate C one needs to weight the three con-
tributions to Co(m=1) appropriately.

Col{rim,N) = (-]!9)2 + 2NNy erf(r/\/ia)+

N N2
5 M (20)
+F Z (N, — T)erf(r/\/icr;r)
T=1

As m increases and Ny, Cop, and Cq; decrease, there
will be a transition from a flat profile of C(r) at m=1 to
a regular scaling profile of C(r) at m>>1 (Fig. 9). The
sharpness of the transition depends on how abruptly
R[(m-1)7] changes with m which is regulated by the
spectral index, @. Thus the sharpest transition from
low to high embedding dimensions is expected at high
a~3 because for those values R increases most abruptly
and e=c(a) is smallest.

Input Time Series 1/f*
a=2.0, T=200
£,=0.00010, 1,=0.050, N=16384

N
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Fig. 9. The correlation integrals and its slope for a 1/f%-noise input
time series {upper panels) and for the output of the rectifier {lower
panels). The parameters that determine the input time series are
described in (Theiler, 1991). (cont.)

4.5 The effect of a rectifier to the solar
wind input in the magnetosphere.

The correlation integrals of vB; and vBgoun (Figs.
10, 11) mirror the integrals obtained with the inputs
R(t) and L(t) above {Figs. 3, 5, 7, 8). There are two
regimes for the correlation integral of vBgyy, depending
on m. The locl slope in the lower regime is <1 while
for the higher regime it is -2. The slope for the higher
regime agrees with the unrectified vB, (Fig. 10) and
is somewhat lower than the dimension scaling observed
for 1/f* noise (Osborne and Provenzale, 1989: Theiler,
1991), where a=>5/3 for the IMF fluctuation spectrum.
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Output Time Series
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Fig. 9. (Continued) The correlation integrals and its slope for the
rectified {output} time series. Note the transition of Cp from a flat
correlation integral to the C; as m is increased.
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Fig. 10. Correlation diagram and slope of the solar wind convection
electric field y-component, vB,

5 Using the correlation integral to examine a
linear model of the solar wind-auroral
geomagnetic activity coupling

After the solar wind input has been rectified, it is
further processed by the magnetospheric response which
is considered as a nonlinear filter (Baker et al., 1990;
Goertz et al., 1993; Vassiliadis et al., 1994). One of
the outputs is the auroral geomagnetic activity, usually
quantified through the auroral electrojet indices AE. In
particular, the AL index represents the intensity of the
westward auroral electrojet current (Davis and Sugiura,
1966). The auroral electrojets are intemsified due to
the energy dissipation at the auroral ionosphere during

vBoum, N=5000, 7=30, w=1
o]

log{C)

Slope

Fig. 11. Correlation diagram and slope of the solar wind rectified
electric field vBogyy.

LRC(VBggun)» N=5000, 7=30, w=1
s}

Slope

Fig. 12. Passing the rectified input (electric field vBsoutn) through
a linear MA filter does not change the correlation diagram and its
slope qualitatively.

magnetospheric substorms. Therefore AL is essentially
a rough estimate of the global dissipation of the energy
which is transferred from the solar wind to the Earth
magnetosphere and drives the substorms. Further, the
AL index is related to nonlinear processes responsible for
ionospheric ion extraction and important in the internal
magnetospheric dynamics and substorm development
(Daglis et al., 1992, 1994). Therefore models of the
mapping of solar wind /IMF conditions to the AL index
are of great interest to substorm research.

Early models of the solar wind-magnetosphere cou-
pling between vBg,uty, and AL were linear “prediction”
filters {e.g. Clauer, 1986). These moving averages (MA)
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Fig. 13. The observed output AL of the magnetospheric nonlinear
filtering of the vBsayy is qualitatively different than the linear system
output (previous Figure),

yield time scales (Bargatze et al., 1985) related to global
magnetospheric processes, but reproduce AL observa-
tions only qualitatively. A MA filter in the form of an
LRC circuit linear model receives the solar wind input
and produces an output which is qualitatively similar
to the observed AL index (correlation: 60-80%) (Vas-
siliadis et al., 1993). The correlation integral of the
filter-produced AL is very similar to the integral of the
rectified input (Fig. 12) showing that the MA filter pre-
serves the transition between two regimes of the rectified
vBsoun (Fig. 11) (note that there is a small increase in
the local slope). The preservation of the logC-logr pro-
file is expected for a wide range of parameters of linear
moving average filters (Sauer et al., 1991; Broomhead et
al., 1992; Abarbanel et al., 1993) although other types
of linear filters (autoregressive ones) modify the correla-
tion integral significantly {Badii et al., 1988: Abarbanel
et al., 1993).

The correlation integral of the observed AL time
series (Fig. 13) is qualitatively different from the LRC
circuit output: it has a much narrower scaling range and
a higher local slope than the LRC-filtered vBsyy,. The
difference in the nonlinear statistic of the two output
time series distinguishes the magnetospheric dynamics
filter from linear MA filters. It shows that linear MA
filters are not appropriate models of the solar wind-
auroral geomagnetic activity coupling.

6 Conclusions

A rectifier acting on an input time series is a non-
linear filter which changes the autocorrelation function
profile and the probability distribution. The correlation
integral was used to quantify these changes by measur-
ing the distribution of pairs of points in the phase space.
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The change in the correlation integral has been illus-
trated with two different signals, a random-phase signal
and a deterministic signal. The effect of the rectifier
was calculated analytically for Gaussian 1/f% noise and
Brownian motion. For the rectifier the correlation inte-
gral of the input time series can be recovered for a high
enough embedding dimension m when the window (m-
1)7 is comparable to the length of the average “string
of zeros” that the rectifier produces. Depending on the
relative size of the two time scales there is a transition
between two regimes: the low-slope ( “low-dimensional”)
scaling of the rectified signal at small embeddings and
the recovered higher-slope scaling of the original sig-
nal at large embeddings. If the window length remains
small, the signature of the rectifier in the logC{logr) di-
agram is a smooth, low local slope (Fig. 8).

The local slope (“dimension”) decrease by a sim-
ple nonlinear filter such as the rectifier addresses to
some extent the claims of Pavlos et al. (1992) for
low-dimensionality of the solar wind temperature and
IMF |B| after they carefully excluded the possibility
of a linearly correlated colored noise. It is interesting
how the time series of temperature and IMF |B| ap-
pear low-dimensional while related to a turbulent, high-
dimensional medium. One answer may be that the tem-
perature and magnetic field are types of nonlinearly cor-
related noise. Alternatively, considering the effect of
the rectifier, the apparent low-dimensional scaling is a
consequence of nonlinear filtering of a high-dimensional
process, similarly to the decreased slope of the correla-
tion integral of vBsoum-

The rectifier example shows a method for time se-
ries analysis of input-output systems based on applying
autonomous techniques to the input and output time
series separately. The results should be interpreted as
nonlinear statistics of the distribution rather than as de-
scriptions of the stability, complexity, periodicity, etc, as
in the autonomous case (note that concepts such as de-
terministic chaos originally developed for autonomous
systems can have analogous meaning for input- output
systermns if modified appropriately (e.g. Casdagli, 1992)).
The use of discriminatory nonlinear statistics was sug-
gested by Theiler et al. (1992a,b} who produced sta-
tistical significance tests in their work on detection of
nonlinear structure in time series.

Nonlinear statistics can be useful in rejecting or re-
taining models developed for an input-output system. In
the case of the solar wind-magnetosphere coupling the
correlation integral was used to discriminate between
the output of a linear MA filter and the observed ge-
omagnetic output. The linear MA filter is rejected as
model of the coupling since it cannot reproduce the dis-
tribution of pairs of points quantified by the correlation
integral {although this does not exclude other types of
linear models {Price et al., 1993)). Similarly, Klimas et
al. (1994} reported using the prediction error as a non-
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linear statistic in adjusting some parameters of a nonlin-
ear input-output model to make it similarly predictable
to the observed geomagnetic output when driven with
the corresponding solar wind input. Additional theoret-
ical research, in particular for multi-input-multi-output
systems, is currently under way (D. Prichard and J.
Theiler, 1993, private communication). The use of non-
linear statistics to characterize input-output time series
is promising in solar wind- magnetosphere coupling and
generally in the studies of input-output systems often
encountered in geophysics.

Acknowledgments, Discussions with D. A. Roberts are appreci-
ated. D. V. acknowledges an NRC associateship.

References

Abarbanel, H. D. I, R. Brown, and J. J. Sidorowhich, The
analysis of observed chaotic data in physical systems, Rev. Mod.
Phys. 85, no. 4, 1331, 1993,

Badii, R., G. Broggi, B. Derighetti, M. Ravani, $. Ciliberto,
A. Politi, and M. A. Rubio, Dimension increase in fltered chaotic
signals, Phys. Aev. Lett. 60, 979, 1988,

Baker, D. N., A. J. Klimas, R. L. McPherron, and J. Buchner,
The evolution from weak to strong geomagnetic activity: an inter-
pretation in terms of deterministic chaos, Geophys. Res. Lett. 17,
41-44, 1990.

Bargatze, L. F., D. N. Baker, R. L. McPherron, and E.W. Hones,
Magnetospheric impulse response for many levels of geomagnetic ac-
tivity, J. Geophys. Res. 90, 6387-6394, 1985,

Brock, W. A., Nonlirearity and Compilex Dynamics in Econom-
ics and Finance, in: P. Anderson, K. Arrow, and D. Pines (eds.),
The Economy as an Evolving Complex System. Addison-Wesley, New
York, 1988.

Broomhead, D. 8., J. P. Huke, and M. R. Muldoon, Linear filters
and non-linear systems, J. R. Stat. Soc. B 54, 373, 1992,

Casdagli, M., A dynamical systems approach to modeling input-
output systems, in: M. Casdagli and S. Eubank {eds.] Nonilinear
Modeling and Forecasting, vol. XII of SFT Studies in the Sciences of
Complexity, p. 265-282. Addison-Wesley, 1992.

Clauer, C. R., R.L. McPherron, C. Searls, Sclar wind control of
the low-latitude asymmetric magnetic disturbance field, J. Geaphys.
Res. 88, 2123, 1983.

Clauer, C. R., The technique of linear prediction filters applied
to studies of solar wind-magnetosphere coupling, 39, Y. Kamide and
J. A. Slavin (eds.), Solar Wind-Magnetosphere Coupling. Terra Sci-
entific, Tokyo, 1986.

Daglis, I. A., E. T. Sarris, G. Kremser, and B. Wilken, On
the solar wind-magnetosphere-ionosphere coupling: AMPTE/CCE
particle data and the AE indices, in: Study of the Solar Terrestrial
System, ESA SP-346, p. 183. ESA/ESTEC, Noordwijk, 1992.

Daglis, . A., 8. Livi, E. T. Sarris, and B. Wilken, Energy density
of ionocapheric and solar wind origin ions in the magnetotail during
substorms, J. Geophys. Res. 99, 5601-5703, 1994,

Davis, T. N., and M. Sugiura, The auroral electrojet activity

index AE and its universal time variations, .J. Geophys. Res., 71, 785,
1966.

Dungey, J. W., Interplanetary magnetic field and the auroral
zones, Phys. Rev. Lett. 6, 47, 1981.

Grassberger, P., and L. Procaccia, Measuring the strangeness of
strange attractors, Physica [ 9, 189, 1983a.

Grassberger, P., and . Procaccia, Estimation of the Kolmogorov
entropy from a chaotic signal, Phys. Rev. A 28, 2591, 1083b.

Goertz, C. K., R. Smith, and L.-H. Shan, Prediction of geomag-
netic activity, J. Geophys. Res. 98, 7673, 1093.

Hunter, N. F., Applications of nonlinear time series models to
driven systems, in: M. Casdagli and 5. Eubank (eds.) Nonlinear
Modeling and Forecasting, vol. XII of SFI Studies in the Sciences
of Complerity. Addison-Wesley, 1992.

Hunter, N., and J. Theiler, Characterisation of nonlinear input-
output systems using time series analysis, in: 5. Vohra, M. Spano, M.
Schlesinger, L. Pecora and W. Ditto (eds.), Proceedings of the First
Ezperimental Chaos Conference. World Scientific, 1992,

Klimas, A. J., D. N. Baker, . A. Roberts, D. H. Fairfield, and
J. Buchmer, A necnlinear dynamical analogue model of geomagnetic
activity, J. Geophys. Res. 97, 1992,

Klimas, A. J., D. N. Baker, D, Vassiliadis, and D. A. Roberts,
Substorm recurrence rates compared during intervals of steady and
variable solar wind driving, J. Geophys. Res., submitted, 1994.

Lorenz, E. N., Deterministic nonperiodic flow, J. Atmos. Sci.
20, 130, 1963.

Mandelbrot, B., and J. W. Van Ness, SIAM Rev. 10, 422, 1968.

McPherron, R. L., Physical Processes Producing Magneto-
spheric Substorms and Storms, Geomagnetism 4, 593-739, 1991.

Osborne, A. R., and A. Provenzale, Finite correlation dimension
for stochastic systems with power-law spectra, Physica D 35, 357-381,
1989.

Pavlos, G. P., G. A. Kyriakou, A. G. Rigas, P. I. Liatais, P.
C. Trochoutsos, and A. A. Tsonis, Evidence for strange attractor
structures in space plasmas, Ann. Geophys. 10, 309, 1992,

Pavios, G. P., D. Diamandidis, A. Adamopoulos, A. G. Rigas,
L. A, Daglis, and E. T. Sarris, Chaos and Magnetospheric Dynamics,
Nonlin. Proc. Geophys. 1, in press, 1994.

Prichard, D., and C. P. Price, Spurious dimension estimates
from time series of geomagnetic indices, Geophys. Res. Lett. 19,
1623, 1992,

Price, C. P., and D. Prichard, The non-linear response of the
magnetosphere: 30 October 1978, Geophys. Res. Lett. 20, 771, 1993,

Price, C. P., D. Prichard, and J. E. Bischoff, Non-linear in-
put/output analysis of the auroral electrojet index, University of
Alaska preprint, 1993.

Roberts, D. A., Is there a strange attractor in the magneto-
sphere?, J. Geophys. Res. 96, 16051, 1991.

Rugh, W. J., Linear systems theory, Prentice Hall, Englewood
Cliffs, 1993.

Russeli, C. T., Solar wind control of magnetospheric configu-
ration, p. 209, in: Y. Kamide and J. A. Slavin (eds.), Solar Wind-
Magnetosphere Coupling. Terra Scientific, Tokyo, 1986,

Sauer, T., J. A. Yorke, M. Casdagli, Embedology, J. Stat. Phys
65, Nos. 3-4, 579, 1991.

Theiler, J., Spurious estimates of correlation dimension, Fhys.
Rev. A 34, 2427, 1986.

Theiler, J., Some comments on the correlation dimension of 1/f%
noise, Phys. Lett. 4 155, 480, 1991,

Theiler, J., S. Eubank, A. Longtin, B. Galdrikian, J. D). Farmer,
Testing for nonlinearity in time series: the method of surrogate data,
Physica D 58, 77, 1992a.

Theiler, J., B. Galdrikian, A. Longtin, S. Eubank, and J. D.
Farmer, Detecting nonlinear structure in time series, in: 3. Vohra, M.
Spano, M. Schlesinger, L. Pecora and W. Ditto (eds.}, Proceedings of
the First Experimental Chaos Conference. World Scientific, 1992b.

Theiler, J., and S. Eubank, Don’t bleach chaotic data, Los
Alamos preprint LA-UR-92-1575, 1993.

Vassiliadis, D., A. S, Sharma and K. Papadopoulos, Time Se-
ries Analysis of Magnetospheric Activity using Nonlinear Dynamical
Methods, pp. 341-347, in: T. Bountis (ed.), Chaotic Dynamics: The-
ory and Practice. Plenum, 1992, :

Vassiliadis, D., A. 5. Sharma, and K. Papadopoulos, An empir-
ical model relating the auroral geomagnetic activity to the interplan-
etary magnetic field, Geophys. Res. Lett. 20, 1731, 1993.

Vasgiliadis, D)., A. J. Klimas, D. N. Baker, and D. A. Roberts,
“A Description of Solar Wind-Magnetosphere Coupling Based on
Nonlinear Filters”, J. CGeophys. Res., submitted, 1994,



