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Abstract. Our intention in this work is to show, by us-
ing two different methods, that magnetospheric dynam-
ics reveal low dimensional chaos. In the first method
we extend the chaoctic analysis for the AE index time
series by including singular value decomposition (SVD)
analysis in combination with Theiler’s test in order to
discriminate dynamical chaos from seH-affinity or “crin-
kiiness”. The estimated fractality of the AE index time
series which is obtained belongs to a strange attractor
structure with close returns in the reconstructed phase
space. In the second method we extend the linear equiv-
alent magnetospheric electric circuit to a nonlinear one,
the arithmetic solution of which reveals low dimensional
chaotic dynamics. Both methods strongly support the
existence of low dimensional magnetospheric chaos.

1 Introduction

Magnetospheric dynamies and particularly magnetosphe-
ric substorms are associated with the energy transfer
from the solar wind to the magnetosphere and subse-
quently to the ionosphere/atmosphere. The energy cou-
pling between solar wind, maguetosphere and ionosphere
constitutes a complex nonlinear process, with strong
mass-energy interaction. It is important to note here
that the coupling between various subsystems of the
global geospace system {near solar wind - magnetosphere
- lonosphere) could be understood as a synergetic self-
organized holistic system. In this case the coupling of
subsystems may be not only energetic (local interac-
tions), but it may include an “informational” (non-local)
aspect {Pavlos, 1988; Voros, 1991). In synergetic theory
the “informational” process corresponds to the comple-
mentarity between forces and correlations (Nicolis and
Prigogine, 1988). The motor machine of the “informa-
tional” process could be the staving principle according
to which the physical systems develop order parameters
as collective (unstable) modes (Haken, 1988; Doering
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et al., 1988). The importance of these concepts for mag-
netospheric physics can become apparent if we think the
difficulty until now to obtain a global comprehension of
the magnetospheric processes. Pavlos (1988) used the
conecept of system dynamical-state motion on a strange
attractor as an explicative paradigm of magnetospheric
substorms. It is helpful to present here a short part of
this paper:

“../The magnetospheric system is open, as it exchanges
mass and energy with the ionosphere and the solar wind,
while it remains far from thermodynamic equilibrium.
For this reason the magnetosphere belongs to the class of
dissipative chaotic systems. An important consequence
of chaos theory for these systems is the possibility of ex-
istence of strange attractors in phase space. Qur failure
until now to develope a sufficient, local-character de-
scription of magnetospheric dynamics, through not ex-
tinguishing the hope for future achievements, supports
our suggestion that chaos theory may constitute a pow-
erful tool for a global comprehension of magnetospheric
dynamics. A central question to be answered through
chaos theory is how far the transitton of the magne-
tospheric system from quiet state to the growth phase
and subsequently to the explosive phase of subslorms
corresponds to a transition from a simple attractor to a
chaotic or strange attractor...” (Pavlos, 1988).

The first simple mathematical model for magneto-
spheric chaos was given by Baker et al. (1990), based on
the leaky faucet model in analogy with the work of Shaw
(1984). Klimas et al. (1991) extended the Baker drip-
ping faucet model in terms of the geometry and plasma
contents of the magnetotail. Experimental evidence for
magnetospheric chaos has been found by chaotic analy-
sis of the magnetospheric index AE or AL measured time
series { Vassiliadis et al., 1990; Roberts et al., 1991; Shan
et al., 1991). In these studies the main tool for chaotic
analysis was the computation of the correlation integral
in the reconstructed phase spaces by using the algorithm
of Grassberger and Procaccia (1983) according to the



Takens embedding theory (Takens, 1981). The above
experimental analysis of time series showed that mag-
netospheric dynamics could be modelled as a chaotic dy-
namics on a low dimensicnal strange attractor structure,
The weak point however in these experimental results
about magnetospheric chaos is that they don’t give any
support of pseudo-chaotic {low dimensional) profiles of
colored noises or self-affine fractional Brownian signals,
studied by Osborne and Provenzale (1989) and Proven-
zale et al. (1992). In previous studies by Pavlos et al.
(1992a, 1992b) an extended series of tests was first used
in order to exclude the pseudo-chaos of colored noises
and afterwards strong evidence for low dimensional mag-
netospheric chaos was found. Moreover, according to
Theiler (1991) the concept of fractal dimension can be
applied to time series in two quite distinct ways, the first
one to indicate the degrees of freedom in the underlying
dynamical system and the second to quantify the self
affinity or “crinkliness” of the trajectory through the
phase space. Vassiliadis et al. (1992) followed Theiler’s
test to surrogate magnetospheric data. In this case when
the Theiler parameter w becomes comparable to the au-
tocorrelation time the scaling of correlation integral dis-
sapears and there is no convergence of the correlation
dimension.

In our previous work {Pavlos et al.,, 1992a, 1992b)
we applied chaotic analysis for two different kinds of
magnetospheric time series. First for the auroral elec-
trojet index (AE index) measured by ground magne-
tometers located roughly along the auroral oval. Sec-
ond, for magnetic field measurements obtained in situ
in the plasma sheet of the earth magnetotail. Concern-
ing the use of the AF index as a representative measure
of global magnetospheric activity, one has to confront
the limitations of the index {e.g. Kamide and Akasofu,
1983); still, AE is the only routinely available activ-
ity estimate with reasonable time resolution. Further-
meore, the auroral electrojet index represents the energy
dissipation at the auroral ionosphere, which is a cru-
cial variable in the internal dynamics of the magneto-
sphere, and the cross-scale coupling within the solar
wind-magnetosphere-ionosphere system (Daglis et al.,
1992, 1994).

In this work, we extend the chaotic analysis for the
magnetospheric time series (especially the AE index) by
using singular value decomposition (SVD) analysis ac-
cording to Broomhead and King (1986). Sharma et al.
(1993) have also used SVD analysis in the estimation
of the eigenvalue spectrum of the AE index. We apply
SVD analysis for the AE index time series in combi-
nation with Theiler’s test in order to discriminate dy-
namical chaos from self-affinity or “crinkliness”. The
results of this extended chaotic analysis give strong ev-
idence for magnetospheric chaos especially in relation
to the Theiler criterion. Lorenz (1991) has shown that
sometimes chaotic analysis based on Grassberger and
Procaccia (1983) algorithm can be problematic from a
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different point of view than that of colored noises with
pseudo-chaos. For this reason, in order to further sup-
port the hypothesis of the magnetospheric chaos besides
the chaotic analysis of experimental time series we pro-
pose a model of magnetospheric chacs by using a non-
linear equivalent magnetospheric electric circuit. A pre-
liminary sclution of this model shows that in principle
one can support theoretically the above experimental
results about magnetospheric chaos.

2 Data analysis

Ag we show in the next section, it is realistic to suppose
that the magnetosphere can be considered as a nonlin-
ear dissipative complex system. In this system some
kind of self-organizing process reduces the infinite num-
ber of degrees of freedom to a few macroscopic degrees
of freedom which describe the dynamics of the system
to a low dimensional subspace of the original infinite
dimensional phase space. For dissipative systems the
volume V(t) enclosed by some closed surface 8 in the
system phase space is known to shrink exponentially in
time. In this way the dimensionality is reduced after fi-
nite time; and whole sets of solutions may be identified
by simple attracting sets, as fixed points, limit cycles
or m-dimensional tori, with integer dimension and all
Lyapunov exponents negative (or zero). On the other
hand systems with dimensionality higher than two, gen-
erally have more complicated attracting sets (strange at-
tractors) with one or more positive Lyapunov exponents
and fractal of non-integer dimensions. The fractality of
the attracting submanifold in the phase space means
that the corresponding Hausdorf-Besicovitch dimension
and the other generalised dimensions (information di-
mension, Lyapunov dimension, capacity dimension and
correlation dimension) are higher than the topological
dimension of the orbit. In realistic cases of dissipative
systems the change of control parameters included in
the non-linear ordinary differential equations which de-
scribe the system dynamics can cause the bifurcation
of the system dynamics to different kinds of attractors
mentioned above. In the following we use the recon-
structed phase space vector

Ry = {&(ti), 2(tigr), - - 2(tigom-1yr)} (1)

where 7 is a delay time. In principle, 7 is arbitrary
as long as the values x(t;) and x(t;1,) are not highly
correlated. If T is too small the coordinates become sin-
gular so that x(t;)=x(t;1.). If 7 is too big, chaos makes
x(t;) and x(tiy(m-1)r) causally disconnected by ampli-
fication of noise. In practice 7 is chosen by trial and
error searching for optimal results. This reconstructed
phase space is used in order to test the existence of the
strange attractor as well as to calculate its correlation
dimension, along with the largest Lyapunov exponent of
the dynamical flow.
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Fig. 1. a. Hourly mean value of AE index time series measured
with I-min time resolution, b. Probability density function of AE
index for the entire time series (solid line), the first half and the
second half of it.
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Fig. 2. a. The power spectrum of the AE index time series, b.
The autocorrelation coeflicient of the AE index times series.

The correlation integral C(r,m) is given by the rela-
tion,

N-1 N
C(r,m) = (N(N=1)/2)"1 3 > O(|Ri— R;|—r)(2)
i=1 j=i+l

where @ is the Heaviside function and |R; — E;| denotes
the distance between the states R; and R; in the m-
dimensional reconstructed phase space. The correlation
dimension D of the reconstructed m-dimensional orbit
is given by Grassberger and Procaccia (1983):

D= 31_11(1) (d In C(r,m)/d In(r)) (3)

Ti—r o0

When the orbit evolves on a strange attractor mani-
fold then the slope in a log-log plot of the correlation in-
tegral C(r,m) in its scaling region, where C(r,m)-—«rd(m),
must saturate at a final fractal value 1 as the embedding
dimension m increases. According to an embedding the-
orem by Whitney (1936), the minimum dimension m, of
an Euclidean space R™ in which we can find a smooth
embedding of the aitractor, is m=2D+1. Moreover, ac-
cording to Broomhead and King (1986) qualitative in-
formation from the experimental time series may be ex-
tracted by using singular value decomposition analysis
(SVD). In this analysis the number of degrees of freedom
in the Nxm trajectory matrix X, including the phase
space vectors R(t;), leads to the singular value problem:

XC=82 and XT§=C% (4)

where T=diag(e1, 02, ..., 6r,) is the matrix of singular
values of X and the columns of C, {C;} (i=1,...,m) are
the singular vectors associated with {o;}. The singular
vectors {C;} are also eigenvectors of the mxm covari-
ance matrix 2=X7 X of the time series. Since the {o;}
are the root mean square projection of the trajectory
onto the basis vectors, we would expect that the number
which is non-zero is the number of degrees of freedom.
According to Broomhead and King (1986) experimen-
tal noise which generates spurious degrees of freedom is
identified as a noise flood in the singular value problem.
This implies partitioning of the embedding space into
a d-dimensional deterministic subspace and its orthogo-
nal complement, that is a noise dominated subspace of
dimension m-d. After this, the use of the Nxd reduced
trajectory matrix X with rows

X=&Tcy, XF Co..., xT Cp)T (5)

corresponds to rejection of the out-of-band noise.
Figure la shows a part of the time series correspond-
ing to AE index measured with one-minute time resolu-
tion. These measurements correspond to the first 2500
hours of the year 1978. During this period were observed
more than 3000 substorm events. According to the mag-
netospheric chaos hypothesis, every substorm must cor-
respond to a close return in the magnetospheric strange
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Fig. 3. Slopes d(m)=dInC(r,m)/dln(r) for empedding dimension
m=8 and delay times 7=20, 50, 100, 200, 300 and 500; the number
of samples used were 50000. The best scaling is observed for
7=100.

attractor. Figure 1b shows the probability density func-
tion of the AFE index time series for the entire series, the
first half and the second half of it. The form of these
density functions in combination with the corresponding
mean values and standard deviations show the station-
arity of the time series which is a necessary condition
in order to have the time series corresponding to the
dynamic evolution on a strange attractor. The random
character of the AE time series is revealed by the broad-
band form of the power spectrum (Fig. 2a) and the
abruptly decaying autocorrelation function (Fig. 2b)
revealing a first abrupt delay at the zero during the first
2000 minutes of lag time. The strong decorrelation of
the AE index signal after 20 units of lag time indicates
that the delay tume for the phase space reconstruction
(according to (1)) must be chosen in this region.
Figure 3 shows the slopes dp,=dlnC(r,m)/dln(r) for
m=_8 and delay times r=20-500. For 7 > 20 there is an
apparent platean (d., =constant) for low values of dis-
tance 1 in phase space, indicating scaling C(r;m)~r4(™)
of the estimmated correlation integrals. The wavy pro-
file of the slopes reveals that time related phase space
vectors R; were included for the estimation of the cor-
relation integrals. Also for = > 20 we have about the
same value of the slopes at the scaling region. According
to Theiler (1991), the concept of fractal dimensions can
be applied in two quite dinstict ways to the time series
analysis. First to indicate the number of degrees of free-
dom in the underlying dynamical system, and second to
quantify the self-affinity or “crinkliness” of the trajec-
tory in the reconstructed phase space. In the second
case, more crucial than the high frequency crinkles is
whether or not the trajectory is recurrent through phase
space. For a non-recurrent colored noise the dimension
of the full trajectory will be equal to the dimension of
a local segment, while for a recurrent colored noise (if
the time series is long enough to be recurrent) the esti-
mated correlation dimension will be that of the embed-
ding space. For chaotic analysis of experimental time
series the first case (dynamical fractality) is of interest.
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Fig. 4. a. Slopes d(m) corresponding to the Theiler test for
embedding dimensions m="7, 8 and 9; the used delay time is r=100
units and the Theiler parameter is w=20.

b. Same as (a) with =100 and w=>5C0.

For this reason we restrict the sums in equation (2) to
i, j pairs in such a way that {i — j| > w, for values of
w higher than the decorrelation time of the time series.
This means that we exclude all the correlated pairs in-
cluded in a sphere with diameter 2w.

Figures 4a and 4b show the slopes d(m) for embedding
dimensions m=7, 8 and 9, delay time v=100 and for the
Theiler parameter w=20 and w=>500 respectively. As it
is shown in Fig. 4, after the exclusion of temporal cor-
related points on the reconstructed trajectory there 1s
no clear scaling and no clear convergence of the scaling
exponent d(m). This means that if the AE index time
series is connected with low dimensional dynamics then
a noisy component in the signal covers the dynamical
structure. In order to reduce the noise effect we follow
the SVD analysis. According to Broomhead and King
(1986) all the qualitative information about the dynam-
ical system confined to the deterministic subspace can
be extracted from the reduced trajectory matrix X. This
amounts to averaging out the high frequency noise con-
tributions in the trajectory. In the following we use the
principal components corresponding to the reduced tra-
jectory X in order to estimate the slopes d(m) of the
correlation integrals. Also we restrict the estimation of
the correlation integrals corresponding to the reduced
trajectory, to i, j pairs with |¢ — j] > w, in order to
exclude time correlated pairs.
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Fig. 5. a. The slopes d(m) (m=6,7,8,9), estimated by using the
SVD analysis to obtain the reduced trajectory X, for 7=20 and
w=20. The length of the time series was N=150000.

b. Same as (a) for =20, w=20 and N=:50000.

¢, Same as (b) for w=300 and m=7 and 8.

d. Same as {c) for w=500.
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Fig. 6. a. Same as Fig. 5a for N=50000, 7=100, w=20.
b) Same as (a) for w=500.

Figure 5a shows the slopes d(m) of the reduced tra-
jectories corresponding to w=20 and delay time 7=20
units. In this case, slopes for embedding dimension
m=6,7,8 and 9 reveal a clear scaling of the correlation
integrals at low values of r and saturation at a value
for D=3-4. The length of N of the used time series for
the estimation of the correlation integrals was 150000
samples. Figure 5b shows the slopes d(m) for the same
parameters w=20 and 7=20, but for time series length
N=50000. The saturation value in this case is a little
lower at a value D=2-3. For time series length N>50000
samples the slopes remain independent of N. Figures 5¢
and 5d show the slopes d(m) for m=7 and 8, delay time
7=20, and w=300 and 500 respectively. The saturaiion
value in both cases remain at the same value D=2-3,
i.e, appears independent of the parameter w. In order
to study the dependence of the slopes upon the delay
time we have estimated them for delay times =100 and
7=500, also for w=20 and w=500. The case shown in
Fig. 6a (r=100 and w=20), indicates a clear saturation
value at D=3-4. In the case of Fig. 6b (r=100, w=500),
there is only a tendency for saturation in the region of
D) between 4 and 5.

Figure 7 shows the slopes d(m) (m=7,8 and 9) for
=500 and w=500, which reveal a tendency for satura-
tion at values D;6. This result is expected as the noise
reduction by SVD analysis can be occurred in an ap-
propriate window length n, = mr < 7, where 1} =
27 /w* is the band-limiting frequency. For our data this
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Fig. 7. Same as Fig. 6 for 7=500, w=500 and m=7, 8 and 9.

constraint implies that the appropriate delay time 7 for
the noise reduction is in the range of 50 to 100 units,

The above results support the fractal nature of the
phase space trajectory which is due to “close returns” in
phase space as the underlying dynamics of the magneto-
spheric system evolves on the supposed magnetospheric
strange altractor.

In the following we use some tests which can exclude
the case of pseudo low- dimensional chaos related to col-
ored noises. Provenzale et al. (1991) have shown that
time series generated by linear or nonlinear stochastic
processes can reveal pseudo chaotic profile. In the case
of stochastic processes the saturation of the scaling ex-
ponent d{m) seems to be forced by the shape of the
power spectrum. This is consistent with the fact that
both the power spectrum and the correlation integral
are related to the second moments of the distribution.
In contrast, for an aperiodic signal corresponding to the
motion on the strange attractor, the phase conpling and
the phase correlation must play an essential role. Thus,
when we randomize the Fourier phase of a stochastic sig-
nal X{¢;), the saturation value D of the scaling exponent
d(m) must remain the same with the saturation value
of the original signal. Conversely, for a random signal
X(t;) corresponding to motion on a strange attractor,
the randomization of the phases ¢ of the Fourler rep-
resentation of the time series,

X(t) = Z Cr cos(wy & + 1) (6)
k

must cause drastic changes to the saturation value of
the scaling exponent.

Figure 8a shows the slopes d(m) (m=6, § and 9) esti-
mated from the phase-randomized AF index time series.
It is apparent that there is no scaling of the correlation
integrals and no saturation of their slopes, while the
strong wavy profile of the slopes reveal time correlated
pairs (R, Rj), included in the estimation of C(r,m).
Figure 8b shows the slopes d(m) (m=6, 8 and 9) for
the phase randomised data corresponding to the corre-
lation integrals which have been estimated after restric-
tion to 1,j pairs with |i — j| > w and w=20 units. As
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it is shown in this figure the exclusion of time corre-
lated pairs implies a clear scaling character, while there
is no low dimensional saturation. The same result was
obtained for the slopes d(m) estimated by using the re-
duced trajectory matrix X, obtained by the application
of SVD analysis at the phase randomised AFE index time
series as it is shown in Fig. 8c.

The above analysis gives strong evidence for the exis-
tence of low-dimensional chaotic dynamics in the mag-
netospheric system. Especially the combination of the
SVD analysis with the Theiler test showed that the sup-
posed magnetospheric attractor must have a dimension
D lower than 4. According to Whitney (1936) these re-
sults imply that the magnetospheric dynamics must be
smoothly embedded in {2D+1) dimensional phase space
with 2D+1=9 degrees of freedom. This is in accordance
with the normalised singular spectra obtained by the
SVD analysis of the AE index shown in Fig. 9. In this
figure we can observe that the singular spectrum de-
creases for embedding dimension m<12, while for m>12
it reaches a noise floor.

3 Modeling Magnetospheric Chaos

The experimental estimation of the correlation D by
following the Grassberger and Procaccia (1983) algo-
rithm, presupposes that the fine structure of the attrac-
tor would on magnification resemble the coarse strue-
ture obtained by the reconstruction based on a time
series with finite length N. So that if N were made large
enough, the decrease of C(r;m) with 7, when T is very
small would be similar to that when 7 is fairly large.
According to Lorenz (1991), although this demostrates
the case for some simple systems, it is not valid for
more intricate ones, including some systems in which
certain subsets of the variables are only weakly coupled
to others. Lorenz showed that if the variable selected for
chaotic analysis (trajectory reconstruction and estima-
tion of the correlation dimension) s strongly coupled to
only a few variables of the system, the estimated value
of D, if N is only moderately large, will be considerably
less than the dimension as determined by other standard
methods, such as the Kaplan-Yorke formula. In order
to support the low dimensional magnetospheric chaos
hypothesis against this negative proposition, we use iwo
critical elements in our analysis. The first is that our re-
sults presented above for the correlation dimension are
independent from the length of the time series N for
N>5x10% The second element is the proposition of a
nonlinear model for the magnetospheric dynamics.

We now present some concepts that can theoretically
support the possibility for the existence of magneto-
spheric chaos. Lorenz (1963) showed that under cer-
tain physical restrictions the partial differential equa-
tions which describe a hydrodynamic system (Navier-
Stokes equations, the equation for heat conduction and
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the continuity equation) can be simplified to a set of
a three coupled ordinary differential equations. These
equations constitute the Lorenz model and can be put
in the form
dX -
W:F(X,o‘,p,b) (7)

where o, p and b are the conirol parameters. It is known
that this model describes the dynamic evolution of the
system state in a three-dimensional phase space. For
certain values of the control parameters the motion be-
comes highly erratic along an unstable manifold known
as Lorenz strange attractor. The concept of strange at-
tractor was used by Ruelle and Takens (1971) for ex-
plaining the onset of turbulence and nonperiodicity or
irregularity observed experimentally in hydrodynamic
or atmospheric dissipative systems.

Moreover, it is not out of reality to suppacse that the
nonperiodicity observed in different space plasma sys-
tems is caused by the system’s deterministic dynamic
evolution along a strange attractor manifold of low di-
mensionality. In the case of space plasma the hydrody-
namic equation for the velocity field will need to be al-
tered to account for Lorenz force experienced by moving
charges in electromagnetic fields and Maxwell’s equa-
tions must be considered to get a closed system of equa-
tions. Theoretical and experimental studies showed that
MHD systems can reveal chaotic dynamics (see Bhat-
tacharjee (1987)). Truncated equations derived for MHD
systems have been used to describe nonperiodic phe-
nomena in solar plasma (Weiss et al., 1984) as well
as in magnetospheric convection dynamics (Summers
and Mu, 1992). In the study by Summers and Mu
(1992) a technique of Fourier analysis followed by a
three-mode truncation was apphied to MHD equations
and was shown that the corotating convection model of
the Jovian magnetosphere can be described by equations
similar to Lorenz equations which lead to the existence
of a magnetospheric strange attractor. Therefore is re-
alistic to claim that the dissipative system of the earth’s
magnetospheric plasma is possible to show chaotic dy-
namics.

In the following we suppose that an appropriate non-
linear electric circuit model of the magnetospheric dy-
namics is physically equivalent to truncated MHD equa-
tions corresponding to the magnetospheric plasma sys-
tem. For the MHD modeling of the magnetospheric dy-
namics, especially during substorms, refer to Vasyliunas
(1975) and Terasawa (1983). According to Liu et al.
(1988), the global magnetospheric equivalent electric cir-
cuit shown in Fig. 10 consists of :

1. The dynamo region in the magnetotail which gen-
erates the cross-tail potential drop ®¢r. This potential
can be approximately given by

Pcr = By Vsw Lw (8)



REGION 1 Rip REGION 2

Polar Cap

Dusk Dawn

T

kIIlml;;

Fig. 10. The magnetospheric equivalent circuit which consists
of the magnetotail circuit (2cy, L, Ry, Cp, Lp), the inner
magnetospheric ring current circuit (Rrc, Lre) and the polar
ionospheric current (Ryy, Ri;, Riz, Rpe) (Liu et al., 1988).

where By, is the normal component of the interplanetary
magnetic field, Ly is the width of the open magneto-
tail and V,,, is the solar wind speed Lee and Roederer
(1982). During quiet times ®cr is 20 KV, while during
substorms increases to = 100-150 KV.

2. The magnetotail circuit, which contains the tail in-
ductance Ly, the field-aligned inductance Ly, the plasma
sheet resistance Ry and the magnetotail capacitance
Cr.

3. The polar ionospheric circuit, which contains the
resistances Rpe = 1 ohm, Rip = 0.8 ohm, Riny +

in = 0.5 ohm, Ry = 0.025 ohm and the resistance
Rz (>» Ria, Rin) taken to be infinite, and

4. The ring current circuit which contains the resis-
tance Rpc = (.02 ohm and the inductance Lo = 80
H.

The Liu et al. (1988) equivalent circuit is clearly a
linear system because the circuit dynamical elements
Lr, By, Cr, Lp and Ry are considered to be invariable
during the substorm process. The effective magnetotail
inductance can be related to the magnetic energy stored
in the lobes by the following expression:

Ly )2 = f (BZ/2p0) dVr 9)
Vr
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Fig. 11. a. Time profile of the current I 40 along the nightside
auroral oval.
b. AFE index showing a variety of substorm events.

Using Ampere’s Law V x B = poJ for the magnetotail,
we can show that Br = uolr/Lr for the magnetic
field of the magnetotail and that Ly = poLyLs/Lx
for the effective inductance, where Ly, Lz and Lx are
the characteristic lengths of the magnetotail. For the
effective capacitance Cp we can obtain an estimate from
the magnetotail capacitor stored energy which is equal
to the total convective energy in the plasma sheet, that
is
Cr V2B Li/2=mp N}V, Lx Ly Lz/2 (10)
where B is the magnetic field in the plasma sheet, L,
Ly, L., are the characteristic lengths of plasma sheet,
mp is the proton mass and Ny 2 0.1 - 1 em™2 is the
plasma density. This leads to the following relation for
the effective capacitance

M,,
N2

Cr=mp No Lx Ly/Lz B? = (11)
where M, is the total plasma mass in the plasma sheet,

During magnetospheric substorms the plasma sheet
resistance Rr changes drastically as a function of the
plasma sheet electric current. Microinstabilities driven
by crossfield currents can create plasma turbulence and
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anomalous transport coefficients such as resistivity, vis-
cosity, diffusion, heat conduction etc. (Papadopoulos,
1980). Moreover, other kinds of instabilities as colli-
sional and collisionless tearing-mode instability (Zelenyi
and Taktakishvili, 1987), or nonlinear particle dynam-
ics (particle chaos) in the Earth’s magnetotail (Biichner
and Zelenyi, 1987; Burkhart and Chen, 1991; Dusenbery
et al., 1992; Chen, 1992) can create macroscopic depen-
dence of the plasma sheet resistance Ry on the plasma
sheet electric current Ips. According to these theoretical
concepts we suppose that the plasma sheet current I,
increases with the strengthening of the cross-tail poten-
tial drop ® -1 which can happen after drastic changes of
the solar wind parameters (McPherron, 1979; Akasofu,
1981). The increase of the plasma sheet current causes
anomalous resistivity and enhancement of the plasma
sheet resistance, which in turn causes reduction of the
plasma sheet current and current interruption in the tail
with simultaneous, sudden injection of the tail current
to the nightside ionosphere. We suppose that a possi-
ble macroscopic modeling of this process is given by the
relations

dRp diy,
- _ £ b L3
T <0 , for it >0
dR dl, (12)
T _ p3
I s >0 , for T <0

In addition the effective capacitance Cr and induc-
tance Lt cannot be invariable during magnetospheric
substorms, because the characteristic lengths Lx, Ly,
Lz for the plasma sheet and the magnetotail change
drastically. The value of the magnetic field, espesially
in the plasma sheet, changes too during substorms. The
plasma sheet mass My, increases and the plasma sheet
magnetic field B decreases during the substorm recavery
and growth phase (dI,./dt > 0), while during the sub-
storm expansion phase (d1,,/dt < 0) the inverse changes
take place. Changes in the effective capacitance Cy are
modeled by the equations

dCy dl;,

T =1 >0 , for T >0

dC dl (13)
T = ez <0 , for =2 <0

dt dt

Also we suppose that the effective inductance Lt in-
creases during the recovery and growth phase (dI, /dt >
() as the magnetotail expands, and decreases during the
substorm expansion phase (dl,,/dt < 0), when a large
part of the magnetotail is destroyed.
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Fig. 12. a. The I 4o autocorrelation function.
b. Spectral density of the 1 4o timne series.

dLr _ des

5 = A >0 , for it >0

dL dl, (14)
T _ T3

s Az <0, for 3 <0

By using phenomenclogical values for the character-
istic lengths Lx, Ly, Lz and the magnetic field B of
the magnetotail and the plasma sheet we found that the
absolute values of the parameters p; o are 2.5 Ohm/h
and 12.4 Ohm/h, the absolute values of ¢; 5 are 2.10%
F/h and 10? F/h and the absolute values of A; 5 are 50
H/h and 250 H/h.

The above non-linear extention of the magnetospheric
electric circuit model of Liu et al. permits to express the
general mathematical equations for the magnetospheric
system as follows :

5’% — N[X(0), ) + F(), (15)
where X () = (Rp, L7, Cr, It, Vor, IF, Laa) represents
the magnetospheric circuit state vector and F(t) de-
scribes the external disturbance of the magnetosphere
by the solar wind system. Here the external variable
corresponds to magnetospheric dynamo ®o7. By N we
symbolize the nonlinear circuit equations as they result
from Kirchoff laws. In general the term F(¢) makes
the system to be non autonomous. Such systems can
also reveal chaotic dynamics (Hasler, 1987; Haken, 1988;
Brindley and Kapitaniak, 1991; Dykman et al., 1991) or
hyperchaos (Arecchi, 1988). Moreover, according to the
theory of non autonomous dynamical systems, the po-
tential drop ®¢r can be taken as one further dynamieal
variable of the magnetospheric system. In accordance to
this, Vassiliadis et al. (1993) have included solar wind
magnetic field (B, ,y:p) measurements (B, oy¢p is related
to ®or according to (8)) for a 3-D phase reconstruction
of the magnetospheric dynamics. In the work of Vas-
siliadis et al., the magnetospheric dynamics is modeled
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Fig. 13. a. Spectral density of the JAQ time series.

a. The integral correlation function c(r,m) for phase space dimen-
sions m=4,5,8.

b. The slopes dln{C(r,m}}/dIn(r) versus In{r) are shown for m=4,5
and 6.

c. Linear fitting at the scaling region of the curves.

by a simple linear LRC circuit with constant R, L, C
elements. Furthermore, the external disturbance F(t) is
possible to be considered as the input in an input-output
system which can reveal chaos too {(Casdagli, 1992; Vas-
siliadis and Daglis, 1993, 1994).

As a first step in the numerical solution of cur model
we consider the potential drop ®c7 to be an external
control parameter of the magnetospheric system. The
value of ®cr during quiet periods is known to be typi-
cally 20KV and 100-150 KV during substorms. By using
these values of ®;7 we can cbtain the first numerical so-
lution of nonlinear magnetospheric circuits during sub-
storms. In particular we begin with a magnetosphere
being in a quite state (®o7=20 KV) and afterwards we
disturb the system by a sudden increase of the cross-tail
potential drop to the value of 150 KV. This corresponds
to a strengthening of the solar wind dynamo. Figure 11a
shows one numeric solution I40(t) which corresponds to
AE index in the real magnetospheric system. For com-
parison of the model with the real system in Fig. 10b
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we show typical AF index measurements. The numeric
solution shows substorm events (abrupt increases in the
AF index) every 1-4 hours which is very near to the real
AE index profile. The aperiodic character of the model
solution is revealed by the power spectrum and the au-
tocorrelation function of the 145 time series shown in
Fig. 12.

Furthermore we use the complete numeric sclution
X(t) of the model in order to reconstruct the phase space
of the system and estimate the correlation dimension of
the dynamical trajectory. Fig. 13 presents the correla-
tion integrals and the corresponding slopes which at the
scaling region shows saturation of the scaling exponent
at the value D¢, = 2.3, This result is in good agree-
ment with the value of D obtained by chaotic analysis
of the real AE index time series. Also the proposed
T-dimensional phase space

X(t) = {RT: LT! CT: IT! VCT: IF! IAO}

is in accordance with the low dimension obtained by
the experimental singular spectra using the SVD anal-
ysis for the AE index shown in Fig. 9. Although a
complete study of the nonlinear circuit model proposed
above and solved numerically must be done extensively
in the future, especially with different mathematical forms
for the solar wind disturbance F(t), we believe that the
above results constitute a strong evidence for magneto-
spheric chaos.

4 Summary and Discussion

In the present work chaotic analysis was extended by
using SVD analysis in relation with critical tests for
the distinction between low dimensinal dynamical chaos
and pseudochaotic profiles of fractal time series with
strong time correlations. This extended chaotic analysis
showed that the magnetospheric dynamics must be re-
lated with a low dimensional strange attractor with cor-
relation dimension D 2 2-4. Morever we have presented
some theoretical concepts which support the magneto-
spheric chaos by extending Lorenz theory to magnetised
plasmas. Also we used the global magnetospheric equiv-
alent electric circuit in order to specify the order param-
eters of the magnetospheric dynamics. The numerical
solution of the proposed model was found to be in very
good agreement with the results of the extended chaotic
analysis applied to experimental magnetospheric time
series. Of course, the search through of the solution of
the nonlinear magnetospheric circuit on the external dis-
turbance must be done in the future, while such a wider
study can be used for obtaining methods of predicting
the magnetospheric substorms.
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