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Abstract. Analyses of displacement measurements may pro-
vide valuable insight into the characteristics and behaviours
of landslides. This paper demonstrates the application of sta-
tistical analysis to displacement data collected with Global
Positioning System (GPS), total stations and extensometers
at the Åknes rockslide site, western Norway. TheÅknes
rockslide has particular interest due to the potential for catas-
trophic consequences if the rockslide accelerates into a rock
avalanche and hits the fjord below. This would generate a
tsunami in the adjacent fjord system and pose a threat to
local settlements and infrastructure as well as to the many
tourists visiting nearby areas. The analyses reported in this
paper pay special attention to the newly available time series
obtained from seven permanent GPS stations. The results
from these continuously monitored GPS stations are believed
to be an important contribution to the understanding of the
complex displacement pattern evident from previous inves-
tigations. Results from the statistical analyses show that the
displacement rates can be modelled as linear trends superim-
posed with periodic (sinusoidal) components. This indicates
constantaveragedisplacement rates with no persistent accel-
erations. The annual displacement rates estimated from GPS
and extensometer measurements range from a few millime-
tres to about 8 cm, whereas the periodical fluctuations typi-
cally have maximum amplitudes of 1–2 mm. Some interpre-
tations of the periodical fluctuations are presented. High cor-
relations between displacements and the groundwater level,
measured in a borehole at the upper part of the slope, are ev-
ident for extensometers located across the back scarp. For
the GPS control points located further down the slope, this
correlation is, however, not so clear.
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(trond.nordvik@ntnu.no)

1 Introduction

This paper focuses on statistical analysis of displacement
data and demonstrates the application of statistical meth-
ods to rock slope displacement data collected at theÅknes
rockslide site, western Norway. The̊Aknes rockslide is
among the world’s most investigated rockslides (Ganerød et
al., 2008). This rockslide has particular interest due to the
potential for catastrophic consequences if the rockslide ac-
celerates into a rock avalanche and hits the fjord below. This
would generate a tsunami in the adjacent fjord system and
pose a threat to local settlements and infrastructure as well
as to tourists onboard the many cruise ships visiting the fjord
located below the unstable rock slope. The objective of this
paper is not to give a comprehensive evaluation of all avail-
able displacement data atÅknes, but rather to emphasize on
the gain from using statistical methods as part of the overall
landslide assessment methodology. Displacement measure-
ments are often evaluated without paying much attention to
their statistical properties. For example, this is the case when
only visual examinations of raw-data plots are used. As sta-
tistical methods explicitly account for the statistical proper-
ties of the data, they may provide a more objective basis for
data analysis.

The following list contains some key problems which will
be addressed by the statistical analyses;

– Identify moving and stable control points by detection
of statistically significant displacements.

– Estimate the displacement rate with corresponding con-
fidence interval (CI) for each control point.

– Establish and quantify periodic variations in displace-
ment rates.

– Estimate correlations between displacement rates and
the groundwater level.
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Figure 1. Top: Location of the Åknes site. Bottom: A perspective view of the site. The boundary of the 
assumed unstable part of the slope is indicated with a green polygon. 
 

Fig. 1. Top: Location of theÅknes site. Bottom: A perspective
view of the site. The boundary of the assumed unstable part of the
slope is indicated with a green polygon.

– Identify control points showing similar displacement
pattern.

– How to cope with imperfections in real world data, such
as noise, offsets and missing observations as well as
separating artefacts from actual displacements.

This paper starts with a brief description of displacement
analysis in general. Then short introductions of theÅknes
rockslide and the relevant displacement datasets are given.
The core of this paper is the description of the methods used
for analyzing displacement data from theÅknes rockslide
along with the results obtained. Finally, some conclusions
are drawn from the results.

1.1 Displacement analysis

Displacement or deformation analysis is an important tool
for landslide assessment. The desired type of output from
these analyses depends on a number of factors such as the
objective of the analysis, the type of slide, the material in-

volved (clay, rock etc.) as well as the spatiotemporal resolu-
tion and accuracy of the available measurements. Caspary
et al. (1990) describe a general approach for deformation
analysis which may also serve as basis for landslide analy-
ses. Most approaches for deformation analysis are closely
related to Least Square (LS) estimation using the Gauss-
Markov (GM) model which will be addressed in Sect. 2.2. In
some applications the outcome from a deformation analysis
is simply the identification of points showing significant dis-
placement, in absolute position, between two or more epochs
(e.g. Sav̌ssek-Safi et al., 2006), whilst in other applications
the final outcome may be the identification blocks within a
sliding area (e.g. Haberler-Weber, 2005) or the estimation
of model parameters concerning translation, shear, rotation
and scale, also known as strain estimation (e.g. Tzenkov
and Gospodinov, 2003; Teza et al., 2008). The estimated
model parameters are subsequently used for interpretations
(e.g. Tzenkov and Gospodinov, 2003) and predictions of a
slide’s progress (e.g. Petly et al., 2002). As one of the major
issues in displacement analyses is to detectsignificantdis-
placement of individual control points or significant network
deformations, statistical analyses and particularly hypothesis
testing are essential tools. For example, theglobal congru-
ency test(e.g. Cooper, 1987; Kennie and Petrie, 1990; Denli
and Deniz, 2003) may be a useful first step towards the ex-
amination of the total deformation of a network between two
epochs. If the observed deformation is small compared to
the accuracy of the measurements, the network is regarded as
congruent at those two epochs, otherwise the observed defor-
mation is deemed significant, which usually requires further
analyses. This may be the estimation of kinematics parame-
ters such as velocity and acceleration (e.g. Sitros et al., 2004;
Brückl et al., 2006; Pytharouli et al., 2007).

If time series data are available, spectral analysis may be
a useful technique to establish periodical variations such as
seasonal variations (e.g. Pytharouli et al., 2007). The most
widely used spectral analysis is the Fourier analysis of which
the basics are outlined in Sect. 2.3.

1.2 TheÅknes rockslide

Åknes is located in western Norway (Fig. 1). In 2004, an
extensive mapping and monitoring program was initiated for
the unstable rock slope atÅknes. This program is still on-
going and includes, amongst others, various types of sur-
face displacement measurements which form the basis for
the statistical analyses reported in this paper. Kveldsvik et
al. (2006) give a geological evaluation of the early displace-
ment measurements collected atÅknes. They concluded that
the Åknes rockslide currently was in a steady creep phase
and that an accelerating phase is expected prior to a possible
catastrophic failure.

The upper boundary of the unstable area is clearly defined
by an 800 m long scarp located about 800–900 m above
sea level. However, the extent and volume of the unstable

Nat. Hazards Earth Syst. Sci., 9, 713–724, 2009 www.nat-hazards-earth-syst-sci.net/9/713/2009/



T. Nordvik and E. Nyrnes: Statistical analysis of surface displacements 715

 27

 
 
Figure 2. Chronological overview of the datasets used in this paper. 
 

 

 

 
 
Figure 3. Locations of permanent GPS and extensometer control points together with the assumed 
boundaries for the unstable part of the slope. (Coordinates are given in a local system; the 
transformation to UTM Zone 32N is simply + 390 000 and + 6 890 000 for the x- and y-coordinate, 
respectively.) 
 

 

Fig. 2. Chronological overview of the datasets used in this paper.

rock mass, as well as the number and extents of the individ-
ual rock blocks involved, are not fully known. Nordvik et
al. (2009) point out three different scenarios having volume
estimates ranging from 20 to 85 million cubic metres. For
a detailed description of the geological conditions atÅknes
see Ganerød et al. (2008).

1.3 Description of data

Seven permanent GPS control points, three extensometer
control points as well as the groundwater level were repeat-
edly measured for periods of time providing time series data.
A number of total station control points and some additional
GPS control points were only measured for a few epochs,
denoted as survey campaigns in this paper, Fig. 2.

During a period of nearly 500 days, seven permanent GPS
receivers have been operating at theÅknes rockslide site.
Measurements were carried out as relative measurements us-
ing a GPS base station located at a fixed point close to the
unstable rock slope. The locations of the control points and
the base station together with the assumed boundaries of the
unstable part of the rock slope are shown in Fig. 3.

The GPS antennas were mounted on top of about 3 me-
ter tall aluminium pillars with cone-shaped caps to prevent
snow and ice from interfering with the GPS signals. Six of
the control points were located inside the suspected unstable
part of the slope. The remaining control point (GPS 2) was
located above the back scarp and thus assumed stable. Dur-
ing operation this control point was moved to a new location,
a few metres away from the initial position, causing a shift in
its time series.

The x-, y- and z-coordinates of the seven control points
were recorded with a nominal sampling interval of 12 h.
However, due to various circumstances this constant sam-
pling interval was not maintained for the entire time series.
For example; during a period of nearly 40 days, the power
supply was down due to damages caused by lightening. Con-
sequently no measurements were recorded during this pe-
riod, leaving major gaps in the time series. Moreover, some
settings related to the atmospheric correction model used for
processing were also altered during operation. This is ev-
ident as shifts in the time series as well as changes in the
noise levels (Fig. 4).
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Fig. 3. Locations of permanent GPS and extensometer control
points together with the assumed boundaries for the unstable part
of the slope. (Coordinates are given in a local system; the transfor-
mation to UTM Zone 32 N is simply + 390 000 and + 6 890 000 for
the x- and y-coordinate, respectively).

Data from three extensometers measuring the extension
across the back scarp (Fig. 3) were included in this inves-
tigation. Even though the extensometer measurements were
recorded with a nominal sampling interval of five minutes,
only a single observation per day was considered for the anal-
yses in this paper. An approximate orientation was measured
for each extensometer. Assuming constant orientations of the
extensometers, this allows for an approximate decomposition
of the extensometer readings into changes in the x-, y- and z-
direction. This is convenient for comparing results from ex-
tensometer with those obtained from GPS and total stations.
However, the extensometers in question are oriented in the
North-South direction along the slope; therefore changes in
the x-components are not detectable.

As the groundwater level is assumed to have major influ-
ence on the displacement rates, daily groundwater records
from a borehole located at the upper part of the slope (Fig. 3)
were also considered for this investigation.

2 Methods

2.1 Principal component analysis

The Principal Components (PCs) are simply the eigenvec-
tors of a (covariance) matrix. The eigenvector correspond-
ing to the largest eigenvalue is denoted as the first princi-
pal component (PC1), the eigenvector corresponding to the
second largest eigenvalue is denoted as the second principal
component (PC2) and so on. Principal components depend
solely on the covariance matrix of the data, and thus, their
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Figure 4. Plots of raw GPS time series for point 4. (Day 0 corresponds to 26 March 2007.) 
 

 

 

 
 
Figure 5. Coefficients of the Principal Components (PCs) calculated from displacement vectors 
derived from GPS and total station surveys (cf. Fig. 6 and 7). The x-coefficient of PC1 is zero; this 
means that PC1 lies in yz-plane. The percentage associated with each PC is the portion of the total 
variability explained by this PC. 
 

Fig. 4. Plots of raw GPS time series for point 4. (Day 0 corresponds to 26 March 2007).

development does not require a multivariate normal assump-
tion (Johnson and Wichern, 2002). In this investigation Prin-
cipal Component Analysis (PCA) is solely used for interpre-
tation but PCA is also commonly used for data reduction pur-
poses. The reader is referred to Johnson and Wichern (2002)
and Davis (2002) for a more detailed description of PCA.

2.2 Trend estimation from time series

As a first step towards extracting the useful information from
the available time series, trend models were fitted to each
individual time series. This subsection outlines the chosen
procedures and principles used for the trend modelling.

Each GPS control point has three corresponding time se-
ries; one for each of the x-, y- and z-coordinates. The
recorded coordinates are given with respect to the UTM sys-
tem. In order to get a more appropriate scale for the ob-
servations, the first observation from each series was simply
subtracted from the subsequent observations to obtain1x,
1y and1z. Using delta values, as opposed to UTM coor-
dinates, this eases human readability and is also preferable
with respect to numerical stability.

Plots of the time series suggest linear trends (Fig. 4). How-
ever, there are a number of shifts which have to be considered
as well as a number of gross errors, particularly at the first
parts of the time series (Fig. 4). In order to calculate the
magnitudes of the potential offsets, along with their signifi-
cance levels, the models were extended with offset parame-
ters which were estimated simultaneously with the other re-
gression parameters. The estimated offsets for each of the

x, y, z time series were corrected before the corresponding
absolute displacement (distance) time series were calculated.

To eliminate the major portion of gross errors, all delta
values exceeding a discretionally chosen threshold were re-
moved before the actual trend estimation.

In this paper, the parameter estimation is based on the GM
model (e.g. Koch, 1999), where the expectation of the ob-
servations is described as linear combinations of unknown
parameters. The GM model is defined by Eq. (1):

E(y)=Xβ=y+e with Cov(y)=Cov(e)=σ 2Qee=Cee (1)

wherey is a vector of observations,β is a vector of unknown
parameters,X is a known design matrix,Qee is the co-factor
matrix of the errorse andσ 2 is the variance of unit weight,
usually unknown. In this paper the errorse are assumed to
be normally distributed;e∼N(0, σ 2Qee). The product ofσ 2

andQee is the error covariance matrixCee, and the inverse
of Qee is the weight matrix;P=Q−1

ee .
Assuming a GM model containing different regression pa-

rameters such as constant term, linear trend and offsets, the
structure of the design matrixX is:

X =



1 t1 0 · · · 0
1 t2 0 · · · 0
...

...
...

...
...

1 tk 1 · · · 0
1 tk+1 1 · · · 0
...

...
...

...
...

1 tn−1 1 · · · 1
1 tn 1 · · · 1


andβ =


β1
β2
...

βu

 , y =


y1
y2
...

yn

 (2)
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where the first and the second column ofX represent the con-
stant term and linear trend respectively. Offset terms were
introduced to model sudden unexpected shifts in the time se-
ries, and are represented by the digit one in the consecutive
columns ofX. If no covariance information exists on the ob-
servationsy, the weight matrixP is diagonal. Further, if the
variances are equal, the weight matrixP equals the identity
matrix. The least squares estimatesβ̂ of the unknown param-
etersβ are given by:

β̂ = (XTPX)−1XTPy with Cov(β̂) = σ̂ 2(XTPX)−1

= σ̂ 2Q
β̂β̂

= C
β̂β̂

(3)

whereσ̂ 2 is the unbiased estimator of the varianceσ 2 of unit
weight obtained from:

σ̂ 2
=

ê
T Pê

n − u
(4)

where the quadratic form̂eT Pê is the residual sum of squares
andn−u is the degrees of freedom, i.e. the difference be-
tween the number of observations iny and the number of
unknowns inβ. The least squares estimatesê of the errorse
are the residuals, and can be obtained from Eq. (5):

ê=Xβ̂−y with Cov(ê)=σ̂ 2
[
Qee−X(XT PX)−1XT

]
=σ̂ 2Qêê (5)

After the first coarse approach for removal of obvious
blunders, a certain amount of potential gross errors remained.
The process of removing the remaining gross errors was car-
ried out by analysing the standardized residuals. A standard-
ized residual̂di is defined by:

d̂i =
êi

σ̂
(6)

that is, each residualêi is divided by the estimated standard
deviation of unit weight. The standardized residuals have
zero mean and approximately unit variance (Montgomery et
al., 2001). All observations corresponding to a standardized
residual greater than 3.0 were considered as gross errors and
removed from the dataset.

The hypotheses for testing the significance of thej th pa-
rameterβj can be expressed as:

H0 : βj = 0 versusH1 : βj 6= 0, j ∈ {0, 1, ..., u − 1} (7)

The test statistic for testing the above hypotheses is given
by:

t0 =
β̂j√
Cjj

(8)

whereCjj is the variance ofβ̂j , i.e. thej th diagonal ele-
ment in the covariance matrixC

β̂β̂
. The null hypothesisH0

is rejected if:

|t0| > tα/2,n−u−1 (9)

whereα is the significance level of the test andtα/2, n−u−1
is the upperα/2 quantile of a Student’st-distribution with
n−u−1 degrees of freedom. A rejection ofH0 implies that
the actual parameterβj is significantly different from zero,
and should therefore be included in the model. A signifi-
cance levelα of 5% is used for all hypotheses testing in this
paper.

Processing one time series at a time, a complete model
containing all possible regression parameters was first fitted
to the time series. Then the parameter yielding the smallest
absolute value of test statistic in Eq. (8) was chosen for dele-
tion and a new least squares estimation was performed. The
same procedure was repeated until only significant parame-
ters remained. This parameter selection approach is known
as Backward Elimination (e.g. Miller, 2002).

2.3 Spectral analysis

The residuals obtained from the final trend models were fur-
ther investigated by spectral analysis to detect possible peri-
odic components in the time series. The most common spec-
tral decomposition technique is the Fourier transform which
enables the decomposition of any periodic function into a set
of cosine and sine components that represent the frequency
spectre. In order to apply Fourier analysis, the data should
be equidistant. This implies that there should be no gaps
within the time series. For the time series in question, this
requirement was not met as the there were subintervals with
missing observations. Moreover, removal of gross errors also
caused additional gaps in the time series which had to be
corrected. The initial residuals were therefore interpolated
to obtain equidistant data. However, no interpolations were
carried out for the “missing residuals” within the longer gaps
(>10 days); these were simply set to zero.

Using the discrete Fourier transform, a time seriesy(t) can
be represented as in Eq. (10) (Wei, 1990).

y(t) =

n/2∑
k=0

[ak cos(2πkt/n) + bk sin(2πkt/n)],

t = 1, 2, ..., n (10)

Equation (10) can be set up as a GM model (Sect. 2.2) and
the LS method can be used for estimation of the Fourier co-
efficientsak andbk. A model containing only a single wave
component with frequencyω1 has the following structure:

X=


cos(ω1t1) sin(ω1t1)

cos(ω1t2) sin(ω1t2)
...

...

cos(ω1tn) sin(ω1tn)

 β=

[
a1
b1

]
, y=


y1
y2
...

yn

 (11)
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Figure 4. Plots of raw GPS time series for point 4. (Day 0 corresponds to 26 March 2007.) 
 

 

 

 
 
Figure 5. Coefficients of the Principal Components (PCs) calculated from displacement vectors 
derived from GPS and total station surveys (cf. Fig. 6 and 7). The x-coefficient of PC1 is zero; this 
means that PC1 lies in yz-plane. The percentage associated with each PC is the portion of the total 
variability explained by this PC. 
 

Fig. 5. Coefficients of the Principal Components (PCs) calculated
from displacement vectors derived from GPS and total station sur-
veys (cf. Figs. 6 and 7). The x-coefficient of PC1 is zero; this means
that PC1 lies in the yz-plane. The percentage associated with each
PC is the portion of the total variability explained by this PC.

Each new Fourier frequency introduced adds two new
columns to the design matrixX; one cosine term and one sine
term as well as the two corresponding Fourier coefficients
to the parameter vectorβ. They vector contains residuals
from a trend model. If only the Fourier frequencies are used,
the estimated coefficientŝak and b̂k will be uncorrelated as
the Fourier frequencies form an orthogonal basis. The first
Fourier frequency is obtained fromω1=2π/T , whereT de-
notes the total time span of the time series. For a unit sam-
pling frequency,T equalsn. Consecutive Fourier frequen-
cies are obtained byωk=kω1, wherek=2, 3, ..., n/2, and
their amplitudes are obtained from:

Âk =

√
â2
k + b̂2

k (12)

The significance of a single wave componentk is evaluated
by means of its contribution to the weighted sum of squares.
Relevant hypotheses become:

H0 : ak = bk = 0 versusH1 : ak 6= 0 ∨ bk 6= 0 (13)

The null hypothesisH0 is rejected if:

F =
(yT Py − ê

T Pê)/2

(ê
T Pê)/(n − 2)

> F(2,n−2,α), (14)

that is, if the test statisticF exceeds the upperα-percentage
point of a Fisher distribution with 2 andn−2 degrees of
freedom. In case of equal variance and uncorrelated ob-
servations, the weight matrixP becomes the identity matrix
which can be omitted from Eq. (14). The same test statis-
tics (Eq. 14) can also be used for testing the simultaneous
significance of a set of wave components, providing that the

degrees of freedom are updated accordingly. However, in this
paper only one wave component was reported for each time
series; the one that gave the largest value of the test statistic
in Eq. (14).

2.4 Testing for equality of displacement vectors

A relevant question with respect to displacement analyses is
whether two or more vectors are equal, i.e. whether the esti-
matesx̂i andx̂j of two different displacement vectors have
the same expectation value:

H0 : E(x̂i) = E(x̂j ) versusH1 : E(x̂i) 6= E(x̂j ) (15)

Under the assumption of normally distributed and uncor-
related displacement vectors;

x̂i∼N(µi, Ci) andx̂j∼N(µj , Cj ) with Cov(x̂i, x̂j )=0, (16)

the null hypothesisH0 can be evaluated by means of a chi-
squared distributed random variable. The null hypothesis is
rejected if:

T 2
=

(
x̂i − x̂j

)T (
Ci + Cj

)−1 (
x̂i − x̂j

)
> χ2

k,α (17)

whereχ2
k,α is the upperα quantile of the chi-squared distri-

bution with k degrees of freedom. In this casek equals 3,
i.e. the dimension of the displacement vectors.

2.5 Cross-correlation

The cross-covariance between two jointly stationary stochas-
tic processesxt and yt with lag parameterk is defined by
(Wei, 1990):

γxy(k) = E
[
(xt − µx)(yt+k − µy)

]
,

k ∈ {0, ± 1, ± 2, ....}, (18)

where the indext refers to an observation made at timet . For
large de-trended samples of sizen with constant variance, the
estimated cross-covariance is obtained from:

γ̂xy(k) =
1

n

n−k−1
6
t=0

xtyt+k (19)

The conversion from cross-covariance to cross-correlation
involves the normalization;

ρ̂xy(k) =
γ̂xy(k)

σ̂x σ̂y

, (20)

whereσ̂x andσ̂y are the estimated standard deviations ofxt

andyt .
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Figure 6. Displacement vectors derived from GPS survey campaigns. Left column: horizontal 
displacements. Right column: vertical displacements. 
 

Fig. 6. Displacement vectors derived from GPS survey campaigns.
Left column: horizontal displacements. Right column: vertical dis-
placements.

3 Results

A principal component analysis was carried out for displace-
ment vectors derived from GPS and total station survey cam-
paigns (Fig. 5). The principal components are simply a ro-
tation (orthogonal transformation) of the three initial coor-
dinate axes such that the first principal component (PC1)
represents the direction of most variability in the displace-
ments. PC1 roughly corresponds to the down slope direction
which is sensible since the largest displacement vectors go
in this direction together with the fact that some of the con-
trol points show displacements close to zero. PC2 indicates
the direction orthogonal to PC1 showing the second largest
displacement variability. The direction of PC2 roughly cor-
responds to the slope’s normal vector. The direction of PC3,
orthogonal both to PC1 and PC2, roughly corresponds to the
across slope direction. That is, there is the least variability in
displacement across the slope.

Figures 6 and 7 show displacement vectors derived from
GPS and total station survey campaigns carried out in 2004,
2005, 2006 and 2007. These vectors were obtained by tak-
ing the differences between LS adjusted coordinates at two
consecutive epochs.

 30

 
 
Figure 7. Displacement vectors derived from total station survey campaigns. Left column: horizontal 
displacements. Right column: vertical displacements. 
 

Fig. 7. Displacement vectors derived from total station survey cam-
paigns. Left column: horizontal displacements. Right column: ver-
tical displacements.

An example of fitted trend models is shown in Fig. 8. Fig-
ure 9 shows displacement-vectors derived from time series
(comparable to those shown in Figs. 6 and 7). The esti-
mated annual displacements and the most significant periodic
components are listed in Tables 1 and 2. The periodic com-
ponents corresponding to the middle time series in Fig. 8,
i.e. for the y-coordinate, are shown in Figs. 10 and 11.

Spectral analysis of the time series for the groundwater
level shows that the most significant period is 378 days with
corresponding amplitude of 1.62 m.

From Fig. 9 the question arises whether the displacements
vectors for point 3, 5 and 6 are equal, meaning that the
observed deviations in directions and magnitude are only
caused by random errors. This question can be summarised
by the following hypotheses;

H0 : E(x̂3) = E(x̂5) = E(x̂6) versusH1 :

E(x̂3) 6= E(x̂5) ∨ E(x̂3) 6= E(x̂6) ∨ E(x̂5) 6= E(x̂6) (21)

These hypotheses can be tested by splitting into vector
pairs. Test statistics from Eq. (17), for each feasible vec-
tor pair, are shown in Table 3. The null hypothesisH0 is
rejected if at least one individual test statistics exceeds the
critical value. Table 3 shows that all individual test statistics
far exceed the critical value. Consequently,H0 was rejected.

A cross correlation analysis of displacements and the
groundwater level in a borehole located in the upper part of
the unstable slope was carried out. All datasets were de-
trended before the cross correlations were calculated. The
results indicate strong correlations (|ρxy |>0.7) between the

www.nat-hazards-earth-syst-sci.net/9/713/2009/ Nat. Hazards Earth Syst. Sci., 9, 713–724, 2009



720 T. Nordvik and E. Nyrnes: Statistical analysis of surface displacements

Table 1. Absolute displacements (distance). Linear trends and most significant periodic components from GPS and extensometer time series.

Point Trend [mm/year] 95% CI for trend [mm/year] Period [days] Amplitude [mm]

GPS 2 2.8 [2.3, 3.2] 162 0.8
GPS 3 30.6 [29.6, 31.5] 66 0.8
GPS 4 81.4 [80.5, 82.4] 134 1.6
GPS 5 17.6 [17.0, 18.2] 6 0.6
GPS 6 25.8 [25.2, 26.5] 22 0.8
GPS 7 14.7 [13.3, 16.2] 333 1.6
GPS 8 4.9 [3.8, 6.0] 46 1.3
Ext A 13.3 [13.2, 13.4] > >

Ext B 23.0 [22.9, 23.1] > >

Ext C 15.3 [15.3, 15.4] 355 0.7

>indicates long periods which can not be reliably established from the current time series.
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Figure 8. Example of trend models. Linear trend models containing offset terms fitted to the time 
series of GPS control point 4 (correspond to the raw observations in Fig. 4). 
 

 

 

 
 
Figure 9. Displacement vectors derived from GPS and extensometer time series. Left: horizontal 
displacements. Right: vertical displacements. 
 

Fig. 8. Example of trend models. Linear trend models containing offset terms fitted to the time series of GPS control point 4 (correspond to
the raw observations in Fig. 4).

groundwater level and the displacements measured by the ex-
tensometers at the back scarp (Table 4, Fig. 12). Increase
in displacements for extensometer A and B tends to occur
about three weeks after increase in groundwater level. For
extensometer C the situation is, however, different as the
maximum absolute correlation appears at lag zero. The cor-
relation for extensometer C is negative which indicates that
the displacement rate tends to slow down as the groundwa-
ter level increases. There are no strong correlations between
groundwater level and displacements for the GPS control
points (Table 4).

4 Discussion

The PCA carried out here is regarded as part of the ex-
ploratory analysis to gain overview of the situation. Not sur-
prisingly, most of the variability is related to the down slope
movement and subsidence of the slide (PC1 and PC2). The
portion explained by PC3 is probably mostly due to observa-
tional noise.

As the GPS data were sampled with at least 12 h time spac-
ing, the autocorrelation was neglected for these observations.
The offsets detected from the GPS time series might corre-
spond to minor failures in the slope but this is considered
as highly unlikely as the same offset features are present for
most of the GPS control points, but are not detectable from
the extensometer time series.
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Table 2. Linear trends and most significant periodic components in x-, y- and z-direction from GPS time series.

Point Coordinate Trend [mm/year] 95% CI for trend [mm/year] Period [days] Amplitude [mm]

x – – > >

GPS 2 y −2.8 [−4.0,−1.8] 158 0.8
z – – 118 2.5
x 12.8 [12.3, 13.3] 118 0.7

GPS 3 y −23.5 [−24.2,−23.0] 172 0.4
z −14.2 [−15.9,−12.5] 62 1.1
x −13.5 [−13.9,−13.1] 29 0.5

GPS 4 y −39.9 [−40.5,−39.2] 339 0.8
z −69.3 [−70.7,−67.8] 134 1.7
x 11.2 [10.4, 12.1] 127 0.8

GPS 5 y −9.4 [−10.0,−8.7 ] 55 0.4
z −9.8 [−11.3,−8.3] 23 1.1
x 16.2 [14.0, 18.5] 120 0.7

GPS 6 y −17.9 [−19.6,−16.3] 176 0.8
z −7.7 [−9.7,−5.7] 23 1.8
x −10.9 [−13.8,−8.1] 282 1.2

GPS 7 y – – 159 0.6
z 8.9 [2.9, 14.9] 16 1.8
x 4.6 [3.0, 6.2] 62 1.2

GPS 8 y 1.7 [0.9, 2.6] 203 0.6
z – – 147 2.1

– indicates non-significant values.
> indicates long periods which can not be reliably established from the current time series.
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Fig. 9. Displacement vectors derived from GPS and extensometer
time series. Left: horizontal displacements. Right: vertical dis-
placements.

From the GPS time series, trends were estimated both for
the absolute displacements (i.e. when only distances were
considered) and for the individual coordinates x, y and z.
All continuously monitored control points show significant
displacements for at least one of their coordinates. This ap-
plies even to control point 2 which was assumed stable. Even
though the estimated annual displacement for control point 2
is less than 3 mm, this calls for further monitoring.

The estimated periodic components for the y-coordinate of
GPS 4 (339 days, Table 2) as well as for Ext C (355 days, Ta-
ble 1) are likely caused by changes in the groundwater level
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Figure 10. Periodogram for the y-coordinate of GPS 4. Each vertical line represents a Fourier 
frequency with the corresponding wavelength indicated above. To obtain the most significant 
frequency for this time series, the Fourier frequency having the largest amplitude (wavelength 243) was 
used as a starting point. Repeated calculations, using only one periodic component, were then carried 
out until an approximate optimum frequency was reached (wavelength 339, cf. Fig. 11). 
 

 

 

 
 
Figure 11. Periodic fluctuations. The most significant wave component is fitted to the y-coordinate of 
GPS 4. The period is 339 days and the amplitude is approximately 0.8 mm. The peak appears in early 
autumn as day 0 corresponds to 26 March 2007. (Apparent artefacts stem from interpolation and 
insertion of “zero-residuals” to get equidistant data.) 
 

 

Fig. 10. Periodogram for the y-coordinate of GPS 4. Each vertical
line represents a Fourier frequency with the corresponding wave-
length indicated above. To obtain the most significant frequency for
this time series, the Fourier frequency having the largest amplitude
(wavelength 243) was used as a starting point. Repeated calcula-
tions, using only one periodic component, were then carried out
until an approximate optimum frequency was reached (wavelength
339, cf. Fig. 11).

as the most significant periodic component for the ground-
water level is also close to one year. Some of the time se-
ries show periodic components close to six months e.g. the
y-coordinates of GPS 3 and GPS 6 (172 and 176 days re-
spectively, Table 2) which indicate bi-annual variations. This
may be related to snowmelt in the spring and increased pre-
cipitation in the autumn. Moreover, the time series for the
y-coordinates of GPS 2, GPS 7 and GPS 8 (158, 159 and
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Table 3. Test statistics regarding equality of displacement vectors.

Vector combinationi, j Test statistic (T 2
i,j

) T 2
i,j

>χ2
3,0.05= 7.81

3, 5 1026 Yes
3, 6 72 Yes
5, 6 109 Yes

Table 4. Cross-correlations between groundwater level and abso-
lute displacements.

Control point ρxy [−1, 1] Lag [days]

GPS 2 0.32 −54
GPS 3 0.20 −45
GPS 4 −0.22 9
GPS 5 0.18 −42
GPS 6 0.20 −51
GPS 7 0.29 −16
GPS 8 −0.27 48
Ext A 0.73 21
Ext B 0.71 22
Ext C −0.78 0

203 days respectively, Table 2) may also be related to this bi-
annual variation but their estimated periods may be affected
both by noise in the observations as well as the physical con-
ditions of the rocks lope.

A well known problem when dealing with real world time
series is that the total time span is too short to prove the exis-
tence of the longer periods. This applies to some of the time
series analyzed here (e.g. Ext A and Ext B, Table 1). For
example, Pytharouli et al. (2007) established the existence of
periods between 4 and 7.5 years for two landslides in Greece.
Moreover, it can be considered as a trade off whether to use
the “fixed set” of Fourier frequencies which are uncorrelated
but indirectly determined by the total length of the time se-
ries, or to use an arbitrary (probing) frequency being the op-
timal. If any arbitrary frequency is used, this implies some
limitations with respect to interpretation of consecutive fre-
quency estimates as these will no longer be uncorrelated. If
the frequencies in question correspond to long wavelengths,
with respect to the total time span, the approximation errors
introduced by using Fourier frequencies are generally more
notable. Therefore, in this paper only the single optimal fre-
quencies, in terms of highest test statistic in Eq. (14), were
listed. However, this implies that remaining periodical com-
ponents are omitted even though they may be statistically
significant. All periodical components reported in this pa-
per were statistically significant which gives good indications
that these periods are realistic, even though some of them are
long compare to the total time span of the time series.

An important issue associated with the spectral analysis is
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Fig. 11. Periodic fluctuations. The most significant wave compo-
nent is fitted to the y-coordinate of GPS 4. The period is 339 days
and the amplitude is approximately 0.8 mm. The peak appears in
early autumn as day 0 corresponds to 26 March 2007. (Apparent
artefacts stem from interpolation and insertion of “zero-residuals”
to get equidistant data).
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Figure 12. Cross-correlations between groundwater level in borehole and displacements for 
extensometer A, B and C.  
 
Fig. 12. Cross-correlations between groundwater level in borehole
and displacements for extensometer A, B and C.

to separate the periodical components related to un-modelled
effects from those related to the actual displacement of the
rock slope. As the GPS measurements were calculated as rel-
ative measurements i.e. as vectors from a fixed base station,
one should not expect to find the typical periodical compo-
nents as for absolute GPS measurements such as ocean load-
ing, Earth tide and the Chandler wobble. However, there may
be other periodical components that can affect the time se-
ries but still not related to the physical motion of the rock
slope. For example, the heat expansion of the aluminium pil-
lars, used as base for the GPS antennas, will be in the order
of magnitude 2 mm from one extreme to the other assum-
ing a variation in temperature of 30 degrees Celsius (thermal
expansion coefficient for Aluminium is 2.3·10−5 m/m K). It
is assumed that the heat expansion effect will even out with
respect to the trend estimates but will contribute to the ob-
served noise as well as to the periodical components, though
mainly on the z-coordinate. The contribution to the period-
ical components may be both to the seasonal variations as
well as to the diurnal variations. The latter will appear as
noise in the measurements due to the short wavelengths with
respect to the sampling interval. As the amplitudes for the
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periodic components detected for the z-coordinates for some
of the control points are in the order of magnitude 2 mm, they
are likely influenced by the heat expansion of the pillars.

The time series used in this investigation were not fully
ideal for spectral analysis, as there were some violations of
the conditions of the Fourier analysis such as offsets, blun-
ders and variable noise levels as well as missing observations
which had to be corrected. Among others, this required in-
terpolation to get equidistant data. This interpolation may
indeed influence the results from the spectral analysis. In
order to get an idea of how the results were affected, vari-
ous interpolations methods such as linear, nearest neighbour
and cubic splines were tested. However, the choice of in-
terpolation method seemed to only have minor influences on
the resulting periods. Also, imperfections in the trend model
may affect the outcome from spectral analysis. Parameter
estimates will generally be affected depending on whether
all parameters are estimated simultaneously or the trend part
is estimated separately i.e. before the periodical components
are estimated. Some limited testing indicated, however, that
this effect is relatively small. Therefore the estimation was
carried out in a two step manner by first removing the linear
trends before the periodical components were estimated from
the resulting residuals. Moreover, inserting zero-residuals
within the gaps probably caused some reduction of the es-
timated amplitudes of the periodic components.

All extensometers show high correlation with the ground-
water level (Table 4, Fig. 12). However, the behaviour of
Ext A and Ext B are probably affected by some fractures in
the vicinity of these extensometers. Therefore, Ext C is re-
garded as the most representative for the upper part of the
slope. Correlations for the other GPS control points were
low (Table 4) and therefore considered as neglectable from a
practical point of view.

It is already established that there are certain periodic vari-
ations in displacement rates at theÅknes rockslide due to
seasonal variations in precipitation and temperature. During
spring and autumn the displacement rates are larger due to
snowmelt and increased precipitation, respectively (Grøneng
et al., 2009). However, statistical evaluations carried out
in this analysis provide a formalized means for quantifying
these relations which may be useful both for interpretation
and prediction of future displacements.

Even though some of the time series, particularly those
from extensometers, can be well described by higher order
polynomials, it is advantageous to use a model based on lin-
ear trends combined with periodical components. With re-
spect to prediction of future displacements, the performance
of a model based on higher order polynomials may be com-
pletely unsatisfactory outside the observation interval. More-
over, interpreting estimated model parameters from linear
trend models with periodic components are more straight-
forward than for higher order polynomial models.

On the basis of the analysis reported in this paper some
recommendations regarding design of future displacement

measurements can be given; the continuous measurements
are preferably to the yearly survey campaigns. This is evident
from the currently available GPS time series. If the displace-
ment vectors were derived from the difference in coordinate
values, from the mean of the initial part of the time series
to the mean of the end of the same time series, this would
lead to erroneous results compare to the displacement rates
derived from trend estimates. This is a result of the offsets
within the time series (Fig. 8). Similarly, the contradictions
betweenvertical displacements, in the south-eastern part of
the slope, for the period 2005–2006 (Figs. 6, 7) were most
likely caused by a systematic error (vertical shift) related to
the GPS measurements carried out in 2006.

Moreover, a larger number of control points and better spa-
tial coverage of the unstable area is preferable with respect
to future analyses. More control points located at the as-
sumed stable parts of the slope may also be beneficial. As
there may be un-modelled effects related to the GPS mea-
surements, more control points located at the stable parts of
the slope would help identifying such un-modelled effects as
well as being a validation of the estimated accuracy. How-
ever, in most cases there will by practical limitations regard-
ing the number and locations of the control points. For the
Åknes case, some parts of the slope are exposed to frequent
snow avalanches whereas others have limited GPS satellite
coverage which makes those areas less suitable.

5 Summary and conclusions

A statistical approach for analyzing various types of sur-
face displacement data is presented. Different displacement
datasets, including data from survey campaigns, carried out
with GPS and total stations, as well as time series from con-
tinuously monitored GPS and extensometers control points,
were analysed. These datasets were collected at theÅknes
site in western Norway, one of the world’s most investigated
rockslides.

The main focus for this investigation was time series anal-
ysis. Results from time series analyses show that displace-
ments atÅknes can be modelled as linear trends superim-
posed with periodic components. This means that there are
periodical fluctuations but nopersistentacceleration.

The annual displacement rates, estimated from GPS and
extensometer time series, range from a few millimetres to
about 8 cm, whereas the periodical fluctuations typically
have maximum amplitudes of 1–2 mm. Some of the esti-
mated periodic components show annual or biannual varia-
tions which are most likely caused by changes in groundwa-
ter level, precipitation and snowmelt.

High correlations between displacements and the ground-
water level, measured in a borehole at the upper part of the
slope, were evident for extensometers located across the back
scarp. However, for the GPS control points located further
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down the slope, the correlations were low and therefore con-
sidered as neglectable from a practical point of view.

The three most similar displacement vectors, derived from
GPS time series, were formally tested for equality by means
of hypothesis testing. The hypothesis regarding equality was
rejected. This supports the complex displacement pattern ev-
ident from previous GPS and total station survey campaigns
as well as the assumption of a number of individual moving
blocks.

Some data sets, particularly the GPS time series, were not
fully ideal in terms of missing observations, offsets and gross
errors. These problems were resolved by various techniques
such as gross error removal, interpolation and offset estima-
tion. However, such flaws in data make additional contribu-
tions to the uncertainties associated with the estimated dis-
placements.

We believe that the statistical approach reported in this pa-
per can be useful to other landslide assessments as well as
for future analyses of the̊Aknes rockslide.
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