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Abstract. Social vulnerability indices are a means for gen-
erating information about people potentially affected by dis-
asters that are e.g. triggered by river-floods. The purpose be-
hind such an index is in this study the development and the
validation of a social vulnerability map of population char-
acteristics towards river-floods covering all counties in Ger-
many. This map is based on a composite index of three main
indicators for social vulnerability in Germany – fragility,
socio-economic conditions and region. These indicators have
been identified by a factor analysis of selected demographic
variables obtained from federal statistical offices. Therefore,
these indicators can be updated annually based on a reliable
data source. The vulnerability patterns detected by the factor
analysis are verified by using an independent second data set.
The interpretation of the second data set shows that vulner-
ability is revealed by a real extreme flood event and demon-
strates that the patterns of the presumed vulnerability match
the observations of a real event. It comprises a survey of
flood-affected households in three federal states. By using
logistic regression, it is demonstrated that the theoretically
presumed indications of vulnerability are correct and that the
indicators are valid. It is shown that indeed certain social
groups like the elderly, the financially weak or the urban res-
idents are higher risk groups.

1 Introduction

Developing vulnerability indices at sub-national level is a
common approach that is increasingly applied in countries
like the United States of America (Clark et al., 1998; Cut-
ter et al., 2000; Wu et al., 2002; Chakraborty et al., 2005;
Olfert et al., 2006; Rygel et al., 2006; Kleinosky et al., 2007;
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Yarnal, 2007) the United Kingdom (Tapsell et al., 2002),
Spain (Weichselgartner, 2002), Latin America (Hahn et al.,
2003; Cardona, 2005), Australia (Dwyer et al., 2004) the
Philippines (Acosta-Michlik, 2005) or generally for regions
worldwide (Nakamura et al., 2001). In Germany there are yet
only few attempts that either capture only one federal state
(Kropp et al., 2006) or capture social vulnerability by very
few variables (Meyer et al., 2007). There is still no compre-
hensive profile of social vulnerability or sub-national index
map for whole river channels in Germany. This gap is to be
filled by the Social Vulnerability Index (SVI) in context to
river-floods.

The research results are integrated in a multi-disciplinary
“Disaster Information System for Large-Scale Flood Events
Using Earth Observation” (DISFLOOD, Damm et al., 2006).
The project is a platform for multi-disciplinary and multi-
institutional research. It is a joint effort of the German
Aerospace Centre (DLR), the German Research Centre for
Geosciences Potsdam (GFZ) and the United Nations Univer-
sity – Institute for Environment and Human Security (UNU-
EHS). The project as financed by the Helmholtz society
started in late 2005 and runs until the end of 2008. This
platform targets extreme river floods in Germany by as-
sessing hazard and vulnerability parameters. At the same
time DSFLOOD is a pilot study to combine different meth-
ods like remote sensing, hydraulic hazard models, and eco-
nomic damage models with social and ecological vulnera-
bility indicators. The outcome is an online information sys-
tem that will be available on the Natural Disaster Network
web site NaDiNe (http://nadine.helmholtz-eos.de/projects/
disflood/disfloodde.html). The prime target groups of Na-
DiNe are experts working on flood protection, regional plan-
ners and scientists. Moreover, the interactive hazard and vul-
nerability maps will also be accessible by the public to a cer-
tain degree.

While social vulnerability indices are increasingly devel-
oped there are yet few attempts to validate these indices.
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Validation can be achieved by using an independent second
data set, preferably at a finer spatial level of resolution. Al-
ternatively, the internal reliability of the model can be tested
on sensitivity and uncertainty by statistical tests. This shows
that there are two sides to the validity of an index, concep-
tual and methodological validity. Conceptual validity of the
content of social vulnerability is more important yet more
difficult to achieve and estimate. It demands terminological
clarity, empirical evidence and a theoretical framework of so-
cial vulnerability.

Attempting to validate a social vulnerability index meets
several constraints. First, it is difficult to find empirical evi-
dence about social vulnerability itself. Social vulnerability is
often hidden, complex and nested in various human aspects
and contingencies bound to different levels of society. Sec-
ond, vulnerability as a concept is conceived in at least two
major ways. On the one hand it is perceived as a holistic and
generic concept, encompassing many complex interrelations.
On the other hand it is seen as a more single-dimensional
concept, focusing on one specific item to a specific hazard,
for example, evacuation needs in context to river-floods. De-
pending on each conceptualisation, vulnerability is better apt
for experimental tests. Third, social vulnerability is difficult
to estimate for methodological reasons. Indicators and in-
dices are indirect numerical surrogates of real phenomena.
Quantitative assessments of qualitative phenomena are sub-
ject to generalisations in order to achieve computation and
comparability.

Due to these challenges it is not surprising that most social
vulnerability index assessments are occupied mostly with the
generation of the index and not with an additional validation.
The creation of an index is largely constrained by the avail-
ability of data (King, 2001) and independent second data sets
are scarce. Technical validation of such indices is increas-
ingly demanded, for example by using sensitivity and uncer-
tainty analysis (Wu et al., 2006) or random simulation tests
of the index robustness by Monte Carlo tests (Gall, 2007).
Validation at other spatial levels typically focuses on finding
empirical evidence of social vulnerability. This approach is
applicable, when the hazard context is the same, as well as
the spatial and cultural context (O’Brien et al., 2004). The
feasibility and success of such a validation at several scales
is even more likely when the same theoretical framework is
applied. For river-floods in Germany the BBC-framework
(Birkmann, 2006) has been used to compare social vulnera-
bility at county level to household level (Fekete et al., 2009).
Still, there remains a need to first develop an index for social
vulnerability and secondly, to find means of validating this
index.

2 Objective

This paper will focus on the case of a Social Vulnerability
Index (SVI) in the context of river-floods in Germany. The

SVI captures characteristics of certain social groups that ren-
der them exposed, susceptible or adaptive to disaster risk.
The spatial extent of the research area comprises whole river
channels in Germany. The objective behind the SVI in the
context of river-floods is to identify, quantify, rank and vali-
date social vulnerability in Germany. The input parameters to
this index are selected according to the special focus of river
floods in Germany, but are not directly dependent on flood
related information. Rather, this index consists of popula-
tion characteristics that could also be applied to other natural
hazards. The selection criteria and thresholds for the SVI are
for this case study explicitly targeted on a river flood context,
for example, capturing elderly people above a certain age as
being potentially vulnerable due to increased risk of fragility.
This index can be principally applied to all potential flood-
ing areas in Germany, to some extent even for coastal areas.
This index bears no direct dependence on hazard parameters
which is necessary in order to capture a different dimension
of disaster causation than typically derived by flood risk ap-
proaches.

The Social Vulnerability Index is to show the potential vul-
nerability of a county, as a profile of general typified demo-
graphic profiles, settlement patterns and infrastructure infor-
mation. It is not a target to capture profiles of single individ-
uals or single buildings at this level. Rather, variables like
the number of unemployed people per county point at gen-
eral characteristics that are attributed to the average of un-
employed persons per county. While many unemployed in-
dividuals might not suffer from financial shortcomings, this
is however a most likely assumption for the general group of
unemployed people per county.

The objective behind the validation is to find evidence
whether the construction of a Social Vulnerability Index
without direct relation to disaster impact or hazard param-
eters is valid. That means that first, test categories have to be
found, which allow probing for revealed social vulnerability.
Second, the independent variables that are the input data for
social vulnerability indicators have to be checked on validity.
Third, the methodology of grouping variables to indicators
has to be checked. Only then conclusions can be drawn on
the construction of an index composed of the single indica-
tors and the patterns of social vulnerability that are indicated
by such an index for spatial regions such as counties.

3 Social vulnerability factors

The data used for capturing the social vulnerability charac-
teristics at county level in Germany are standard census data
of the Federal Statistical Office in Germany (BBR, 2007;
Destatis, 2006a). This data is first analysed by a factor anal-
ysis and in a second step validated by analysing an indepen-
dent second data set with a logistic regression model. The
scope of the factor analysis is to extract profiles of social
groups regarding certain characteristics like income, gender
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or age that can be linked to a certain extent to measurable
variables like building type, urban or rural context, and med-
ical care as a key element of coping capacities. The aim of
using factor analysis as a method lies in variable reduction in
order to derive a set of variables that summarise social vul-
nerability characteristics. Further, underlying (latent) struc-
tures of variables groups can be elicited to build a social vul-
nerability profile.

Methodology: Factor analysis is a multivariate analysis
technique used to identify information packaging consider-
ing the interdependencies between all variables (Bernard,
2006: 495). The factor analysis is computed in SPSS version
14.0 with a principal component analysis for data reduction
and in order to identify variable groupings. The methodol-
ogy of the factor analysis follows standard procedure (e.g.
Nardo et al., 2005). The principal component analysis aims
at finding a linear combination of variables that accounts for
as much variation in the original variables as possible. A
Varimax rotation with Kaiser Normalisation is applied to the
component matrix in order to ease the interpretation (Schnei-
derbauer, 2007: 55) by rotating the axes of the components
perpendicular to each other. This step places the respective
components as much apart from each other as possible. The
extracted communalities are all above 0.5 which indicates
that the extracted components represent the variables well.
For the interpretation, only eigenvalues greater than one are
regarded and absolute loading values below 0.30 suppressed
(Nardo et al., 2005: 40, 43; B̈uhner, 2006: 200, 211; Bernard,
2006: 677). The eigenvalue is the standardised variance as-
sociated with a particular factor. The scree plot serves as
another criterion to limit the number of factors. The factors
on the steep slope up to the “scree elbow” in the curve are
especially able to explain the most of the data (Fig. 1).

The factor analysis follows the principle of variance max-
imisation, wherein those factors are sought-after that ex-
plain most of the variance of all items (Bühner, 2006: 182).
The Kaiser-Meyer-Olkin Measure of Sampling Adequacy
(KMO) of 0.905 indicates that the variable selection is suit-
able for factor analysis. The KMO explains the proportion
of variance in the variables that might be caused by underly-
ing factors. KMO-values above 0.60 indicate an acceptable
level, and from 0.80 a good level of compatibility of the vari-
ables with the test (as cited in Bühner, 2006: 207). The value
below 0.05 of the Bartlett’s test of sphericity rejects that the
variables are unrelated and therefore unsuitable for structure
detection.

The factor analysis of an input of 41 variables (Table 1)
uncovers seven latent factors that describe relationships be-
tween all variables to 76.6% of the cumulative variance.
From these seven factors (or components), only the first three
factors contain more than two loading values that get marked
per column (Table 1). Marked are those values per variable
which load highest within the seven factors matrix. Major
latent groupings are identified by the factor analysis within
the value loadings. These factors can be used for the com-

Fig. 1. Scree plot of the factor analysis showing the eigenvalues
(y-axis) explained by the resulting factors (x-axis).

putation of the composite index. The first component can be
named region as it captures variables connoted with regional
urban or rural aspects like population density and housing
type (Table 1). This factor consists of variables that contain
both negative and positive characteristics of vulnerability to-
wards river-floods, like density of medical care or popula-
tion density. The second component depicts socio-economic
conditions by financial deficiencies or income resources re-
lated to other variables that allow for interpretation of certain
age and employment groups. The third component identi-
fies fragility of physical fitness or need of assistance by the
elderly as opposite to middle-aged adults.

Factor analysis is sensitive to the exclusion or selection of
the variables for input. Yet, the selection set of 41 variables
(Table 1) is internally sound which is revealed by testing of
the factor analysis with stepwise exclusion of variables of the
full-model. Additionally, the factor analysis is repeated step-
wise by starting with two variables and stepwise inclusion of
one more variable. By stepwise testing the patterns observed
have been verified. However, this result bears no direct in-
terrelation with hazard or disaster parameters. An index de-
rived by factor analysis requires for either internal statistical
reliability analysis, for example, Cronbach’s alpha, or, even
better, the validation by an independent second data set.

3.1 Validation of social vulnerability by flood impact
analysis

The result of the factor analysis typically represents the end-
point of data analysis for the creation of a social vulnera-
bility index. However, in this paper the results of the fac-
tor analysis are validated by testing the patterns of the fac-
tor analysis on a real case event. For the purpose of testing
the social vulnerability profiles on a real flood event, a sec-
ond data set is selected. The research question is whether a
real extreme flood event reveals some of the potential social
vulnerability that is expected from the vulnerability factors
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Table 1. Rotated component matrix of the factor analysis showing the computed value loadings.

Input variables with presumed
direction towards vulnerability: Component
− more vulnerable, + more capacities 1 2 3 4 5 6 7

− Residents below age 6 0.773 −0.423
+ Residents from age 30 to 50 −0.850
− Residents age 65 and older −0.318 0.882
− Persons in need of care 0.586 0.377
− Handicapped unemployed 0.629
− Female gender 0.632 0.545
+ Income per hh 0.767 −0.343
− Unemployment −0.830 0.330
+ Female employed 0.821
+ Foreign employed 0.705
+ High qualification employed 0.737 −0.307 −0.329
− Foreign females 0.828
− Social welfare recipients 0.433 0.655
− Rent subsidies −0.811
− Graduates without basic education −0.415 0.380 0.540
+ Graduates with high school graduation 0.740 −0.337
+ University students 0.719 −0.454
− Foreigners 0.597 0.618
− Residents per doctor −0.829
+ Hospital beds 0.707 0.348
+ Rural population −0.724 0.303
− Population per settlement area 0.833 −0.358
+ Open space −0.735 −0.383
+ Building land prices 0.634 0.484
− Commuters in 0.734
+ New apartments 0.350 −0.681
+ One and two family homes −0.819
− Small apartments 0.824 0.378
+ Living space pp −0.351 0.583 0.444
− Persons per hh −0.756 −0.376
− New residents 0.697 0.340 −0.369
− Municipality debts per resident 0.567
− Tourist overnight stays 0.904
+ GDP per labour force 0.637 0.396
− Key funds allocation −0.800
+ Fixed investments −0.375 −0.613 −0.359
− Day-care centre −0.866
− Rehabilitation centres per Resident 0.840
− Elementary Schools per Resident −0.649
− Medical care centres 0.451 0.618
− Population projection age 60+ −0.736 0.580

Interpretation:
Positive value loadings Urban Young, income, Old, fragile Tourism Welfare, Care Low

foreigners debts centres education
Negative value loadings Rural Financial Mid-age,

deficiencies home owners
Percent variance explained 26.1% 22.1% 10.9% 5.4% 4.7% 4.6% 2.8%
Total=76.6%
Factor name Region Socio-economic Fragility

conditions

Abbreviations: hh = household, pp = per person. Varimax rotation, PCA,N=439.
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in Table 1. Due to the lack of data on extreme event evi-
dence in Germany, validation is difficult. The German Re-
search Centre for Geosciences Potsdam (GFZ) and Deutsche
Rückversicherung kindly provided a data set on a household
survey after the extreme floods of 2002 in Germany (GFZ
Potsdam und Deutsche Rückversicherung AG, 2003). While
the scope of this survey is mainly on flood damage character-
istics of buildings and properties (Kreibich et al., 2005a), it
also deals with flood preparedness and recovery (Thieken et
al., 2007). Additionally, the survey captures demographic
categories which are of special interest for validating the
social vulnerability profiles. The survey covered three ma-
jor regions, the River Elbe and the lower Mulde River; the
Erzgebirge (Ore Mountains) and the River Mulde in Saxony;
and the Bavarian Danube catchment (Thieken et al., 2007:
1020). In each region about the same number of interviews
was conducted, altogether 1697 households, who were all
affected by floods in 2002. One variable, urbanity, is addi-
tionally calculated by the author according to the definition
of rural areas in the respective variable of the first data set
of the Federal Offices (BBR, 2007). Rural areas are regions
with up to 150 persons per km2 per municipality. These areas
are calculated in the Geographic Information System (GIS)
using the federal statistical data and provide important addi-
tional information about population density.

In order to find evidence whether the presumed social vul-
nerability concept and -profiles play a role in the outcome
of disaster, a testing category has to be identified. For the
purpose of this study, the question “Did you have to leave
your home due to the flood?” is identified as a discrimina-
tor of people severely affected by the flood in terms of social
vulnerability. This question is not focusing on the economic
perspective only, but captures a broader scope of exposure,
susceptibility and capacities. The people who had to leave
their home (765 of 1697) were especially exposed to floods,
had to cope with finding an interim shelter and needed a re-
covery phase after the flood. For this they needed financial
resources but also social networks like relatives or friends.

A certain amount of those people (N=765) who had to
leave their home, had to seek emergency shelter (N=70).
This is an especially interesting sub-group, because it can be
assumed that these persons lacked alternative social networks
or financial resources. Since the questionnaire contains no
questions about the exact reasons for each decision of the
single individuals in the survey, these are mere assumptions.
They can be however compared to findings on social vulner-
ability in evacuation groups (Cutter et al., 2003; Chakraborty
et al., 2005). Therefore, “people forced to leave their home”
and “people who had to seek emergency shelter” are apt test
categories for eliciting different social group profiles. It per-
mits comparing those who had to leave and those who could
stay in their homes, despite being affected by the flood.

The third test category is taken from the question “are you
satisfied with the status of damage regulation?”. The answers
were expressed in a positive to negative range from one to

Table 2. Dependent and independent variables used for all three
logistic regressions.

Dependent variables Independent variables or sub-variables

leavehome age unemployed
emergencyshelter gender pensioner
regulation highschooldegree residents up to 14 years

elementaryschool persons per household
incomevery high rooms
income low home ownership
high qual employed urbanity

N=[765; 960]

six. This range is transformed into binary coding for bivari-
ate comparison. Indirect financial needs and satisfaction with
administration are to a certain degree identified by this de-
pendent variable. This type of susceptibility measure there-
fore supplements the other two dependent variables, which
capture exposure and evacuation needs.

Methodology: The logistic regression is computed with
the second data set for the three binary dependent vari-
ables individually. Each dependent variable is analysed with
the same pre-selected sub-set of independent variables (Ta-
ble 2). The main purpose of the logistic regression is to
show whether there exists a significant difference in the inde-
pendent variables. The independent variables contain demo-
graphic vulnerability characteristics (e.g. age of persons) and
are checked against dependent variables that contain binary
yes/no cases. For example, independent variables like age
are checked within the full logistic regression model against
the dependent variable leavehome, whether age is a factor
that characterises human groups as more vulnerable.

The logistic regression provides two types of measurement
that are of interest here. First, the regression model indicates
which independent variables are significant within the full
model; only these are selected for calculating the probabili-
ties (marked in Table 3). Second, the probabilities calculated
for the minimum and maximum values per independent vari-
able predict the direction of impact of the dependent variable
(Table 3 and Fig. 2). This direction can be positive or neg-
ative, meaning that flood impact either rises with increasing
values like higher income or is inversely related to it.

3.2 Results

For the regression with the dependent variable leavehome,
the number of rooms, home ownership and degree of ur-
banity are capable to explain the distribution of those who
had to leave their home and those who had not (Table 3
and Fig. 2). The probability for the dependent variable
(leavehome, answer “yes”) can increase or decrease for each
independent variable. Therefore, the variable rooms (num-
ber of rooms from 2–21) shows an inverse relationship of
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Table 3. Calculated significances, probabilities and confidence intervals for the three dependent variables.

Dependent variable Independent variable Significances Probabilities

Sig. 95.0% 95.0% P min P max 95% CI 95% CI
lower CI upper CI change min change max

leavehome rooms [2; 21] 0.024 0.877 0.991 0.5755 0.2624 −0.5506 −0.0756
home ownership 0.019 1.066 2.053 0.4272 0.5245 0.0167 0.1779
urbanity 0.000 1.272 2.261 0.4091 0.5399 0.0608 0.201

emergencyshelter age 0.012 1.010 1.081 0.0067 0.1785 −0.0537 0.3974
home ownership 0.003 0.175 0.707 0.0636 0.0233 −0.0752 −0.0052

regulation elementary school 0.019 0.325 0.905 0.8873 0.8102−0.1453 −0.0089
unemployed 0.020 0.221 0.881 0.8719 0.7502 −0.2457 0.0024

Fig. 2. Minimum and maximum probabilities of the three logistic regressions.

probability (Fig. 2). The higher the number of rooms, the
lower is the quota of those in the group who had to leave
their home. In other words, people living in apartments with
fewer rooms had to leave their home more often. The higher
the number of rooms, the lower is the quota of those in the
group who had to leave their home. The higher the number
of home owners in comparison to tenants the more likely it
has been that these households had to leave their home due
to the flood. Persons in rural areas (up to 150 km2) are less
affected than residents in urban areas.

For the regression with the dependent variable emer-
gencyshelter, age (from 16–95) and home ownership are apt
to explain the distribution of those who had to seek emer-
gency shelter and those who had not (Table 3 and Fig. 2).
Higher age was a reason to seek emergency shelter. The
higher the number of home owners in comparison to tenants
the more likely it has been that these households had not to
seek emergency shelter due to the flood. This contradicts the
prediction direction of ownership in the dependent variable
leavehome.

For the regression with the dependent variable regulation,
elementary school and unemployment explain the distribu-
tion of satisfaction with damage regulation (Table 3 and
Fig. 2). Persons with low education background (elementary
school) are more dissatisfied with damage regulation. The
same observation is made for unemployed people.

The quality of the statistical model is supported by the
Hosmer and Lemeshow Test which describes the model-
goodness of fit of the input data for values with significance
values above 0.05 (Backhaus et al., 2006: 457). The re-
spective confidence intervals for the variables are observed
whether they are either both below or above value one (Ta-
ble 3), which supports that these independent variables de-
liver a valid explanation (Fromm, 2005: 24). Error margins
are indicated by the quality tests described above, or by the
confidence intervals. Multi-collinearities are avoided, which
is shown by the variance inflation factors lower than three
(Nardo et al., 2005). Outliers that could distort the model are
identified by z residuals and removed. Monte Carlo tests like
the Jacknife replication tests (Backhaus et al., 2006: 454)
and bootstrapping with 1000 repetitions (Moore, 2006: 14–
27) underscore the stability of the results for the dependent
variables leavehome and emergencyshelter, while regula-
tion was not stable with the current variable set in the boot-
strap test.

The probabilities are used here only for the identification
of the direction of influence of flood impact. The proba-
bilities are not used for weighting or relative ranking of the
variables since this is only an explorative approach. Further
uncertainty analyses and additional confirmative analyses of
flood impact cases would be a requisite for justifying the use
of exact numerical values for weighting and ranking.
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4 Creation of a validated social vulnerability index

The validation procedure comprises two steps; first the inde-
pendent variables of the factor analysis (Table 1) are checked
for validity by using the independent variables of the inde-
pendent second data set and running a logistic regression
model. Since the second data set did not capture exactly the
same demographic variables, only a few independent vari-
ables of the first data set are at the same time available from
the second data set (Table 4). The logistic regression analy-
sis reveals that six independent variables of the second data
set are able to discriminate vulnerability. These six variables
capture demographic as well as spatial parameters that are
also captured by nine independent variables of the first data
set. That means that in the first step, certain variables have
been validated as having a significant effect in determining
vulnerability.

This knowledge can be transferred to the subset of nine
variables out of the 41 variables of the first data set. It would
be unsafe to suggest that the full model of 41 variables is
validated by this process. However, at least nine variables
of the first data set can be assumed to describe vulnerability.
The remaining 32 independent variables are not significant
within the regression model or can not be tested as they are
not contained in the second data set. Of course, this does not
imply that they can’t be significant within another model or
are not meaningful.

In the second step of the validation, the factor analysis is
repeated with the subset of nine independent variables of the
Federal Statistics. The objective behind this second step of
validation is to check whether the factors (or social vulnera-
bility indicators) obtained without any direct disaster-relation
are similarly revealed by the reduced set of nine validated
variables.

As a result of the validation, the three factors derived from
the nine variables as grouped in the rotated component matrix
(Table 5) display the same factors that have been identified
with the full variable set of 41 variables with the full federal
statistics set (Table 1). This result reveals that the factors are
generally valid.

The factors derived from the factor analysis are the basis
for the selection and aggregation of the Social Vulnerabil-
ity Index. Each factor delivers one indicator, the aggregated
indicators make up the index. In order to enable positive
and negative indications of vulnerability to the same degree,
each factor must have the potential to indicate both direc-
tions equally. The variables are first standardised to equal
intervals from zero to one. Missing values are replaced with
the average value of the variable so that in the average of
all either negative or positive variables they do not invoke a
trend. The resulting direction of vulnerability is different for
each county. The factors are used as the three indicators of
social vulnerability.

Table 4. Comparison of the nine variables of the Federal Statistics
with the according variables of the logistic regression.

Variables of the logistic regression Variables of the factor analysis from
the first data set

urbanity
(urban areas have more than 150
persons per km2 per municipality)

Population per settlement area

home ownership One and two family homes
urbanity
(rural areas have less than 150
persons per km2 per municipality)

Rural population

rooms [2; 21] Small apartments
age Residents from age 30 to 50
age Residents age 65 and older
unemployed Unemployment
rooms [2; 21] Living space pp
elementary school Graduates with only elementary

education

Data source: GFZ and Deutsche
Rück household survey (2002);
urbanity definition after
BBR (2007)

Data source: Federal Statistics (2006)

Indicator=
positivevar1+positivevar2+....varx

numberof var

−
negativevar1+negativevar2+....varx

numberof var

SVI=Indicator1+Indicator2+Indicator3

4.1 Result: the Social Vulnerability Index (SVI) per county
in Germany

Description: The SVI (Fig. 3) identifies demographic pat-
terns of susceptibility, capacities and potential exposure to-
wards river-floods. It is computed as the simple sum of three
indicators: fragility, socio-economic conditions and region.
The indicator fragility consists of the ratio of elderly resi-
dents (>64 years); the indicator socio-economic conditions
consists of living space per person, (un)employment ratio
and education type; the indicator region consists of popu-
lation density and housing type. Census data of the Federal
Statistical Office in Germany are used and the results are dis-
played in ratios per county as equal intervals from zero to
one.

Low SVI counties (Fig. 3) are characterised by strengths
towards river-floods. These strengths are prevailing capaci-
ties for river-flood mitigation, for example, financial capac-
ities for private preparedness measures and recovery from
floods by high income sources. These counties lack indi-
cations for potential exposure to floods like high popula-
tion density. Susceptibility like physical fragility of elderly
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Table 5. Rotated Component Matrix of the nine variables of the
federal statistics that are validated by the logistic regression.

Component 1 2 3

Population per settlement area −.951
One and two family homes .856 −.358
Rural population .831
Small apartments −.788
Residents from age 30 to 50 −.935
Residents age 65 and older .913
Unemployment .383 .853
Living space pp .416 −.716
Graduates with only .697
elementary education

Factor name Region Fragility Socio-
economic

conditions

Extraction Method: Principal Component Analysis. Rotation
Method: Varimax with Kaiser Normalisation. Rotation converged
in 4 iterations. Total variance explained: 78.8%. Kaiser-Meyer-
Olkin Measure of Sampling Adequacy: 0.7.

citizens is also typically low. Counties with high SVI are
characterised by predominating weaknesses towards river-
floods. These weaknesses are lack of capacities, high degrees
of susceptibility and indications for exposure potential.

Hazard context:The SVI detects potential strengths and
weaknesses of counties, not the actual river-flood hazard or
-risk. The SVI contains no hazard information and therefore
no actual exposure. However, the SVI is not an index for
any kind of natural hazard, since the variables are selected
and aggregated only after flood impact evidence. The input
variables for the indicators are created after verified flood im-
pact to different social groups and settlement types. Counties
have distinct profiles of social vulnerability, composed of de-
mographic characteristics, population density and settlement
type. The strength of the SVI is its independence from direct
hazard information. It identifies key aspects of flood impact
and –risk not identified by hazard assessments.

5 Discussion

The standard statistical methods of factor analysis and logis-
tic regression have been selected for their ability to consider
multivariate interdependencies between the selected vari-
ables. This seems an appropriate measure for capturing the
multiple interdependencies in the case of social vulnerabil-
ity and allows for elicitation of hitherto unclear interrelations
between demographic and spatial variables on county scale
in Germany. While factor analysis is open to shifts in the fac-
tor composition by the selection of input variables, it permits
a transparent and comprehensible interpretation through the
display of the matrix with the value loadings. The logistic re-

SVI
low high

0 10050 km Fekete 2008
Sources: BBR 2007, BKG 2007, 
Destatis 2006a
Colour intervals in 0.2 steps
Value ranges from 1.8 to -1.8

Ruhr-Area Dresden

Karlsruhe

Danube

Rhine

Elbe

Fig. 3. Main result of the social vulnerability assessment, the map
of the Social Vulnerability Index (SVI) per county.

gression is able to analyse multiple interdependencies of the
input variables against certain test categories of social vulner-
ability outcome. As in the factor analysis, this technique is
also sensitive to the selection of input parameters. However,
for both techniques the stepwise inclusion and exclusion of
input variables as well as the sensitivity tests underscored
that the general pattern of interdependencies is stable. This
combination of techniques successfully demonstrates that it
is possible to identify latent interdependencies of social vul-
nerability, to group them to indicators and to find a method
to validate these indicators. The validation shows that the
selected variables are valid in identifying social vulnerabil-
ity as a decisive factor in context to river-floods; second, that
composite indicators can be created without direct relation to
hazard parameters.

Certain conditions and limitations of validation must be
emphasised. Although the research area for this question-
naire is relatively large and covers three federal states, it
still is difficult to generalise the results for whole river chan-
nels. More case studies are necessary to cover other re-
gions in Germany. The questionnaire contains vital data cat-
egories, but was not intentionally invented for the purpose of
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validating a social vulnerability indicator or the data of this
study. Therefore not all variables can be covered for valida-
tion.

The choice of the dependent variables is based on the as-
sumption, that the fact that someone has to leave his home or
seek emergency shelter is a severe impact. Although this type
of measure is used in literature to identify social vulnerabil-
ity (Chakraborty et al., 2005) it is not sufficiently explored to
which extent it reveals social vulnerability in Germany. For
the explorative scope of this pilot study it is though an excel-
lent opportunity with a lack of comparable attempts. Regu-
lation satisfaction is chosen to extract coping problems of an
indirect economic, administrative and perception character.
The selection of variables, the exclusion of sub-variables and
the setting of thresholds is dependent on assumptions and de-
cisions of the author.

The results of the analyses show that home owners had
more often to leave their home for a certain period yet less
often to seek emergency shelter in comparison to all inter-
viewees affected by the flood. This could be interpreted as
home owners living more exposed, yet having more finan-
cial and social resources at hand in such an evacuation sit-
uation, compared to the average. It could also be thought
that home owners may have more financial potential to pri-
vately prepare for risks, however, this relation is not visible
from the data presented in this paper and therefore such an
interpretation should be avoided. Urban residents had more
often to leave their home than rural residents, so it might be
inferred that population density plays a role. Many elderly
residents had to seek emergency shelter, which could be as-
sumed to relate to lack of financial or social resources for
alternative shelter or accommodation at relatives, friends, or
hotels. Persons with low education background and unem-
ployed people are more dissatisfied with damage regulation.
This might accord to observations in other social vulnerabil-
ity studies that people with low qualification have less access
to damage compensation which might itself be based on a
couple of other reasons. As with all interpretations here, as
previously stated, one has to be very careful, since the un-
derlying reasons for providing each individual answer to the
interview are not recorded. Therefore this semi-quantitative
approach allows for identifying patterns of social vulnerabil-
ity, yet aims not at finding causal explanations.

Besides all these necessary disclaimers it is satisfying that
the overall picture complies with a great extent to the findings
of previous studies in Germany (Steinführer and Kuhlicke,
2007; Birkmann et al., 2008) and other countries (Morrow,
1999; Tapsell et al., 2002; Cutter et al., 2003; Schneiderbauer
and Ehrlich, 2006; Simpson and Katirai, 2006; Masozera et
al., 2007). Therefore the directions of impact of Table 3 and
Fig. 2 are useful to justify the use of certain variables that
characterise age, settlement and apartment type, education
and financial deficiencies for the construction of a social vul-
nerability index.

6 Conclusions

The main result of the vulnerability assessment is the SVI
(Fig. 3), composed of three indicators derived from the fac-
tor analysis of census data and validated by an independent
second data set. While most common sub-national quantita-
tive vulnerability assessments stop at the creation of vulner-
ability indicators, this paper demonstrates further validation
steps. In the first step, the vulnerability factors as identified
by factor analysis are tested in a historic real flood event by
impact analysis. The logistic regression reveals that indeed
certain demographic vulnerability characteristics discern be-
tween the affected and less affected groups. With the subset
of those variables that could be validated, the factor analysis
is rerun. The same factors emerge which additionally sup-
ports the validity of the approach. Three main factors are
identified, and are used as indicators of social vulnerability:
region, social conditions and fragility.

The SVI identifies counties in Germany with a potentially
strong or weak social vulnerability to floods. Since social
vulnerability is regarded independent of the individual river
flood hazard, this index contains no hazard information. This
index delivers the prerequisite for an integrated risk assess-
ment, which spans both hazard and vulnerability analyses.
The outcome of a coupled hazard-vulnerability assessment
can, for example, result in a disaster risk index. The creation
of such an index and the applications for disaster risk reduc-
tion are outlooks for further research.
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