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Abstract. In this paper the Stable Point Network technique,
an established Persistent Scatterer InSAR (PSI) technique,
(SPN), has been applied for the first time to the analysis of
several geomorphological processes present in the Gállego
river basin (Central Pyrenees, Spain). The SPN coherence
based approach has been used to process three different SAR
images datasets covering two temporal periods: 1995 to 2001
and 2001 to 2007. This approach has permitted the detec-
tion of more than 40 000 natural ground targets or Persis-
tent Scatterers (PSs) in the study area, characterised by the
presence of vegetation and a low urban density. Derived dis-
placement maps have permitted the detection and monitoring
of deformations in landslides, alluvial fans and erosive areas.
In the first section, the study area is introduced. Then the
specifics of the SPN processing are presented. The deforma-
tion results estimated with the SPN technique for the differ-
ent processed datasets are compared and analysed with previ-
ous available geo-information. Then several detailed studies
are presented to illustrate the processes detected by the satel-
lite based analysis. In addition, a comparison between the
performance of ERS and ENVISAT satellites with terrestrial
SAR has demonstrates that these are complementary tech-
niques, which can be integrated in order to monitor deforma-
tion processes, like landslides, that over the same monitoring
area may show very different ranges of movement. The most
relevant conclusions of this work are finally discussed.
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1 Introduction

Ground movements in mountainous areas are a very frequent
phenomena due to rainfall intensity, the strong topographi-
cal gradients, and the presence of intensely weathered and
tectonised material. In these environments, landslides, ero-
sion or compaction of unconsolidated soils are common ac-
tive processes that are responsible for ground deformation,
and amongst which landslides produce the greatest socio-
economic impact on human activity. In this sense, the impact
of landslides for the Spanish territory has been addressed by
the statistical analysis of the data collected in recent years
by the Ministry of the Environment and the Geological and
Mining Institute of Spain (IGME). In these studies the total
amount of damage caused by landslides in Spain has been
estimated at 160 million/year for the period 1986–2016 (Fer-
rer, 1995), and a total of 56 deaths were attributed to ground
movements between 1995–2007 (MMA, 2008). Therefore in
order to prevent or reduce the impact of hazards associated to
ground movements, a thorough understanding of their gov-
erning and triggering mechanisms, their spatial distribution
and state of activity is necessary.

Thus, advanced remote sensing techniques based on satel-
lite radar data have become a powerful method to detect and
monitor slow ground surface deformations. Synthetic aper-
ture radar images (SAR) acquired by ERS-1, ERS-2 and EN-
VISAT European Space Agency (ESA) satellites provide a
wide coverage of 100 km×100 km, a high spatial resolution
of 20 m×4 m and the availability of a long historical archive
of SAR images acquired since 1991. The conventional differ-
ential interferometry (DInSAR) methods compare two SAR
images acquired in different moments over the same area,
permitting the detection of ground surface deformations that
have occurred between the acquisition dates of both images.
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Fig. 1. Geological context of the Ǵallego River basin area.

Several authors have applied conventional DInSAR to land-
slide investigations (Carnec et al., 1996; Rott et al., 1999;
Berardino et al., 2003; Catani et al., 2005; Strozzi et al.,
2005; Corsini et al., 2006), but significant limitations related
to temporal and geometric decorrelation can be noted.

These limitations have been partially resolved by the ad-
vanced DInSAR methods that make use of large sets of SAR
images, acquired in different moments over the same area,
permitting the detection of deformation areas and the obser-
vation of the temporal evolution of the displacement of every
detected natural reflector with millimetric precision and high
spatial resolution. The first Persistent Scatterer Interferome-
try (PSI) method, namely the Permanent Scatterers technique
(PSInSART M ), was developed by Ferretti et al. (2001). It
was then followed by other authors, who developed similar
methods (Mora et al., 2003; Arnaud et al., 2003; Werner et
al., 2003; Hooper et al., 2004; Pepe et al., 2005; Crosetto
et al., 2005). To date, most of the PSI applications have fo-
cused on subsidence analysis and few landslide applications
are available (Colesanti et al., 2003; Hilley et al., 2004; Fa-
rina et al., 2006; Meisina et al., 2006, Raetzo et al., 2007,
Pancioli et al., 2008).

This paper presents the first application of the Stable Point
Network (SPN) algorithm (Arnaud et al., 2003) to mapping
and monitoring geomorphological processes in mountainous
areas. In this case the SPN coherence based approach has
been used to process three different SAR images datasets
covering two temporal periods from 1995–2001 and from
2001–2007 over River Gallego basin (Central Spanish Pyre-
nees). PSI derived displacement maps have permitted the
detection and monitoring of displacements in landslides, al-
luvial fans and erosive areas. In the first section, the study
area is introduced. Then the details of the SPN processing are

presented. The deformation results estimated with the SPN
technique for the different processed datasets are compared
and analysed with previously available geo-information from
a regional perspective. In section five, several detailed stud-
ies are presented in order to illustrate the processes detected
by the satellite based analysis. Finally, a comparison be-
tween the satellite and terrestrial SAR data is presented and
the most relevant conclusions of this work are discussed.

2 Study area and previous information

The study was carried out in the Gállego River basin, lo-
cated in the Central Pyrenees (Huesca, Spain). The basin
extends over an area of 850 km2. The Ǵallego River de-
scends from 2000 to 800 m a.s.l. in Sabiñánigo, located in
the southern part of the study area. The North of the study
area is formed by the magmatic and Palaeozoic complex of
the axial Pyrenees. The Central and southern part is oc-
cupied by the folded Flysh and Eocene marls of the Inner
Depression. The contact of these units is occupied by the
Mesozoic and Tertiary calcareous rocks of the Inner Sierras.
Overlying these materials are Quaternary deposits found in
topographic depressions (Fig. 1). Many authors have stud-
ied the geomorphological aspects of landslides in the upper
part of the Gallego River basin (Garcı́a-Ruiz et al., 1995a,b;
and Garćıa-Ruiz et al., 2004). Large deep seated landslides
developed in highly altered and tectonised Palaeozoic slates
on the Western part of upper the Gállego River. Rock falls
and rock avalanches are also found in Palaeozoic limestones.
The action of glaciers on the granitic massifs shaped steep
slopes and reliefs favouring the occurrence of falls, topples
and rock avalanches. Most of the debris flows occur on the
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highly alterable Eocene Flysh (Lorente et al., 2003), where
moraine deposits and alluvial fans are characteristic (Gómez-
Villar et al., 2000). Glacis and different terrace levels of the
Inner Depression are affected by badlands (Nadal-Romero
et al., 2007). The climate in this area is characterised by a
marked seasonality, classified as of the Mediterranean moun-
tain type with Atlantic and Continental influences (Creus and
Gil, 2001). The average annual precipitation varies from
2000 mm in the North to 800 mm in the South, with rainfall
concentrated mainly in spring and autumn, followed by win-
ter and with punctual intense convective storms during the
summer. Part of the study area is covered by forests. How-
ever forests have been replaced by cultivated fields that were
abandoned in the middle of the 20th century (Garcı́a-Ruiz
and Lasanta, 1990).

A landslide inventory and susceptibility map at 1:25000 of
the Ǵallego River basin was made in 1995 by the Geological
and Mining Institute of Spain (Fig. 2). The landslide inven-
tory map was produced using conventional methods: litera-
ture and ancillary data compilation, aerial-photo interpreta-
tion and field surveys (Soeters and van Westen, 1996).

Mapped mass movements include rockfalls and rock
avalanches, rotational and translational landslides, flows and
solifluctions, along with information about the state of ac-
tivity. When the morphological characteristics and the rep-
resentation scale allowed, the boundaries of the deposition
area were mapped together with the detachment scarp. Some
old movements, whose deposits have been eroded, are repre-
sented only by their main scarp. In other cases only the depo-
sition area has been depicted. The susceptibility assessment
method used by Mulas and Fresno (1995) was a “heuristic”
analysis according to Aleotti and Chowdhury (1999) clas-
sification. Conditioning factors considered for the suscep-
tibility analysis were the slope, the lithology, the structural
context, the altitude, the vegetation and the erosive action
of the basin drainage network. As a result of this analysis
four level of susceptibility to landslides were defined (c in
Fig. 2). The lithological groups were classified according to
the resistance and weathering susceptibility of the rock for-
mations, and their geomorphological characteristics, identi-
fying the expected type of mass movements in each of them
(Table 1).

3 SPN technique and SAR dataset processing

3.1 SPN technique

The SPN is an advanced differential interferometric process-
ing technique (Arnaud et al., 2003; Duro et al., 2005). It is
the result of several years of research projects within the DIn-
SAR data analysis field for CNES (French Space Agency),
ESA and Altamira Information SL. The SPN chain was the
first advanced interferometric processor capable of merging
the new ASAR data with the historical ERS-1/2 data (Arnaud

Fig. 2. (a)Landslide inventory features map;(b) Lithological map
(see Table 1 for legend);(c) Landslide susceptibility map: VL: Very
Low; L: Low; H: High; VH: Very High (based on Mulas and Fresno,
1995).

Table 1. Lithological classification (based on Mulas and Fresno,
1995).

Formation Type of expected movement Resistance and
weathering alterability

L1 Alluvial fans and end of the no movement
valley deposit

L2 Glacis and terrace deposit landslide, fall or topple
L3 Colluvial deposit landslide and flow
L4 Moraine deposit landslide and flow
L5 Marls creep and flow low and high
L6 Granitic rocks and limestones rock fall high and low
L7 Flysh and sandstones landslide and flow variable and high
L8 Slates, shales, sandstones and landslide high and high

greywackes
L9 Rock avalanche deposit rock flow

et al., 2003). SPN software uses the DIAPASON interfero-
metric chain for all SAR data handling, e.g. co-registration
work and interferogram generation.

Figure 3 gives an overview of the SPN processing chain:
the SPN procedure generates three main products starting
from a set of SLC SAR images: the displacement rate that
can be derived using a dataset of at least 6 images; a map
of height error; and finally, the displacement time series,
which requires at least 20 images, depending on the velocity
of displacement with respect to the temporal separation of
image acquisitions. Nevertheless, an increase in the number
of SAR images improves the quality of the measurements,
providing an error of 1mm/year for subsidence rates and 2
m for height errors. The basis of the SPN technique is the
separation of different components from the interferomet-
ric phase,8INTERF,: the topographic component,8TOPO, the
movement component,8MOV , the atmospheric contribution,
8APS, and the noise component,8NOISE;

8INTERF = 8TOPO+ 8MOV + 8APS + 8NOISE (1)

One important characteristic of this chain is its flexibility;
the software can work at any resolution, any frequency and
with sub-images. The SPN algorithm can either work at full
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Table 1. Lithological classification (based on Mulas and Fresno, 1995). 1 
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Figure 3. Stable Point Network processing chain main flow chart. 14 
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resolution (4 by 20 m) selecting the measurement points by
analysing the amplitude of the set of SAR images, or at re-
duced resolution (for example 40 by 40 m) selecting ground
surface natural reflectors or Persistent Scatterers (PS) by in-
terferometric coherence. The amplitude selection mode is
based on analysing the temporal stability of the electromag-
netic response to the radar signal (backscattering) for each
pixel of the study area. If the geometry of the ground sur-
face that corresponds to a certain pixel does not vary sig-
nificantly along time, the backscatter is similar for every
acquired SAR image, and the pixel is selected as a PS.
The coherence based approach, performs an average of the
backscattering of neighbour pixels increasing the measure-
ment point density. In fact, this approach is particularly use-
ful for non-urban and vegetated areas where ground surface
scatterers (buildings, structures, metallic objects) are scarce.
A detailed description of the SPN algorithm can be found in
Crosetto et al. (2008) where some examples of urban subsi-
dence monitoring are shown. To date the performance of the
SPN method has been mainly validated in subsidence analy-
sis (Herrera et al., 2009, Raucoules et al., 2009).

4 SAR dataset processing and results

A dataset of SAR images acquired by descending orbits of
ERS-1, ERS-2 and ENVISAT satellites over River Gállego

basin was obtained from the ESA archive. A total of 106 im-
ages were acquired covering the period from 1995 to 2007.
The SPN method was used to process three SAR datasets
containing descending SAR images available from two tem-
poral periods from 1995 to 2001 and from 2001 to 2007 and
ascending data from 2002–2007 In this case, the SPN coher-
ence based processing was carried out at medium resolution
(40 by 40 m) with the aim of detecting active geomorpho-
logic processes in non urban and vegetated areas at a regional
scale, covering an area of 720 km2. The results of this pro-
cessing are summarised in Table 2 and shown in Fig. 4. It is
observed that the total amount of PSs extracted in the ascend-
ing 2002–2007 period is half that obtained for the descending
2001–2007 period, the ascending analysis being constrained
by the data availability and thus the ability to identify PSs,
a critical issue that affects the density and the quality of PSs
estimates retrieved with PSI processing chains.

Considering the three processed datasets, a total of
45 668 PSs have been detected in the Gállego River basin
study area with an average spatial density of 21 PSs/km2, and
a displacement rate range of +16 to−39 mm/year. Note that
SPN displacements are measured in the Line Of Sight (LOS),
which is the line defined by the satellite incidence angle and
the ground surface reflector. A positive value corresponds to
a displacement towards the satellite along the LOS, whereas
a negative value is a displacement in the opposite direction.
From the total amount of PSs only 17.3% have a displace-
ment velocity greater than 1.5 mm/year (hereafter displace-
ment PSs). Analysing the PSs distribution among the slope
classes, one can observe that 40.5 % of them are concentrated
in Valley Bottom areas (slope angle between 0–3◦), whereas
59.5% of the PSs are found in hilly and mountainous areas
(3–90◦). The PSs density in hilly and mountainous areas
drops to 13 PSs/km2.

5 SPN analysis

5.1 Landslide inventory analysis

The SPN landslide inventory analysis was performed fol-
lowing a similar methodology to that proposed by Farina
et al. (2006). The PSs were overlaid upon the pre-existing
landslide inventory in order to evaluate the main differences
in terms of spatial distribution and state of activity of land-
slides with respect to SAR measurements. Two particular
situations have required a significant effort on the interpre-
tation of moving SP. The first one is those landslides only
defined by scarps with no landslide boundaries or vice-versa;
or landslides only represented by arrows indicating the di-
rection of movement. The other situation occurs when ac-
tive SPs are located far from any mapped landslide. In
these cases, the support of photo-interpretation, aspect and
hill shaded DEM derived products, topographic map and ge-
omorphological map (Garcı́a-Ruiz et al., 1995a,b) analysis
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Table 2. SPN analysis on the Ǵallego River basin.

N◦. SAR images N◦. PSs PS/km2 N◦.displacement
PSs

Descending orbit 1995–2001 39 18 579 26 3175
Ascending orbit 2002–2007 29 9089 13 1257
Descending orbit 2001–2007 38 18 000 25 3458

Total 106 45 668 7890

Fig. 4. SPN displacement velocity maps retrieved over the Gállego
River basin.

was used to detect diagnostic morphologies. In fact the use
of pre-existing information was fundamental to detect other
superficial active processes in the Gállego River basin.

The SPN results permitted the detection of a total of 23%
of the landslides inventoried by Mulas and Fresno (1995),
31 new small landslides within their study area, and 51 new
landslides beyond the boundary of their study area. There-
fore the updated landslide inventory consists of 145 land-
slides where 5.7% of the PSs are found. An average of 20 PSs
are obtained per landslide, even though in 47 landslides only
1 PS has been found (Table 3). Figure 5 shows the detected
slope instabilities, from which 22% correspond to landslides,
23% correspond to falls and topples and 55% have been clas-
sified as flows. Nevertheless, it must be taken into account
that most of the detected PSs in landslides correspond to pre-
viously deposited rock accumulations affected by other land-
slide mechanisms. Only in some cases could the detected PSs
be related to precursor displacements of rock falls or topples.
In the following section, detected landslide mechanisms are
illustrated in the Portalet and Formigal landslides.

The SPN analysis has also permitted the detection and
monitoring of other active processes of the study area, such
as alluvial fans and erosive areas. In fact, the greatest
amount of PSs, 20,7% of the total, is found in alluvial fans
with an average density of 788 PSs/deposit (2000 PSs/km2).
In these formations, most of the detected PSs are stable
and only 13.4% of them show displacement. 8.4% of
PSs are found in areas characterised by erosive processes

Table 3. Statistical analysis of the SPN detected active superficial
processes.

% Average Average N◦.
N◦. N◦.PSs %. PSs displacement area [km2] PSs

PSs

Landslides 32 633 1,4 64,0 0,46 20
Falls and topples 33 907 2,0 57,1 0,15 27
Flows 80 1060 2,3 41,1 0,09 13
Erosion 72 3845 8,4 31,0 0,07 57
Alluvial fans 14 9452 20,7 13,4 0,46 788

(57 PSs/deposit) where 31% of the PSs show displacement.
A more detailed analysis of the nature of the displacement in
each of the detected process is presented in section five.

5.2 SPN lithological map analysis

The displacement velocity maps have been compared to the
pre-existing lithological map (Mulas and Fresno, 1995). To
enable this comparison, two analyses are proposed: (1) to
analyse the lithological distribution of the PSs found within
the inventoried geomorphological processes; (2) to restrict
this analysis only to the inventoried landslides. For this pur-
pose, the following values were calculated for each litho-
logical group described in Table 1: the number of PSs; the
number of displacement PSs; and the average velocity of
the displacement PSs found within each lithological aerial
extent. In Fig. 6a it is observed that 56% of the PSs are
found in alluvial and end of the valley deposits, and marls
(L1, L5). One can observe that more stable than displace-
ment PSs are found in L1 formations, whereas the opposite
is observed for marls. This is in agreement with Table 1
were it is shown that no slope instabilities are expected for
alluvial deposits (L1). Eocene marls (L5) present a greater
amount of displacement PSs due to the low resistance and
high weathering susceptibility that favours the occurrence of
flows and creep according to Table 1, which is probably as-
sociated with erosive processes. If we only consider the in-
ventoried landslides (Fig. 6c) we observe that rock forma-
tions account for 88% of the PSs and higher displacement
rates than the other formations. In this analysis slates and
sandstones (L8) account for 31% of the PSs and 41% of the
displacement PSs. Note that in the study area these materials
are characterised by intense weathering an high plasticity and
are usually covered by rock fall or avalanche deposits favour-
ing the detection of natural reflectors or PSs. Therefore de-
tected displacements are probably due to the transportation
of rock deposits by other landslide mechanisms, e.g. the slow
soil flows described by Garcı́a-Ruiz et al. (2004) characteris-
tic from the Upper Ǵallego River basin. In section five Por-
talet and Formigal landslides illustrate this type of landslide
mechanisms.
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landslides with respect to SAR measurements. Two particular situations have required a significant 1 
effort on the interpretation of moving SP. The first one is those landslides only defined by scarps 2 
with no landslide boundaries or vice-versa; or landslides only represented by arrows indicating the 3 
direction of movement. The other situation occurs when active SPs are located far from any 4 
mapped landslide. In these cases, the support of photo-interpretation, aspect and hill shaded DEM 5 
derived products, topographic map and geomorphological map (García-Ruiz et al., 1995a,b) 6 
analysis was used to detect diagnostic morphologies. In fact the use of pre-existing information was 7 
fundamental to detect other superficial active processes in the Gállego River basin. 8 
 9 
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5.3 SPN susceptibility map analysis

In this part, the estimated displacement velocity is compared
with the landslide susceptibility map (Mulas and Fresno,
1995). This map classifies landslide susceptibility into four
classes: Very Low (S1), Low (S2), High (S3) and Very High
(S4), following a heuristic approach described in section 2.
To enable this comparison, two analyses are proposed: (1) to
analyse the PSs distribution within each susceptibility level
found within the detected geomorphological processes; (2)
to restrict this analysis only to the inventoried landslides. For
this purpose, the following values were calculated: the % of
PSs; the % of displacement PSs, and the average velocity of
each susceptibility level. In Fig. 6b it is shown that the great-
est amount of PSs is found in the “Very Low” and “Low”
landslide susceptibility level decreasing gradually towards
the “High” susceptibility level. This is because most of the
PSs are found in alluvia, end of the valley deposits, glacis
and terrace deposits (L1, L2) where landslide susceptibility
is “Very Low” and “Low”. In fact, as it will be discussed
later on, displacements in these formations are probably re-
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Fig. 6. (% in theY right axis) and average velocity (mm/year in the
Y left axis) of each lithological unit:(a) analysis 1;(c) analysis 2;
and each landslide susceptibility area:(b) analysis 1;(d) analysis 2.

lated to compaction processes rather than slope instabilities.
On the other hand if this analysis is restricted to landslides we
observe that 73% of the stable PSs are found in “Low” and
“Very Low” levels, whereas 57% of measured displacements
are concentrated on “High” and “Very High” landslide sus-
ceptibility classes. Finally, one can observe that the greater
the average absolute velocity, the greater the landslide sus-
ceptibility level. Therefore there appears to be a good cor-
relation between SPN displacement measurements and the
pre-existing landslide susceptibility assessment.

6 SPN local analysis

6.1 Landslide analysis

The Portalet landslide is located in the North-Western area
of the upper part of the Ǵallego River basin, near the
border with France. On this site, two pre-existing land-
slides (Garćıa-Ruiz et al., 2004) develop from 1850 and
1600 m a.s.l. along a Southwest facing hillside, slightly alter-
ing the route of the Ǵallego River to the South (Fig. 7). Both
landslides affect the weathered bedrock composed mainly of
Carboniferous and Devonian slates and shales characterised
by an intense weathering and a high plasticity. Rock fall
and rock avalanche deposits found at the upper part of the
slope (1 and 2 in Fig. 7) are transported downhill by the slow
flow of landslide B deposit. The slope excavation at the foot
of the slope, carried out in order to build a car park in the
summer of 2004, reactivated both landslides, generating new
sliding surfaces (C in Figs. 7 and 8) that affected the road
to France. A geotechnical survey detected the failure sur-
faces of landslide C and A, and also identified the materials
involved (Torrijo Echarri, 2005). Measurement of the dis-
placements performed with D-GPS and GB-InSAR revealed
that the moving mass was still active after the constructive
solutions were undertaken (Herrera et al., 2008).
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Fig. 7. Map of the Portalet landslide showing the displacement velocity estimated with: the SPN technique between 1995–2007; the GB-
InSAR (pixels) in the period September–December 2006; and D-GPS (circles) in the period May 2006–July 2007.

In this case, the SPN analysis has provided an assessment
of the state of activity before the excavation of the park-
ing area in 2004, during the period of 1995–2000 when no
other instrumental data was available. PSs displacements
are measured in the satellite Line Of Sight (LOS), which
is the line defined by the satellite incidence angle and the
ground surface natural reflector (Fig. 8). A positive value
corresponds to a displacement towards the satellite along the
LOS, whereas a negative value is a displacement in the op-
posite direction. During this period, 36 PSs were detected on
rock avalanche and rock fall deposits (1, 2 and 3 in Fig. 7)
detached from the limestone cliff located on top of the hill.
These deposits are transported by a slow flow (landslide B in
Figs. 7 and 8) downhill towards the Portalet urban area. In
the first period, detected displacement rates vary from +0.1
to −7.1 mm/year, and are very similar to the values of the
87 PSs detected during the period of 2001–2007. Therefore,
since measured displacement velocities have been constant
for both periods analysed, it can be deduced that the exca-
vation of the parking area in 2004 did not affect this part
B of landslide, but only part C of it (Fig. 7). No PSs were
detected in landslide C due to the absence of rock deposits,
the presence of low vegetation and the (high) magnitude of
the displacement velocity. As for the satellite, the ground
based radar (GB-InSAR) displacements are measured in the
Line Of Sight (LOS), which is the line defined by the ground
based radar incidence angle and the ground surface natu-

ral reflector. In this case a negative value corresponds to
a displacement towards the radar along the LOS, whereas
a positive value is a displacement in the opposite direction.
The ground based radar (GB-InSAR) measured displacement
rates of up to−1095 mm/year in 11 254 natural reflectors
between September and November 2006 (Fig. 7), while the
D-GPS measured up to−529 mm/year of displacement be-
tween May 2006 and July 2007 in 45 ground control points
(circles in Fig. 7). A total of 41 GB-InSAR natural reflec-
tors (2 m×2 m) coincide with 3 PSs (40 m×40 m) detected
in the descending orbit 2001–2007 period (black circles in
Fig. 7). If we compare measured displacements projected
along the slope direction in the coinciding period, between
September and November 2006, the SPN technique mea-
sured a displacement between−3 and−6 mm, whereas GB-
InSAR measurements vary between−2 and−16 mm, which
are similar values but within the error of both advanced re-
mote sensing techniques.

The Formigal landslideis situated in the North-Western
sector of the upper part of the Gállego River basin. Sev-
eral landslides develop between 2200 and 1500 m a.s.l. (A,
B, C and D in Fig. 9), and have been previously described by
Garćıa-Ruiz et al. (2004). This movement involves slates and
Foratata limestones from the middle Devonian age, charac-
terised by an intense weathering and a high plasticity. Talus
debris fan, rock falls and avalanche deposits are found at
the base of the limestone cliffs accumulated on topographic
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Fig. 8. Simple geological profile of the Portalet area (XX’ in Fig. 7). The deformation values follow the colour scale of Fig. 7.

depressions (1 and 2 in Fig.9). These deposits are affected
by slow soil flow that transports rock blocks downhill to-
wards Formigal (3 in Fig. 9). In this case, a total amount
of 443 PSs were detected from the top to the toe of landslide
B, with displacements rating from +3.6 to−16.1 mm/year.
All these detected PSs correspond to rock blocks that are
transported by the slow soil flow (landslide B in Fig. 9).
One can observe that the velocities decrease downhill ac-
cording to the decrease of the slope angle. Hence, veloci-
ties below−15 mm/year are found on top, between 1830 and
1700 m a.s.l. soil flow rates vary from−5 to −15 mm/year,
and between−5 and−1.5 mm/year in the middle part where
rock blocks are smaller and sparsely distributed. Finally, at
the bottom part of the soil flow, the displacement rate varies
between−1.5 and + 3.6 mm/year, showing an uplift of the
toe of the landslide, which is probably associated to the de-
celeration of the moving mass and the presence of an accu-
mulation zone (in this area the average slope angle is 5◦). In
the case of landslide A, with similar characteristics to those
of Landslide B, only a few PSs have been detected, even
though there is a significant amount of rock deposits. This is
due to the slope’s North-South orientation, which is roughly
perpendicular to the ERS/Envisat look direction and to which
the satellite has minimal sensitivity. In the case of landslides
C, D and E, the absence of significant rock deposits and ur-
ban areas, as well as the slope orientation, prevented the de-
tection of PSs.

6.2 Alluvial fans analysis

Alluvial fans are common landforms that develop at valley
junctions due to the sudden fluvial energy reduction caused
by a change in the topographic gradients (Bull, 1979). Large
alluvial fans within the study area have their catchments in
the Eocene Flysh sector where landslides, flows, rills and ac-
tive ravines constitute the main source of sediment sources
(Gómez-Villar and Garćıa-Ruiz, 2000). In the Ǵallego River
basin, a total amount of 9452 PSs have been found in 14 al-

luvial fans, (an average of 788 PSs/deposit). Most of the
detected PSs within the alluvial fans are stable since only
13,4% of them correspond to displacement PSs, whose dis-
placement rates vary between−6 and +12 mm/year. The
nature of the few positive displacement PSs randomly dis-
tributed in the alluvial fans may not be attributed to any ex-
pected geomorphological processes in the area.

In Fig. 10a, the Oros alluvial fan is shown. This deposit ex-
tends over an area of 0.69 km2, where four different sectors
can be distinguished according to fluvial activity and veg-
etation: cultivated sector; old sector, recent sector and ac-
tive channel (1, 2, 3 and 4 in Fig. 10a). In this case a total
amount of 1441 PSs were detected on the alluvial fan sur-
face, with displacements ranging from 4.1 to−4.6 mm/year.
Most of the detected PSs are found within recent and active
channel (3 and 4 in Fig. 10a), where sparse vegetation, rock
blocks and gravel is found. The detection of PSs in these
sectors shows that that significant alluvial fan activity is over.
Otherwise, sediment yield would imply surface changes and
therefore no PSs could have been detected due to the loss
of coherence. One can observe that displacement PSs are
concentrated on the active channel and the old Southern sec-
tor (4 and 3 in Fig. 10a). To our knowledge, significant
groundwater exploitation does not exist in this area, there-
fore consolidation due to groundwater withdrawal may not
be expected. Nevertheless detected displacements may be
due to compaction processes related to water table variations
in time. Further research would be necessary to confirm the
nature of the detected movement.

6.3 Badlands areas analysis

The term badlands describes a specific landscape charac-
terised by poorly consolidated bedrock or unconsolidated
sediment areas and the absence of vegetation. Badlands de-
velopment is controlled by regolith variations, erosion and
transport processes, with the latter related to the occurrence
of rainstorms and floods. The regolith development is intense
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Fig. 9. Map of Formigal landslide showing the displacement velocity estimated with: the SPN technique in the analysed descending orbit
datasets between 1995 and 2007.

during the cold and humid season when freeze-thaw cycles
of the bedrock occur, whereas erosion and sediment trans-
port are active from spring to mid-autumn (Nadal-Romero et
al., 2007). In the Ǵallego River basin, Eocene marls found
in the Inner Depression are the most important erodible rock
substratum. A significant amount of PSs, 34% of the total,
were found in areas characterised by intense processes of
soil erosion that are responsible for the formation of bad-
lands. Within Eocene marls, a total of 65 badlands have
been identified from the SPN analysis, of which 67.7% of
the detected PSs correspond to displacement PSs with dis-
placement velocity values between +1.3 to−11.6 mm/year.

An example of a badland area is shown in Fig. 10b.
This badland (1 in Fig. 10b) is developed between 970
and 770 m a.s.l and affects middle Eocene marls that oc-
cupy the glacis surface developed regularly from the base of
the Sabĩnánigo sandstones reliefs towards the Gállego River
channel, bordered by the agricultural fields to the North and
with the road to the South and East. The erosive action
of the river has favoured the occurrence of small rotational
landslides at the glacis river talus (4 in Fig. 10b). A total
amount of 140 PSs were detected within this badland, with
displacements rating from 1.3 to−11.6 mm/year. All the
detected PSs correspond to unvegetated areas where large
rock blocks are absent. Since the SPN analysis could only
measure slow displacements (<40 mm/year), detected PSs
must correspond to areas within the badlands where runoff
of the sediment has not occurred in the analysed period. Had
erosion and sediment transport occurred, the PSs would not

have been detected due to the loss of coherence. Therefore,
detected displacements could be associated to compaction of
the regolith areas that have not suffered erosion and trans-
portation. This compaction of the regolith could be linked to
the weathering freeze-thaw processes described by previous
works (Nadal-Romero et al., 2007 and 2008), but further in-
vestigation would be required. Towards the North East, there
is an area where 74 PSs have been detected on the Eocene
marls, at the edge of the Sabiñanigo sandstone relief (2 in
Fig. 10b). Neither landslide nor badland morphologies have
been identified in this area, but deformation could be related
to the presence of gullying. In this area, badlands have not
developed, probably due to the thinness of the erodible marls.
Another explanation for these deformations could be an er-
ror introduced by the external DEM used to remove the topo-
graphic component of the interferometric phase in the SPN
processing. Nevertheless, one of the outputs of the SPN pro-
cessing is a height error value for every PS which has per-
mitted those PSs displacements associated to DEM error to
be discarded. More information on this topic can be found in
Herrera et al. (2009).

7 Discussion and conclusions

This paper presents the first application of the Stable Point
Network (SPN) technique to mapping and monitoring geo-
morphological processes in mountainous areas. A key char-
acteristic of this algorithm is its flexibility, which enables
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Fig. 10. a Map of the Oros alluvial fan showing the displacement velocity estimated with the SPN technique between 1995 and 2007.
Figure 10b Map of Latas badlands showing the displacement velocity estimated with: the SPN technique between 1995 and 2007.

working at full resolution (4 by 20 m) selecting the PS by
analysing the amplitude of the set of SAR images, or at
reduced resolution (for example 40 by 40 m) selecting the
Persistent Scatterers (PSs) by interferometric coherence. In
this case, the application of the coherence-based approach
has been particularly useful in the Gállego River basin be-
cause it is a non-urban and vegetated zone where ground
surface natural scatterers (buildings, structures, metallic ob-
jects) are very rare and scarce, The analysis of three different
SAR images datasets covering the periods 1995–2000 and
2001–2007 has permitted the detection of over 40 000 PSs
over the study area.

As a result 5.7% of the PSs provided information on 23%
of the landslides inventoried by Mulas and Fresno (1995),
with a density of 20 PSs/landslide, detecting 31 new land-
slides within this study area. Most of the displacements de-
tected in landslides correspond to rock deposits that are trans-
ported downhill by other landslide mechanisms, such as the
slow soil flows described by Garcı́a-Ruiz et al. (2004) char-
acteristic from the Upper River Ǵallego basin. Portalet and
Formigal landslides illustrate this type of landslide mecha-

nisms. The assessment of the landslide susceptibility map
(Mulas and Fresno, 1995) with the SPN data has shown
that there is a good correlation between landslide suscep-
tibility and the amount of PSs, and the rate of measured
displacements.

The Portalet landslide has provided an opportunity to com-
pare ERS and ENVISAT radar satellite performance against
ground based radar (GB-InSAR), available from FPW6
Galahad project. The SPN analysis could not detect PSs on
the landslide triggered in 2004. In this zone GB-InSAR mea-
sured displacements of 15 cm in 47 days (1095 mm/year),
which is out of the detection range of the satellite based
techniques. Nevertheless, displacement PSs were detected
in other parts of the Portalet landslide that could not be mon-
itored by the GB-InSAR, providing the temporal evolution
of the displacement since 1995. This comparison clearly
shows that radar satellite based analysis and GB-InSAR are
complementary techniques, which can be integrated in order
to monitor deformation processes, like landslides, that over
the same monitoring area may show very different ranges
of movement. ERS and ENVISAT based applications may
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utilise historical SAR imagery available since 1991, cover-
ing wide areas (100 by 100 km) with a spatial resolution of
40 by 40 m and a temporal resolution of every 35 days. On
the other hand, GB-InSAR is operative once it is installed,
covering areas of a few km2, providing a measurement of the
deformation every hour of each 2 by 2 m detected pixel.

The SPN analysis has also permitted the detection and
monitoring of other geomorphological processes that are
characteristic of the Ǵallego River basin. In fact, alluvial
fans account for 20.7% of the PSs (788 PSs/deposit), and
the erosive areas represent 8.4% of the PSs (57 PSs/deposit).
Such a high concentration of PSs is very surprising because
these morphologies do not present rock outcrops, large rock
deposits or urban structures that favour the detection of natu-
ral targets. The comparison with the pre-existing lithological
maps reveals that these processes are developed on alluvial
and end of the valley deposits, terraces, glacis and marls,
which account for 73.8% of the detected PSs.

Most of the detected PSs in alluvial fans are stable since
only 13.4% of them are classed as displacement PS. In the
case of the Oros alluvial fan, most of the detected PSs are
located on the recent sectors and active channel of the allu-
vial fan that are occupied by sparse vegetation, blocks and
coarse gravels. The detection of PS in these sectors shows
that significant alluvial fan activity is over -otherwise sedi-
ment yield would imply surface modifications and therefore
no PSs could have been detected. To the authors knowl-
edge, significant groundwater exploitation does not exist in
this area, therefore consolidation due to groundwater with-
drawal may not be expected. Nevertheless detected displace-
ments may be due to compaction processes related to water
table variations in time. Further research would be necessary
to confirm the nature of the detected movement.

A significant amount of PSs were found in areas charac-
terised by erosive processes that form badlands. These areas
mostly developed on the Eocene marls found in the Inner
Depression. The PSI techniques can only measure slow dis-
placements; therefore detected PSs must correspond to ar-
eas within the badlands where runoff of the sediment has not
occurred in the analysed period. Had erosion and sediment
transport occurred, the PSs would not have been detected due
to the loss of coherence. Therefore detected SPN displace-
ments could be associated with compaction of the regolith
areas associated to the weathering processes described by
previous works (Nadal-Romero et al., 2007). The applica-
tion of SPN analysis to the dynamics of badlands areas is an
unaddressed topic that requires further research.
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