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Abstract. We describe a method to represent the results of
climate simulation models with spatial analogues. An ana-
logue to a city A is a city B whose climate today corresponds
to A’s simulated future climate. Climates were characterized
and compared non-parametrically, using the 30-years distri-
bution of three indicators: Aridity Index, Heating Degree
Days and Cooling Degree Days. The level of correspondence
(i.e. strength of analogy) was evaluated statistically with the
two-samples Kolmogorov-Smirnov test, generalized to 3 di-
mensions. We looked at the climate of 12 European cities at
the end of the 21st century under an A2 climate change sce-
nario. We used two datasets produced with high-resolution
regional climate simulation models from the Hadley Centre
and Meteo France. As expected from the modelled warming
in local climate, analogues were found in warmer regions,
mostly at more southerly latitudes within Europe, although
much model and scenario uncertainty remains. Climate ana-
logues provide an intuitive way to show the possible effects
of climate change on urban areas, offering a holistic approach
to think about how cities might adapt to different climates.
Evidence of its communication value comes from the reuse
of our maps in teaching and in several European mass-media.

1 Introduction

According to theUnited Nations, Department of Economic
and Social affairs(2004), the majority of humankind is now
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living in urban areas. The population of Europe, in particular,
is predominantly city-dwelling, with 65.6% residing in urban
areas in 1975, a number that rose to 71.7% at the turn of the
century and is projected to reach 78.3% by 2030. In cities,
weather patterns interact with the socio-economic structures
directly and indirectly in many uncounted and mostly un-
accountable ways. Elevated temperatures, particularly dur-
ing extremes like the 2003 and 2006 summers, have shown
the heavy strain on and need for adaptation of sanitary sys-
tems, production strategies (above all in construction), power
supply systems, living conditions and so forth. The full ex-
tent of the impact of such climatic events on society could
not be predicted but only analyzed in retrospect. However,
due to adaptation and evolution of societies, even the recur-
rence of an identical extreme event would most likely have
different consequences. An integrated assessment of the im-
pact of future climate change on urban areas would require
a systematic consideration of a large number of heavily in-
terwoven urban attributes which affect the adaptation pro-
cess, such as architectural styles, transport infrastructure and
cultural lifestyles. Defining a convincing reference scenario
under these conditions, together with a consistent vision of
economic and cultural drivers of the adaptation process, is
a daunting task. Predicting the consequences of climate
change on human settlements accurately seems not feasible
at this point.

Hallegatte et al.(2007) suggested an alternative, holistic
approach to the assessment of socio-economic consequences
of climate change. The authors proposed to search and eval-
uate current analogues of the future climate of urban areas.
In order to think about how city A will be in the future, they
suggest to look at how city B is in the present, whose current
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climate is like the simulated future climate of A. Although
this method might omit or oversimplify other potentially im-
portant aspects of comparability between such two locations,
it does circumvent the obstacle of having to theorize adapta-
tion to the consequences of climate change.

The concept of spatial analogues is not new. The use of
analogue regions to assess climate change impacts on agri-
culture was suggested byParry and Carter(1989) and has
also been used byDarwin et al.(1995) as well asMendelsohn
and Dinar(1999). Such spatial analogues have also been ex-
ploited for a variety of other applications such as, for exam-
ple, the projection of vegetation composition, snow condi-
tions for skiing and avalanche risk (Mearns et al., 2001). This
contribution extends and improves the approach initially pro-
posed byHallegatte et al.(2007), by presenting a statistical
methodology to identify climate analogues. This method is
generally applicable to high spatial resolution climate sim-
ulation models, is computationally light, and does not need
any hand tuning.

There are two key methodological choices for a climate
analogue method. The first is which climate indicators to
use. As the next section discusses, climates are character-
ized here using three indicators: Aridity Index, Heating De-
gree Days and Cooling Degree Days. The second choice
is how to compare climates statistically. As discussed in
Sect. 3, the proposed method does not rely on averages or on
parametric tests, but applies the 3-dimensional two-samples
Kolmogorov-Smirnov test directly to the 30-years distribu-
tion of the indicators. Section 4 demonstrates applicability
by computing analogues for 12 large European cities using
data from two high-resolution regional climate simulation
models from the Hadley Centre and Meteo France. In the
concluding Sect. 5, we discuss the method’s limits, poten-
tial improvements, and communication value in several Eu-
ropean mass-media channels.

Three technical appendices describe, respectively, A) the
parameterization of the K-S test, based on Monte-Carlo sim-
ulations in the literature, B) more detailed results on the com-
parison between using 3 indicators versus only 2, and C)
the difference between p-value maps versus maps of the KS
statistic, that we use preferentially because they offer a better
visual contrast.

2 Characterizing climate with indicators

2.1 Indicators

Climate can be defined as the weather conditions in a certain
geographical area averaged over a long period of time. A
more quantitative definition is needed for a computer-based
method. A well accepted approach to characterize climates
is to select a few aggregate indicators quantifying the most
relevant attributes, such as measures of seasonal and annual
warmth or cold, accumulated wetness/dryness, solar radia-

tion, or atmospheric humidity. Many climate indicators exist,
as climates can be defined in different ways for different pur-
poses. For example, in agriculture the total annual evapotran-
spiration is an important indicator for plant growth, whereas
in tourism the total number of rainy days might be of primary
interest instead. The literature suggests that general-purpose
characterizations of climates, such as the Köppen classifica-
tion, tend to include at least one indicator related to temper-
ature (or energy) and one indicator related to moisture (or
water). The popularity of theHoldridge (1947) Life Zone
system shows that three indicators are sufficient to define a
useful classification of climates (in this classification, the in-
dicators are temperature, precipitation and evaporation, but
the zones are represented on a two-dimensional triangle be-
cause the third indicator is a combination of the first two).

In order to characterize climate from the point of view of
its impact on cities and urban life, we considered the combi-
nation of the following three climate indicators: annual Arid-
ity Index, annual Heating Degree Days and annual Cooling
Degree Days. The annual Aridity Index represents a key fac-
tor defining water deficit. This index is widely used in the
categorization of climate types, and water stress is expected
to be a key social impact of climate change. The Heating and
Cooling Degree Days measure accumulated temperature and
are known to correlate well with the energy demand for heat-
ing and air conditioning, respectively. They are used in fi-
nancial markets to settle the price of weather derivatives and
futures (e.g.van Asseldonk, 2003), or to estimate a build-
ing’s or a city’s energy needs. Similar measures of accu-
mulated temperature are also used in agriculture (Monteith,
1981), for example the Effective Temperature Sum (ETS)
used byFronzek and Carter(2007) as an indicator of ther-
mal suitability for crop development.

Although capturing additional aspects of climate or inves-
tigating selected features or particular subsystems of urban
areas might require additional indicators, there is a certain
trade-off between the exhaustive description of a local cli-
mate and the practical ability to identify analogues of that
climate. We believe that the combination of these three indi-
cators provides a sufficient description of a city’s climate to
assess the impact of climatic change on urban areas, so we
define climate for this study as the 30-year three-way joint
distribution of the Aridity Index, Heating Degree Days and
Cooling Degree Days. In order to statistically compare cli-
matic (dis-) similarities between different times and places,
we assume stationarity, as if the 30 years were drawn from
the same unchanging distribution. No assumption is made
on the shape of this distribution. The three indicators are
defined in principle from daily data, but monthly mean tem-
perature and precipitation data are more readily available. As
we show next, the indicators can be computed to a good ap-
proximation from monthly data.
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Fig. 1. Mean monthly precipitation (blue bars) and potential evapo-
transpiration (green bars) of the simulated climate of Paris in 2071
(HadRM3H model, single grid box). Absolute aridity is the area
above the precipitation and below evapotranspiration bars of the de-
ficient months (hollow rectangles). It is divided by total evapotran-
spiration of the deficient months to get the aridity index.

2.2 Aridity

Aridity describes the availability of water that plants can use.
It is a fundamental indicator for a climate’s vegetation, likely
to change significantly in a changing climate. There are sev-
eral variants of an aridity index available in the literature:
absolute or relative, aridity or humidity. For the purpose of
describing climates statistically they are largely equivalent,
so we settled on the classical Aridity IndexAI as defined
by Thornthwaite(1948) (see Fig.1).

In any given month,i, the water deficit is the difference
between the monthly potential evapotranspiratione and the
precipitationp which sums up for all water deficient months
of a year to the annual water deficit. The annual Aridity In-
dex is defined relative to the total potential evapotranspira-
tion of the deficient months:

AI = 100

∑12
i=1 δi(ei − pi)∑12

i=1 δiei

{
δi = 1 if ei > pi

δi = 0 if ei 5 pi

(1)

Thornthwaite(1948) also provides an empirically derived
method for closely estimating the monthly potential evapo-
transpiratione of a standard month of 30 days in cm from
the mean monthly temperatureti in ◦C:

ei = 1.6

(
10ti

I

)a

; ti > 0◦C (2)
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Fig. 2. Temperature simulation for Paris in 2071 (HadRM3H
model). Cooling Degree Days (CDD) correspond to the area above
the 18◦C line (blue area). Heating Degree Days (HDD) correspond
to the area below the 18◦C line (red area). The CDD and HDD for
each month are empirical approximations based on monthly mean
temperatures.

with

I =

12∑
i=1

(
ti

5

)1.514

; ti > 0◦C (3)

a = 0.000000675I3
+ 0.0000771I2

+ (4)

0.01792I + 0.49239

As the number of days in a month vary and the number of
hours of sunshine per day depend on the seasons and the
latitude,Thornthwaite(1948) also introduced an adjustment
factor for the above calculated unadjusted potential evapo-
transpiration. This method is also known to systematically
underestimate the potential evapotranspiration in more arid
regions and seasons as it was developed and parameterized
for conditions in the USA (e.g.Deichmann and Eklundh,
1991). In the present work, we neglected these adjustments
but follow-up studies should investigate this aspect.

2.3 Cooling and heating degree days

Heating and cooling degree days (HDD and CDD, see Fig.2)
can be seen as measures of heating and air conditioning
needs, respectively. They are based on the simple idea that
heaters (or air conditioners) are turned on when the daily
mean temperaturetn drops below (or rises above) a refer-
ence temperatureb. We will useb=18◦C, as mentioned in
World Meteorological Organization(1983, p. 1B.5). There
is empirical evidence that it is the centre of the comfort inter-
val outside of which the energy demand increases (Mitchell
et al., 1974; Valor and Caselles, 2001). The precise value of
b is not critical to our method, as the indexes with differentb
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Fig. 3. Cumulative Probability Distributions of the Aridity in-
dex for Paris (2071–2100) and the southern Italian city Barletta
(1961–1990), data from HadRM3H model. The Kolmogorov-
Smirnov statisticD is the maximum vertical distance between the
two curves.

are well correlated. Other reference values include 65◦F, or
18.33◦C, used on the Chicago market for weather derivatives,
and 15.5◦C used traditionally in the UK. These indicators’
relevance for the climate change issue is twofold. On one
hand, changes in their distributions are an expected important
impact of climate change. And on the other hand, they also
matter for mitigation, since degree days empirically charac-
terize households’ energy consumption very well. Mathe-
matically, annual heating and cooling degree days are defined
as follows:

HDD =

365∑
n=1

δn(b − tn)

{
δn = 1 if b > tn

δn = 0 if b 5 tn
(5)

CDD =

365∑
n=1

δi(tn − b)

{
δn = 1 if tn > b

δn = 0 if tn 5 b
(6)

Although based, by definition, on a daily difference to the
base, by observing that the daily temperature distribution has
a known shape, it is possible to estimate monthly degree days
statistically from monthly temperature means, neglecting the
suggestion byScḧar et al.(2004) that climate change may al-
ter this known shape.Thom(1954, 1966) proposed a method
to calculate the monthly degree days above (CDDi) or below
(HDDi) any base as follows:

HDDi = N [l∗HDD(+x0)
√

Nσi − (ti − b)] (7)

CDDi = N [l∗CDD(−x0)
√

Nσi + (ti − b)] (8)

whereN is the month length in days,ti the monthly mean
temperature,σi the standard deviation of monthly average

temperature (which was calculated in our case from the avail-
able average monthly temperatures over several years as
available),b=18◦C the base, andx0 and l∗CDD and l∗HDD the
so-called truncation points and respective truncation coeffi-
cient, which are related empirically and calculated with an
exponential approximation (Thom, 1966) as follows:

x0 =
b − ti
√

Nσi

(9)

l∗HDD(+x0) = 0.34e−4.7x0 − 0.15e−7.8x0 (10)

l∗CDD(−x0) = 0.34e−4.7x0 − 0.15e−7.8x0 + x0 (11)

This method only approximates the monthly HDD and CDD,
but for European climatic conditions it provides a reasonable
replacement estimate for calculations based on daily temper-
ature.

3 A statistical measure of climatic similarity

3.1 The 1-dimensional two sample Kolmogorov-
Smirnov test

The Kolmogorov-Smirnov test is a commonly used and rela-
tively simple non-parametric statistical test. It can be used to
examine if a sample comes from a known distribution, or to
examine if two samples come from the same unknown distri-
bution. Our use is the latter: to compare climates from two
different places and periods, using samples of 30 years. In
its basic univariate case, the Kolmogorov-Smirnov statistic
D is defined as the maximum vertical distance between the
cumulative distribution functions of the two samples. This
is illustrated in Fig.3 for the cumulative distribution of the
30 annual aridity indices of the climate of Paris from 2071
to 2100 and the climate of the southern Italian city Barletta
from 1961 to 1990, respectively (aridity indices computed
using the results of the HadRM3H model simulation.)

The basic idea of the test is the following. When one
draws two samples of numbers according to a given prob-
ability distributionf , the cumulative distribution curves of
the two samples will both tend to fall around the same PDF
curve off . Thus, if one cannot expectD to be exactly 0,
one can expect it to be small. But when one draws two sam-
ples according to very distinct probability distributions, re-
spectivelyf andg, the cumulative distribution curves of the
two samples will tend to fall around the PDF curves of re-
spectivelyf andg. If these curves are well apart, one can
expect the statisticD to be close to 1. To illustrate with an
extreme case, if numbers drawn according tof are known to
lie within [1, 2] and numbers drawn according tog are in [3,
4], then certainly the distance will be 1.

The frequency distributionp of the K-S statisticD for two
samples of 30 drawn from the same distributionf can be
computed empirically to an adequate level of precision for
application by using Monte-Carlo simulation. The key to
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the K-S test is thatp does not depend on the shape off

itself. Thus, the K-S is non parametric, as no assumptions
need to be made about the unknown distribution:Fasano and
Franceschini(1987) show that for the 2- and 3-dimensional
case, only the correlation between the variables matter. Fig-
ure4 displays the distribution according to the literature.

The Kolmogorov-Smirnov distanceD offers an absolute
measure of similarity between two samples based on statis-
tical theory. In technical language, the probability that two
samples drawn from the same distribution have a K-S statis-
tic at least as a great asD is called the p-value. For example,
the p-value of two identical samples (D=0) is p=1. When
the p-value is small, there is reason to reject the hypothesis
that the two samples come from the same distribution. On
the contrary, the largerp, the more reason there is to believe
(or accept the hypothesis) that the two samples were indeed
drawn from the same distribution.

3.2 The 2-D and 3-D Kolmogorov-Smirnov test

The classical K-S test presented above deals with real-valued
variables (i.e. is 1-dimensional). However, we characterize
climates with three indicators, so we have to test the three-
way joint probability distribution AI, HCC and CDD. Gen-
eralization is not trivial because in higher dimensions there
is no obvious total ordering relation, so the notion of cumu-
lative distribution is not immediately applicable. We used
generalizations of the K-S test for two (Peacock, 1983) and
three (Fasano and Franceschini, 1987) dimensions.

In the case of two-dimensional samples, each data point
is a pair of numbers, such as (AI, CDD) for example. The
approach ofPeacock(1983) is best understood graphically,
as illustrated in Fig.5 for the combination of annual Arid-
ity Index and annual Cooling Degree Days over 30 years of
simulated climate for Paris, from 2071 to 2100, and Barletta,
Italy, from 1961 to 1990. It replaces the cumulative probabil-
ity distribution with a description of the integrated probabil-
ity in each of the 4 quadrants around a given reference point
(x,y) of the sample. Practically, each data point of the sam-
ple is successively used as the reference point. For each such
reference point, the relative frequencies for the two samples
are calculated in each quadrant, as the ratio of the number
of data points in the quadrant to the total number of data
points. Finally, The K-S statisticD between two samples
is the maximum difference of the relative frequencies in the
4 quadrants, when considering successively all data points as
the reference point.

Generalizing the 2-dimensional version of the K-S statis-
tic D to the 3-dimensional case is straightforward. Each data
point is a triple, for example (AI, CDD, HDD). These data
points can be seen as a cloud in 3-dimensional space. There
are 8 octants in the space around each data point instead of 4
quadrants in the plane. The K-S statisticD between two sam-
ple distributions is taken as the maximum difference of the
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Fig. 4. The p-value as a function of the K-S statisticD afterPress
et al. (1992). It measures on an absolute scale (between 0 and 1)
how likely it is for two samples to be drawn from the same distribu-
tion i.e. in our case, how well the two climates, as described by the
indicator, correspond.

relative frequencies when considering the 8 octants around
all data points.

For statistical testing, the translation of the K-S statistic
D into the p-value in the multi-dimensional cases is based
on the same Monte-Carlo methods as in the 1-dimensional
case. Technically, given a distanceD measured between two
tested samples, the p-value is the probability that the K-S dis-
tance between two samples randomly drawn from the same
distribution is greater thanD. It describes how well the two
samples are similar, or could come from the same probability
distribution. In other terms, the p-value is the likelihood that
the two samples are two realizations from the same proba-
bility distribution. In our case, it also means how well two
climates, as described by multiple indicators, coincide. Tech-
nical details on the probability distributions used in the 2- and
3-dimensional cases are shown Appendix A.

3.3 Analogue filtering, selection and visualization

The selection of the best current analogue to a city’s future
climate amounts to searching for a local minimum inD. We
also used two additional filters.

First, only grid points in the model with a p-value greater
than 0.5 were considered acceptable for further evaluation.
Locations that reject the “same climate” hypothesis at a 50%
confidence level were not acceptable. According to the usual
practice of statistical testing at 95%, this is a quite low con-
fidence level. But the purpose is not to test for all analogs,
only to simplify further computations by filtering out a large
fraction of grid cells. When no grid cell is acceptable, the
search fails.

Second, we penalized narrow optima by applying a low-
pass spatial filter before minimizing theD field. The filter
combined the score of a cell with a 0.5 weight, with the score
of its four cardinal neighbors located at plus or minus 0.5◦
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Fig. 5. Spatial distribution of the combination of the two climate indicators annual Aridity Index and annual Cooling Degree Days from
30 years for Paris (2071–2100) and the southern Italian city Barletta (1961–1990), data from HadRM3H model. The Kolmogorov-Smirnov
statisticD is the maximum difference of the integrated probabilities of the two distributions in the 4 quadrants around each data point. The
figure displays this calculation with one data point as a reference. To find the maximum, the same calculation is performed for all data points,
yielding the displayed difference of 9/30=0.3 as the absolute maximum, which is found in the fourth quadrant.

Fig. 6. Cities examined in this study, displayed on a mean annual
temperature background from the HadRM3H control run (1961–
1990) for a basic impression of relative temperatures.

latitude/longitude, using a 0.125 weight. Neighbors were ob-
tained by interpolation when the datagrid made it necessary.
The justification for this smoothing is heuristic. The ana-
logue is meant to represent a climate to readers who have a

fuzzy mental representation of European climates. This goal
is better accomplished when the optimum is within a large
region of good analogues.

The optimum was found using exhaustive search, as this
is nonconvex optimization with a finite, computationally
tractable number of points (one per grid cell). Compared
to Hallegatte et al.(2007), no further heuristic arbitration be-
tween candidate optima was needed. The smallest smoothed
K-S statistic at an acceptable location was considered the
best analogue. It was then possible to name the analogue
according to the closest meteorological station or city.

Based on this method, two kinds of maps were drawn.
The first kind is the “climate analogues quality” map (see
Sect. 4.2, below). It shows where one can currently find the
future climate of a given city, by mapping the K-S statistic
D on a regular grid of Europe, at the resolution of the origi-
nal dataset. We used interpolation when the original dataset
was not on a rectangular grid. Appendix C discusses why we
choose to displayD instead of the p-value. This kind of map
allows the reader to check visually the quality of the “best”
analogue, which is necessary since it involves nonconvex lo-
cal minimization.

A second kind of map is the “climate relocation” map. It
is obtained by selecting a set of cities, and displaying where
their best analogue lies on a common map of Europe (see
Sect. 4.3, below). These maps communicate the directions
and order of magnitude of climate changes expected over
the course of the century. In order to convey the uncertainty
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related to climate simulations, it is important to always show
several such maps obtained on the basis of different climate
models or emission scenarios.

4 Application

4.1 Data and implementation

The method was implemented in Fortran, using g77 with
the GrADS, NetCDF and CDO libraries. For city coordi-
nates, we took the list of stations from the Global Histori-
cal Climatology Network 2 dataset. The code uses resources
from Press et al.(1986), is released under the GPL and avail-
able from the CIRED web site (http://www.centre-cired.fr).
It can be parameterized to examine most large cities in Eu-
rope. For this paper, we examined analogues for 12 large
European cities: Athens, Barcelona, Berlin, Helsinki, Istan-
bul, London, Madrid, Oslo, Paris, Rome, Saint-Petersburg
and Stockholm, as shown in Fig.6.

The key inputs needed are regional 2-D fields of mean
monthly surface temperatures and precipitation. Data should
be at relatively high spatial resolution, about 50 km grid. It
should cover two 30 year time spans, in order to compare
the present and the future climates. Finally, it should cover a
reasonably wide latitudinal zone, since warmer climates are
generally to be found to the south.

We used two climate simulation datasets from models of
the PRUDENCE project (the first ensemble member of sim-
ulations described inChristensen and Christensen(2007)).
One dataset is theDE6 run of the ARPEGE-Climate model
from CNRM/Mét́eo-France. This is a global circulation
model with a variable horizontal resolution of up to 50km in
Europe. This atmospheric model was forced by sea surface
temperature of the HadCM3 A2 model. The other dataset is
theackdarun of the HadRM3H model from the Hadley Cen-
tre, a regional model with a 50-km resolution, forced by the
global circulation model HadAM3H A2. Both models sim-
ulate a warming over Europe with an increase in precipita-
tion in the North and a strong drying over the Mediterranean.
In these datasets, the HadRM3H model simulates a stronger
global warming response than the ARPEGE model, but both
are within the range of the typical literature values according
to the PRUDENCE intermodel comparisons. They both pro-
vided monthly mean temperatures and precipitation over 30
years in the present climate (control run, 1961–1990) and the
projected future climate (2071–2100).

4.2 Comparing two versus three indicators

We compared empirically the results of the method as de-
scribed above, based on a 3-dimensional K-S test using
three indicators (Aridity Index and both Degree Days), with
a simplified version using only two indicators (and a 2-
dimensional K-S test). There are three possible ways to pick

two indicators out of three, but theoretically it is hardly de-
fensible to throw away the Aridity Index and keep only the
two temperature-based indicators. This is why we tested only
(AI, HDD) and (AI, CDD).

Figure7, based on the HadRM3H model simulation, com-
pares the climate analogues maps computed with three and
two indicators for Paris and Saint-Petersburg. Logically, it
can be seen that the first map in each row is like the fuzzy
intersection of the second and third map.

The analogue location selected by the 3-D test is also
relatively good when tested with the 2-dimensional crite-
ria, whereas the converse is not necessarily true. For exam-
ple, for Paris the testing method with all 3 indicators found
the best climate analogue close to the small Spanish city of
Badajoz at the Spanish-Portuguese border with a p-value of
90%. This location also evaluates to a p-value of 100% in
the 2-dimensional test with Aridity Index and Heating De-
gree Days as well as a p-value of 75% in the 2-dimensional
test with Aridity Index and Cooling Degree Days.

Also, the best analogue with (AI, CDD) may be a poor
one when seen with (AI, HDD) or vice versa. In the same
example, the locations of the best analogues found by either
of the 2-dimensional tests (for the test with Aridity Index and
HDD located in the Black Sea and for the test with Aridity
Index and CDD close to the Spanish city of Ciudad-Real)
evaluate to a p-value of 0% in the other test. This example is
representative of all 12 examined cities (see Appendix B).

In short, the results are not only theoretically but also em-
pirically more satisfying using three indicators, and since the
supplementary computational cost is modest, there is no rea-
son to use just two. We did not look beyond three, but in
some case this may be useful, because in many cases there
are several analogues approximately as good as each other.
For example, all dark red areas in Fig.7 for cities like Paris
and Saint-Petersburg. Possible extensions, to name only a
few, would be, for example, an indicator expressing seasonal-
ity to account for urban adaptation to seasonal variations, an
indicator reflecting the effect of elevation in order to consider
climatic particularities at different altitudes, or an indicator
capturing water surplus to account for structural adaptations
needed to combat extreme events linked to excess water such
as flooding, landslides and erosion.

4.3 Climate relocation maps

Climate relocation maps can be used to compare the output
of climate models and to better understand the differences
between climate change simulations. Figure8 compares the
analogues found for the different datasets: the ARPEGE and
HadRM3H models projecting global warming. No observa-
tional data were applied in this analysis; the analogues are
based on the modelled climate alone. Figure6 was the ref-
erence map of actual locations of the examined 12 cities in
Europe.
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Fig. 7. Comparison of the 3-dimensional K-S statistic results (with Aridity Index, HDD and CDD) and the two 2-dimensional K-S statistic
results (with Aridity Index and HDD/CDD respectively) for Paris, Saint-Petersburg and Athens. Respective city’s actual location indicated
on each map along with the best climate analogue (if existent). (HadRM3H model simulation).

No good analogues were found for Athens in either model.
For HadRM3H, Barcelona has an analogue near the town
of Ouezzane in northern Morocco and Rome has an ana-
logue on the southern coast of Turkey with Nicosia (the
capital of Cyprus) being the closest analogue city. Nei-
ther has a good analogue for ARPEGE. Madrid by con-
trast has no good analogue for the HadRM3H simulation
and Biskra in Algeria for ARPEGE. Berlin, London, Paris
and Istanbul have good analogues near Chlef (Algeria), Vila
Real (Portugal), Badajoz (Spain) and Kamaran (Turkey) re-
spectively for HadRM3H, and Campobasso (Italy), Nantes
(France), Vieste Aero near Rome (Italy) and Moron de
la Frontera in Andalusia (Spain) for ARPEGE. Helsinki,
Oslo, Stockholm and Saint-Petersburg have good analogues

near Sandomierz (Poland), Teruel (Spain), Soria (Spain) and
Ternopol (Ukraine) respectively for HadRM3H, and Banja
Luka (Bosnia and Herzegovina), Klodzko (Poland), Linden-
berg (Germany) and Rovno (Ukraine) for ARPEGE.

Comparing the analogues found in the case of the
ARPEGE and HadRM3H models, which are two leading cli-
mate simulation models, offers some impression of the in-
termodal uncertainty for Europe. Despite the differences,
however, both models agree in showing a clear drift towards
warmer regions in the climate analogues. This supports the
expected effect of global warming on European local cli-
mates towards the end of the 21st century, under the A2
greenhouse gas emission scenario. It has to be noted how-
ever, that this simple two model comparison provides only a
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Fig. 8. Relocation of European climates at the end of the 21st century, analogues found with the datasets coming from the ARPEGE (left)
and the HadRM3H (right) model runs in an A2 global warming scenario. Both are displayed on a mean annual temperature background
from the HadRM3H control run (1961–1990) for easier visual comparison and a basic impression of relative temperatures. Note that these
analogues are based on modelled climate alone; observational data were not applied in this analysis.

limited impression of the uncertainty in projections. Future
studies should investigate multi-model and multi-scenario
comparisons to further assess the applicability of the method
for the visualization of uncertainty and possibly the identifi-
cation of different sources of uncertainty. Also, uncertainties
such as those arising from biases in the control runs repre-
senting present-day climate should be taken into considera-
tion.

5 Conclusions

We described a method to analyze the results of climate sim-
ulation models, improving onHallegatte et al.(2007). It is
based on the concept of spatial climate analogues, i.e. find-
ing a City B whose present climate statistically corresponds
to the simulated future climate of an evaluated City A. This
provides an intuitive visualization of climate change effects
on urban areas, by replacing the change of climate (in time)
with a change of a city’s location (in space). Through the
use of several models and scenarios, this approach also pro-
vides some impression of the uncertainty in climatic change
predictions, and in their effects on urban areas.

Climates were characterized using three annual indica-
tors: Aridity Index, Heating Degree Days and Cooling De-
gree Days. These indicators can readily be computed from
monthly precipitation and temperature datasets. To compare
climates, we compared 30-years time series of these indica-
tors using the two sample three-dimensional Kolmogorov-

Smirnov tests. We found that using three instead of only two
climate indicators provided a more satisfying analogue se-
lection, at the cost of a moderate increase in computational
complexity.

The limitations of the approach lie primarily with the as-
sumption of climate stationarity and the interpretation of a
density map by its maximum alone (the best analogue). Also,
analogues found might be physically implausible such as lo-
cations in the Mediterranean or Black Sea, and the selection
of climate indicators focused primarily on precipitation and
temperature derived characteristic could possibly overlook
important differences between a location and its analogue
such as topography, length of day, level of economic devel-
opment, etc.

Using two datasets, analogues for 12 European cities were
computed: Athens, Barcelona, Berlin, Helsinki, Istanbul,
London, Madrid, Oslo, Paris, Rome, Saint-Petersburg and
Stockholm. Two climate simulation models projecting dif-
ferent degrees of global warming for the A2 emissions sce-
nario were used: The ARPEGE model from CNRM/Mét́eo-
France and the HadRM3H model from the Hadley Centre.
Both show a clear drift in climate relocation towards warmer
regions for Europe.

The analogues of Paris are representative of the kind
of scientific policy-oriented message this method provides:
according to one simulation, Paris could have at the end
of the 21st century a climate similar to Vieste Aero near
Rome. That may not be seen as an adverse change by
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Table A1. Polynomial constants of the probability distribution ap-
proximation for the 2-dimensional case.

CC dmin dmax c1 c2 c3 c4

0.0 0.222 0.462 −32.134 52.213 −27.686 4.825
0.5 0.219 0.459 −32.138 51.894 −27.336 4.733
0.6 0.216 0.457 −29.879 49.164 −26.191 4.563
0.7 0.211 0.454 −29.759 48.448 −25.569 4.417
0.8 0.202 0.448 −30.900 48.514 −24.890 4.202
0.9 0.185 0.436 −31.123 46.797 −23.101 3.766

K-S distance

p
-
v
a
l
u
e

Fig. A1. Sample points and polynomial estimates of the probability
distribution for the 2-dimensional case.

many stakeholders. However, according to another simula-
tion, Paris could also have the climate of the city of Bada-
joz in Southern Spain. It is widely held that heat waves and
water shortages, which were not considered as a significant
problem in Paris only ten years ago, are nowadays recurring
sources of trouble in the Badajoz area. This work illustrates,
therefore, how new climate-related problems are likely to ap-
pear in numerous cities because of climate change. The re-
lated evolution of natural risks has to be managed in the most
proactive ways to avoid the repetition of costly surprises like
the 2003 heat wave in Europe and its dramatic consequences.

In some cases no suitable analogue for the projected cli-
mate of a given city were found. This indicates a lack of
the type of climate projected for the city within Europe, at
a 50% confidence level. For example, Athens lacks a good
analogue on Fig.7. It can only be supposed that a suitable
analogue might be found further south. An obvious extension
of this work would be to search potential analogues not only
within Europe but worldwide and to assess sources of uncer-
tainty within a larger range of models and scenarios. Another
would be to search for the analogue using climatological ob-
servation data instead of model-based datasets to avoid the
biases from the model representation of present-day climate.

Evidence of this method’s communication value comes
from its use in teaching and in European popular science
and mass media (Kopf et al., 2007; Hallegatte, 2007; Adam,

Table A2. Polynomial constants of the probability distribution ap-
proximation for the 3-dimensional case

CC dmin dmax c1 c2 c3 c4

0.0 0.234 0.468 −26.314 49.131 −28.606 5.334
0.5 0.225 0.467 −37.054 59.458 −31.334 5.450
0.6 0.220 0.464 −35.685 57.477 −30.257 5.240
0.7 0.211 0.458 −36.224 56.879 −29.311 4.984
0.8 0.203 0.454 −49.571 69.975 −33.069 5.239
0.9 0.190 0.443 −56.376 74.752 −33.367 5.023

K-S distance

p
-
v
a
l
u
e

Fig. A2. Sample points and polynomial estimates of the probability
distribution for the 3-dimensional case.

2007). In addition to, and in comparison with existing socio-
economic simulations (e.g.Lorenzoni et al., 2000; Kaivo-oja
et al., 2004) for future scenarios, climate analogues provide
an alternative way to rigorously frame the climate change
issue for urban areas, as well as provide an estimate an es-
timate of the extent of uncertainty in the prediction of cli-
matic changes. Although the limitations and drawbacks of
this method have to be kept in mind, it provides a strong ba-
sis for the visualization of climate change and allows socio-
economic adaptation to different climates to enter the mental
model.

Appendix A

Parameterization of the Kolmogorov-Smirnov tests

To determine the p-value corresponding to a value of the 2-
and 3-dimensional Kolmogorov-Smirnov statisticD, we de-
rived a set of sample probability distributions from the pro-
cedure and data reported in Appendix A and B ofFasano
and Franceschini(1987), and calculated the appropriate ap-
proximation formulae for each needed sample size (and a va-
riety of correlation coefficients) through third order polyno-
mial interpolations using an appropriate function fromPress
et al. (1986). In the 2-dimensional case, data points of
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S. Kopf et al.: Maps of city analogues 915

Table B1. Robustness of analogues computed with 3 indicators (HadRM3H dataset). In each cell, the mini barchart shows the climatic
similarity between the station named in that cell and the city indicated in column 1, for three different ways to define climatic similarity. The
three different ways to define climatic similarity are: using all three climate indicators (left bar), using only aridity and HDD (middle bar),
and using only aridity and CDD (right bar). The station named in each cell is the best analogue for one of the three ways, as indicated by the
respective column caption. The vertical scale of the barcharts goes from 0 () to 1 ( ), each bar representating a p-value, i.e. taller bars in
the barcharts indicate more similar climates.

City’s future best analogue, climates compared on:
City Aridity, HDD and CDD Aridity and HDD Aridity and CDD

Athens no good analogue El Arfiane Ghardaia
Barcelona Ouezzane Tunis/Carthage Bordj Bou Arrer
Berlin Chlef Cahors Sremska Mitrovi
Helsinki Sandomierz Przemysl Tours
Istanbul Karaman Laghouat Laghouat
London Vila Real Ciudad-Real Lubny
Madrid no good analogue Geryville El Aliod
Oslo Teruel Iasi Zlynka
Paris Badajoz Kumkoy Ciudad-Real
Rome Nicosia Sagres Djelfa
Saint-Petersburg Ternopol Siedlce Sandomierz
Stockholm Soria Oradea Zlynka

the probability distribution for the needed sample sizes
were calculated using the polynomial expansion proposed
by Fasano and Franceschini(1987) for the 2-dimensional
Kolmogorov-Smirnov test. In the 3-dimensional case, the
data points for the needed sample sizes were obtained by
linear interpolation of the data calculated byFasano and
Franceschini(1987) with Monte Carlo simulations. The
range of correlation coefficients covered (in both the 2- and
3-dimensional case) wereCC=0, 0.5, 0.6, 0.7, 0.8 and 0.9
as values between 0 and 0.5 do not differ significantly from
the uncorrelatedCC=0 case. As our calculations with the
three climate indicators Aridity Index, HDD and CDD in
the 3-dimensional test did not yield partial correlation co-
efficients exceeding 0.95, the average% of the 3CC could
be used (Fasano and Franceschini, 1987). Table5 andA2
report the constants of the derived polynomials for the 2- and
3-dimensional case of the main scenario of sample distribu-
tions with 30 samples (i.e. annual Aridity Index and Degree
Days over 30 years). Sample points and polynomial esti-
mates for the main scenario are furthermore visualized in
Fig. 5 andA2. All polynomials have the form:

pvalue(d) =


1.0 if d < dmin

c1d
3
+ c2d

2
+ c3d + c4 if d ∈ [dmin; dmax]

0.0 if d > dmax

(A1)

Best analogue

Best analogue

Fig. C1. Comparing the 3-dimensional K-S statisticD map (top)
with the probabilistic p-value map (bottom). The later has stronger
variation between grid points. HadRM3H model simulation.
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Fig. C2. Visualization of the 3-dimensional K-S statistic for all 12 examined cities (HadRM3H model simulation).
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Appendix B

Comparing three versus two climate indicators

We compared the results obtained using a 3-dimensional
Kolmogorov-Smirnov test on the 3 climate indicators Aridity
Index, Heating Degree Days and Cooling Degree Days with
results obtained using only a 2-dimensional test on Aridity
Index plus either kind of Degree Days. TableB1, in any cell
the mini barchart (the three black rectangular bars) allows to
compare the p-value of same location using the three differ-
ent tests. The table shows that for the 12 European cities
examined in this study, results are as expected:

– Analogues found with the three indicators are not as
good as analogues found with only two indicators, in ab-
solute terms. For example, Stockholm has an excellent
match (p≈100%) with either (AI,CDD) or (AI,HDD),
but only a good match (61%) with the complete set of
criteria.

– Analogues found with the complete set of 3 criteria, in
the first column, are also good analogues when tested
with only two criteria. In the leftmost column, all 3 bars
in the mini barcharts are generally high. This shows
the good performance of the locations found by the 3-
indicators test for all three testing methods.

– The converse is not true. In the middle and right col-
umn, it is generally the case that only the bar of the
maximized criteria is good. This means that the climate
analogue would be rejected when tested with any of the
two other set of indicators.

The results indicate that optimal analogues found using only
two indicators perform poorly when the third climate indica-
tor is also considered. Analogues with three indicators are
more robust, which supports our choice to use three climate
indicators instead of only two.

Appendix C

Displaying K-S statisticD instead of the p-value

For visualization of the Kolmogorov Smirnov test results, we
have chosen to display the K-S statisticD rather than the
corresponding p-value. The relationship betweenD andp

is obviously monotonous, so mathematically no information
is lost, and the selection does not affect the location of the
optimum analogue.

FigureC1 illustrates the difference between aD map and
a p map. Admittedly, displaying p-values would be more
meaningful to the statistician theoretically. But to everyone
else, the K-S statistic gives a better visual indication of grad-
uated differences between climates. This is because, as Fig.4
shows, thep(D) function is very nonlinear. Lower values of

D give practicallyp=1, and higher values givep=0. There-
fore, displayingp on a linear scale tends to produce more
categorical maps of “good” versus “poor” analogues, while
displayingD produces more gradual, esthetically pleasing
maps. FigureC2 shows the 3-dimensional K-S statistic for
all 12 examined cities (HadRM3H model simulation).
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des villes euroṕeennes, Climat: Commentéviter la surchauffe?,
Dossier Pour la Science 54, 48–51,http://www.pourlascience.
com/, 2007.

Lorenzoni, I., Jordan, A., Hulme, M., Turner, R. K., and O’Riordan,
T.: A co-evolutionary approach to climate change impact assess-
ment: Part I. Integrating socio-economic and climate change sce-
narios, Glob. Environ. Change – Human and Policy Dimensions,
10, 57–68, doi:10.1016/S0959-3780(00)00012-1, 2000.

Mearns, L. O., Hulme, M., Carter, T. R., Leemans, R., Lal, M.,
and Whetton, P.: Climate scenario development, in: Climate
Change 2001: The Scientific Basis, edited by: Houghton, J. T.,
Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai,
X., Maskell, K., and Johnson, C. A., chap. 13, Cambridge Uni-
versity Press,http://www.grida.no/CLIMATE/IPCCTAR/WG1/
index.htm, 2001.

Mendelsohn, R. and Dinar, A.: Climate change, agriculture, and
developing countries: Does adaptation matter?, The World Bank
Observer, 14, 277–293, 1999.

Mitchell, J. M., Felch, R. E., Gilman, D. L., Quinlan, F. T., and
Rotty, R. M.: Variability of seasonal total heating fuel demand in
the United States, Environ. Data. Service, 5, 5–9, based on 1973
report to the Energy Policy Office, Washington, D.C., 1974.

Monteith, J. L.: Climatic variation and the growth of crops,
Q. J. Roy. Meteorol. Soc., 107, 749–774, doi:10.1002/qj.
49710745402, 1981.

Parry, M. L. and Carter, T. R.: An assessment of the effects of
climatic-change on agriculture, Clim. Change, 15, 95–116, doi:
10.1007/BF00138848, 1989.

Peacock, J. A.: Two-dimensional goodness-of-fit testing in as-
tronomy, Monthly Notices of the Royal Astronomical Society,
202, 615–627,http://adsabs.harvard.edu/abs/1983MNRAS.202.
.615P, 1983.

Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T.:
Numerical recipes: The art of scientific computing, Cambridge
University Press, includes code in both Fortran and Pascal, 1986.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.:
Numerical recipes in Fortran77: The art of scientific computing,
Cambridge University Press, 2 edn., includes code in Fortran77,
1992.
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