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Abstract. The problem of detecting the occurrence of an bates Geller et al, 1997 Wyss 1997 Nature 1999, many
earthquake precursor is faced in the general framework ofjeophysical parameters have been investigated to face this
the statistical learning theory. The aim of this work is both problem.
to build models able to detect seismic precursors from time Scientific efforts are directed toward the monitoring of
series of different geochemical signals and to provide an eschanges in seismicityprobieva et al.1993, ground electri-
timate of number of false positives. The model we used is k-cal resistivity and conductivityTelesca et al 20059, crustal
Nearest-Neighbor classifier for discriminating “no-disturbed deformation ratesStephenson et al2003, ground water
signal”, “seismic precursor” and “co-post seismic precur- chemistry Biagi et al, 2000 Guangcai et a).2005, geo-
sor” in time series relative to thirteen different hydrogeo- magnetic measuremen®dgzhnoi et al.2004 Hattori et al,
chemical parameters collected in water samples from a natu2004). Traditionally, the detection of these changes is per-
ral spring in Kamchachta (Russia) peninsula. The measureformed by visual inspection of the filtered and smoothed time
ments collected are ion content (Na, Cl, Ca, HCB3BO3),  series Kingsley et al, 200]) or of the spectral content of
parameters (pH, Q, T) and gase(ICO,, CHs, O, Ag).  the signal Biagi et al, 200§. Once the anomalous signal
The classification error is measured by Leave-K-Out-Crossshapes satisfy the IASPEI validation criteria for precursor
Validation procedure. Our study shows that the most discrim-candidates Biagi et al, 200Q 2001), the relation between
inative ions for detecting seismic precursors are Cl and Nasignal anomalies and earthquakes is looked for. To this end,
having an error rates of 15%. Moreover, the most discrim-all possible phenomenon (i.e. meteorological conditions, vol-
inative parameters and gases are Q and; @spectively,  canic activity, etc.) that could produce anomalies in the time
with error rate of 21%. The ions result the most informa- series are investigated to be sure of associating the anomalies
tive hydrogeochemicals for detecting seismic precursors dugnivocally to seismicity.
to the peculiarities of the mechanisms involved in earthquakealthough such approaches have successfully detected the as-
preparation. Finally we show that the information collected sociation between anomalies in the signals analyzed and the
some month before the event under analysis are necessary §ecurrence of seismic events, they provide only qualitative
improve the classification accuracy. answers and do not address the problem of measqtiag-
titatively the ability of a model to predict an event by analyz-
ing geophysical signals.
1 Introduction In this paper we face two problems: a) to build models
which are able to detect seismic precursors from time series

One of the most challenging problems in earth science is th@®f different geochemical signals, b) to assess the accuracy
simultaneous prediction of spatial and temporal localizationof such models on never seen before cases. We have ap-
as well as magnitude of earthquakes in order to mitigate damplied well founded models and principles developed in the
ages to things and people. Although forecasting of seismidield of statistical learning theoryvépnik, 1998, in which

events remains an open issue and the focus of current d&lassifiers of events are built starting from the knowledge
of examplesof events that we are interested to discrimi-

o nate. In this setting, an example is an (input, output) pair
Correspondence tcP. F. Biagi (¥, ym) connectingn observations of the independent vari-
BY (biagi@fisica.uniba.it) ablex”=(x;41, X;4+2, ..., X1+m) With the observation of the
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dependent variable;"=y,.,. Here{x;}°, is areal val- 2 Theoretical framework

ued time series composed of daily observations of a given

hydrogeochemica| measurement g{mgj}?il is time series 2.1 Seismic precursor detection as a machine Iearning
of categorical variables witly, € {—1, 0, +1}, indicating problem

the occurrence of “no-disturbed signal”, “seismic precur-
sor”, “co-post seismic precursor” respectively. This asso-
ciation was established both on the basiskpindex pro-

The general formulation of the learning problem involves
three componentsVapnik, 1999: a set of input vectors

posed byMolchanov et al(2003 and the ofe index pro- ¥ € R_’"_ drawn independently from a fixed but ur_lknown
posed byDobrovolsky et al.(1979. These indexes take Probability p(x); a setof output valuesy for every input
into account the relation between earthquake magnitude aneCtor ¥, according to the fixed condition densip(y|x)
distance from the epicenter to capital city Petropaviovsk.that is also unknown; thiearning machinecapable of im-
Then the problem is to build classifiers which are able toPlémenting a set of functioff (x, &), @ € 2, where is
discriminate different types of events starting from a set? Set of parameters used only to index the set of functions.
S={(x, yIM), (X, ¥, .., (X7, ")} composed of a finite The problem of learning is that of c_hoosmg from the given
and limited amount of examples which embodies the infor-Set Of functionsf (x, «), the one which predicts the super-

mation or knowledge of the phenomena that we are intereste}fiSOr'S response in the best posésible way. The selection is
to detect. based on atraining sét={(x;, y;)},_, of £ independent and

Under this perspective, the problem of seismic precursoridentically distributed (i.i.d.) o_bservations drawn _according
detection or classification can be seemasipervised learn-  © P(X, Y)=p(x)p(ylx). To this end, theoss or discrep-
ing problem, ora learning from examplegroblem in which ~ @NCYL(y, f(x)) between the responseof the supervisor to
the goal is to discriminate seismic precursors from no seis@ 9iven inputr and the responsg(x) provided by the lean-
mic ones, or to distinguish among different types of events, "9 Machine is measured. By definition, thek functional
starting from the knowledge of a finite and limited number OF 9€neralization erroris given by the expected value of the
of examples. This approach has been successfully applied ilf'SS:
several different application domains for solving actual prob-
lems such as object detection in imagas¢ona et al.2003, LIfI=E{L0y, f))= / / L(y, f(x)px, y)dxdy (1)
odor classificationDistane et al.2003, electroencephalo-
graphic signal analysis on patients with hemicradiadona  So the ultimate goal of learning problem is to find the func-
et al, 2009, systolic pressure signal analysfngcona etal.  tion f(x) which minimize the risk functionalL[f]. In the
2005, statistical assessment of cancer predictArepna et  cases whemp(x, y) is known andl is the form squared loss
al., 2006. Independently of the specific applicative domain, function, i.e.
it is worth to point out that the ultimate goal of this model )
is to determine the correct output relative to a never seen bef (v, f(x)) = (y — f(x))

LOJ;E:ruéfp:;::}nélgg_usmg atraining set composed Ofaflnltethen thg function minimizing the risk functional)(is the

Here we applied k-Nearest-Neighbor classifier to thirteen’©9ression functiorvapnik, 1999:
hydrogeochemical time series and we computed the classi-
fication accuracy by the Leave-K-Out-Cross-Validation pro- f*(x) = / yp(ylx)dy
cedure Ambroise et al.2002. We found that ions are more
effective than other hydrogeochemicals in discovering seisis the function minimizing the risk functional). Since in
mic precursors. Whem=100 observations are used, the es- the real cases of data analysis problems, the probability dis-
timated error rate is 15% for Cl and Na, 29% fogBOs3, tribution is unknown, the only available information is con-
21% for HCG and 35% for Ca; pH, Q and T report a predic- tained in the training sef. The bestf*(x) will be the ma-
tion error of 50%, 21%, 34% respectively, wher=110 is chinemost capable to generalize, that is to predict the correct
set up; finally, the error on gases is 33% on average, choosingutputy relative to a never seen before input patterby us-

m=110. ing a training set composed of a finite number of examples
The details about the models we applied and the experi{Tibshirani et al.2001). Thus the central problem is not clas-
ments we carried out are in the following sections. sifying the training data irf, because any sufficiently com-

plex learning machine could separatavithout errors. The
crucial problem is to design machines having low error rate
on new data.

In the problem at hand, an example is an input-output
pair (x}*, y;") where the input variable!" is composed of
m consecutive observations;"=(x;41, X;+2, ..., Xt+m), Of
a real valued time seriels; }7°, of daily observations of a
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Fig. 2. Bounds on kNN error rated {nN): as k increased, knN
Fig. 1. Energy indexes of the earthquakes occurred from Januangets progressively closer to the lower bound, the Bayes e (
1977 to December 2004, related to the location of the capital city

Petropavlovsk: at the top the trend of thendex and at the bottom
the trend of the index. where I, is the indicator function that takes value 1 when

the eventA occurs. This rule assigns wothe Iabely(”‘l) of
its nearest neighbor7;,. In order to analyze the classifica-

given hydrogeochemical measurements and the output variion error performed by the NN rule, let us consider the loss
able y/"=y,4., is a value of the time series of categorical fynction:

variable {y;}°2,, obtained by exploiting,; and ¢ indexes,

with y, € {-1,0,+1}, indicating the occurrence of “no- L(y(1), ¥) = I{g1(x)#y}

disturbed signal”, “seismic precursor”, “co-post seismic pre- . )
In the following two sections we will describe the class ¢—Sample NN error is:
of predictors used in this study, their properties and a well _ m _ m
founded statistical procedure for estimating the predictionL(Z) = E{LO@), N =Plyg) # v} )
accuracy of models by using the datasin and the “large sample” NN risk becomes:

Lnn = Iim L(¢) 3)
2.2 kNN classifier t=o00
It is to be pointed out that NN rule utilizes only the clas-
sification of the nearest neighbor and thel remaining ex-
” o ampIeSx('}) are ignored. If the number of samples is large,
x € R™ be a sample to be classified by and reordertthe i \a1es'sense to use, instead of the single nearest neighbor,

1i.d. examples inS={(x7', 1), (¥, y3), ... (7", ¥y')} 8C~ yhe maiority vote of the nearest k neighbors, and we have the
cording to increasing values @k" —x||. The reordered data k-Nearest NeighbogkNN) rule:

sequence is denoted by

For simplicity, let us consider a two-class classification prob-
lem in which the labely;” can take values ofD, +1}. Let

it Yoy Tym=1y > Yieg Ty o)
¥ YD) X ¥ - Xy Yoy) gkn () = {0 if otherwise !
and itis such that In this case the loss function is:
Iy =2l < llxgy —xll < ... < lx( — x| LGNNGE), ¥) = T{gam)£y)
By this notationx{}, is the nearest neighbor sfandx; and thet—sample kNN error becomes:
is thek—th nearest neighbor aof in terms of the Euclidean
distance defined oR™. Li(£) = E{L(gknn(x), ¥)} = P{gknn(x) # y}. 4)
TheNearest Neighbo(NN) rule is defined as: Analogously to 8), in the case of “large sample”, the kNN
risk is:
1if I{ym =1} > ]{Vm =0}
= @ J (1) T
§1(x) {O if otherwise Linn = eleoo Li(6) ®)
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It is to be noted that in the case of multiple-class classifi-the accuracy of the classifiekiicona et al.2006 Mukherjee
cation problem, the label of the sample is assigned accordingt al, 2006. Its computation is similar to LOO error, with
the majority vote rule. the exception that k examples are randomly removed ffom

Although simple, kNN classifiers enjoy very interesting It is very expensive, because we should repeat the procedure
asymptotic propertiesdover and Hartl967 Devroye etal.  for £—choose-k possible trials. To make it more feasible, a
1996 which make it a model suitable for facing real predic- sampling procedure is adopted. In order to explain itplet
tion problems. The most important being that for large valuesbe the training set size, with=1, 2, ..., £—1 and lelg=¢—p
of sample sizé, the algorithm is guaranteed to yield an error be the resulting test set size. We builghairs (D, 7;,) of
rate no worse than twice the Bayes error which is minimumtraining and test sets witpp andg examples, respectively,
achievable error rate. If we indicate witlt the Bayes error by random sampling without replacement the datassé&tor

(Duda et al. 1996 defined as: each of these random splits, we evaluate the error rafg
_ of the classifier trained o, examples and test it dfj,. So,
I — {0 if P{y = Olx} > P{y = 1|x} the LKOCV errore,, is given by:
1 if otherwise

. . - 1
then, for large?, the risk Lknn is related to the minimum e, = — Ze,,l..
achievable riskL* of the Bayes classifier through the two i

sided inequalitiesfevroye et al.1996:
g o 4 l 9 The same procedure has been applied for estimating the free

L*<.. 2L+ ONN=L@-)NN ... SLanNSLINN<2L*(1-L*)<2L*. parameter (i.e. the number of neighbors) in kNN classifier.

Two notes have to be remarked: first the upper and lower

bounds are in general as tight as possible, since the Baye® Dataset description

classifier is the best on®(da et al. 1996; second, the pre-

vious inequalities show that as k increases, the upper bound# this study we have analyzed thirteen hydrogeochemical
get progressively closer to the lower bound (see Bi@nd, time series relative to daily measurements of ion content
as k goes to infinity, the two bounds meet, making the kNN(Na, Cl, Ca, HCQ, H3BO3), parameters (pH, Q, T) and

rule optimal gases (N, CO,, CHy, O, Ag) in water samples collected
from a “natural” spring (S1) 50 km far away Petropavlovsk,
2.3 Assessment of the prediction accuracy Kamchachta peninsula (Russia).

The Kamchatka peninsula is an active margin where
As we have already pointed out in Se@.1), for measuring  the Pacific plate subducts beneath the North American and
the performances of a learning machine we have to estimatgyrasia plate. More than 80 volcanoes exist and many of
the generalization error or risk( f]in (1) which is the prob-  them are active. The relative plate motion changes from
ability to correctly classify new input pattern. underthrusting of the Pacific plate at the Kuril-Kamchatka
A common procedure used for estimating the risk is thearc to strike slip motion along the Aleutin arc at the junction
Leave-One-Out (LOO) errOIL(JntZ and Brailovsky196€). of the Kamchatka and Aleutian trench.
This procedure provides an almost unbiased estimate of

the risk (1) and it allows of assessing the performances The majority of earthquakes occur in a zone located off-
of a supervised learning machine from a finite number ofshore 60-100 km south-east of the Pacific coast of the penin-
data. The computation of LOO is very simple: for ev- gyla with focal depths up to 650 km; the direction of the max-
ery i=1,....¢, let fg be the machine trained on the set jmym extension of their isoseismals is parallel to the east
S'={(x1, y1), ..., (¥i—1, yi-1), (¥i41, Yi+1), .-.(*¥¢, yO)} OB~ coast of the peninsula. In this zone, earthquakes with magni-
tained from$ removing the —th sample. Then the function tydes up to 9.0 could occur. Earthquakes also happen in the
fsi is tested on the left out example;, y;) and the value of  continental part of Kamchatka, but with a frequency much
the loss functiorC(y;, fsi (x;, @)) is measured. Finally, this  |ess than in the subduction zone. Basically these continen-
procedure is repeated on each of trexamples off and the  t3| earthquakes are related to volcanic activity, their magni-

LOO error is given by the sum of the errors, i.e.: tude rarely exceeds 6.0 and their focal depth is not more than
. 50 km.
1 The hydrogeochemical time series we used in this study
L‘, S = - E Is i i . .
%) 14 ; i, fsi (1)) have been collected by the Geophysical Service of Kam-

chatka since 1977 to 2004. In particular, the measurements
Although the bias of LOO is low, it is highly variable and has of Na, Cl, HCGQ and HBG; ions started in 1977 and, up to
a little statistical significanceAhcona et al.200§. On the 29 December, 2004 these time series are composed of 10 224
contrary, the Leave-K-Out cross validation (LKOCV) error data; Ca measurements started in 1987 and the available data
is more significant and so it makes sense using it to measurare 6297 (see Fi@).
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Fig. 3. Time series of Na, Cl, HC®and HBGQ; ions, collected

60
from 2 January 1977 to 29 December 2004. The Ca time series © N,
were collected from 4 October 1987 to 29 December 2004. m ™ bt o
24

The time series of pH, Q and T, acquired in the period "
1977-2004, are composed of 10 224 data (seedfig. Pl , , : , " - d

Finally, the gases have been collected since July 1984 up H
to 1998 and the total number of data is 5282 (see 3jig. s )
The Na and Ca concentration was measured by flame

emission spectrometry; the Cl, HG@nd SQ concentration 16 o
by titration methods; the pH value by pH-meter; the content aw :
of dissolved gases after thermo-vacuum degassing was mea- o~ i : WWWWMW“I

sured by means of gas chromatography. The accuracy of the 1. o
measurements ranges from 2% to 10%. Generally a sampling "'SMWMWM )MM ‘
frequency of three days was used for the hydrogeochemical W
measurements although sometimes a frequency of Six days 1« 106 1s88 1090 1992 1094 1996 1998
and rarely of one day was used. Finally, the dissolved ions
and gases listed above were recorded at S1 only if the valugig' 5. Time series of M, CO,, CH, O, and Ar gases, collected
of the content was over the sensitivity of the measurement, " 2 July 1984 to 29 December 1998. '
method.

The composition of each time series with respect the num-

ber of events for each class is reported in Table 4 Experimental results
Each time series is used for building a data set ) -
DI ={(X, Y, (x5, i), ..., (xI*, y")} composed of: ex- We estimated the classification accuracy of KNN model for

amples, where: depends both on the measurements in theeach dataseb;! associated to each time series for different

time series and on the model order(see Sect2.1). The  model orden. To this end we spliD;" into a training and

set of labels is obtained on the basiscpfndex proposed by validation set. The first one, composedéef300 examples
Molchanov et al(2003 and the of: index proposed bipo- (100 examples for each class) randomly chosen figffy
brovolsky et al(1979, shown in Fig.l. In order to associate Was used for selecting the best classifier from the available
the correct label to each input vector, the Seismic Bulletindata. The validation set, composed of data not belonging to

of Kamchachta concerning the localization, magnitude andhe training set, was used for assessing the performances of
time of earthquakes was looked up too. the selected classifier on never seen before data. It is worth

noting that the data in the validation set are not used for se-
lecting the free parameter k in kNN classifier. This ensures
that the estimate of the generalization error obtained is unbi-
ased.
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Table 1. Number of examples belonging to “no-disturbed signal”, “seismic precursor” and “co-post seismic precursor” class in the thirteen
time series analyzed.

Time series Number of examples Total

no-disturbed signal  seismic precursor  co-post seismic precursor

Na, Cl, Ca, HCQ@, H3BO3, pH, Q, T 8497 1277 450 10224
Ca 4570 1277 450 6297
Ny, CO,, CHg, Oy, Ag 3756 1076 450 5282

pH

" m=60

Error

25 50 75 100 125 150 175 200

b)

CcO

0.5 s

Error

03 . . . . . . .
0 25 50 75 100 125 150 175 200

Fig. 6. Test errors, obtained by averadging the error rates on 500 cross-validations on a classifier trélpeahdrtested offy, are plotted
versus k, the parameter of the kNN classifier. The trend is reporté fior Na, (b) for pH and(c) for CO,, atm=60 and usingp=240
examples in training ang=60 in test. For each k, a kNN classifier is obtained. The best is the one minimizing the test error.

The best model was determined as the kNN classifier min- In order to understand the dependence of the error rate on
imizing the LKOCYV error measured on the training set. To the numbelp of the examples used in the learning phase, we
this end, for each value of the k parameter in a suitable rangdfjxed the model ordem and we carried out experiments in
500 cross validations of the examples in the training set weravhich p andq varied. Then we repeated all the experiments
carried out. In each cross validation, the training set was splifor different values ofz in the rangg10, 120]. The main
in two setsD,, andT, composed op andg={—p examples  reason for varying the value of was to establish how many
respectively. The error rate of KNN classifiers trainedipn ~ observations have to be analyzed for detecting precursors and
and tested orT, was evaluated. The best parameter k wasco-post seismic events in hydrogeochemical time series. For
selected as the one minimizing the average error rate. Tagafe of clearness, we underline that in each experiment where
elucidate the role of the k in kNN classifiers, we show the m is fixed, we selected the best kNN classifier as explained
behavior of the error rate as a function of k in the case of Nabefore and we associated the valugodb the minimum test
ion, pH parameters and G@as (see Figha, b and c respec- error. In Figs.7, 8 and9, error rates on ions, parameters and
tively). The test error exhibits a minimum always at small gases respectively have been plotted versus different values
values of k pointing out that good generalization capability of p, expressed in percentage, in the case:ef60. As the
can be reached by considering the labels of few neighbors opictures show, increasing the numbeof examples used for
the test pattern. training, the error rate decreases of more than 10%. The best
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Table 2. Classification error on ions, evaluated both on balanced dafeest() and on unbalanced on®e§t#2), by varying the length
of model order. The last row of the table reports the percentage difference error rate obtained on each time series of ions.

m Error onTest#1 Error onTest#2
Cl Na Ca HBO3 HCO3 CI Na Ca HBO3 HCO3

10 0.30 0.29 051 0.32 0.31 0.25 035 047 042 0.47
20 025 025 049 0.25 0.26 0.24 038 040 0.36 0.43
30 0.21 0.18 0.38 0.28 0.23 022 028 044 034 0.39
40 0.20 0.15 0.34 0.23 0.21 024 0.27 046 0.33 0.32
50 0.14 0.19 0.34 0.26 0.19 0.26 0.29 043 0.28 0.36
60 0.11 0.13 042 0.19 0.19 0.21 0.22 051 0.27 0.30
70 0.16 0.13 032 0.17 0.16 024 024 044 0.25 0.28
80 0.10 0.16 0.27 0.19 0.23 0.16 0.33 038 0.28 0.33
90 0.14 015 0.27 0.22 0.21 0.19 0.24 038 0.27 0.31
100 0.06 0.06 0.26 0.16 0.12 0.16 0.15 0.35 0.29 0.21
110 0.06 0.07 0.23 0.15 0.12 0.15 0.14 033 0.23 0.20
120 0.14 0.07 0.25 0.14 0.09 0.17 0.14 038 0.19 0.52

AopErTr

80% 79% 55% 56% 71% 32% 60% 19% 55% 68%

Table 3. Classification error on parameters, evaluated both on bal- 0.6 ‘
anced dataseTést#1) and on unbalanced onge§t#2), by varying 0.55 m=60
the lengthm of model order. The last row of the table reports the
percentage difference error rate obtained on each time series of pa- %5
rameters. 0.45F

0.4

m Error onTest#1 Error onTest#2
pH Q T pH  Q T

10 060 034 053 064 044 058
20 052 033 046 058 040 042
30 053 031 042 064 0.16 045
40 048 023 051 056 032 051
50 045 019 040 054 028 0.37
60 0.47 027 034 054 040 0.34 o1 ‘ ‘ ‘ ‘ ‘
70 045 015 027 054 023 037 O ol e 0 B0
80 039 017 026 055 030 0.32 ge of raiming examples

90 038 015 022 049 020 0.36
100 035 016 024 052 023 0.39
110 036 016 024 050 021 034
120 036 011 023 050 0.17 0.38

0.35 1

Test error

Fig. 7. The Leave-K-Out error in the five ion time series is plotted
versus the percentage of training examples;a60.

AgpErTr

42% 68% 58% 22% 61% 45% The problem of studying the performances of the selected
kNN model on data not used in the training phase was faced
by using two validation setsTest#1, a balanced set com-
posed of 900 examples (300 examples for each class), and
performances were obtained wiph=240, that is the 80% of Test#2, an unbalanced set composedbfthe data belong-
training set size. In fact, although the error rate decreases iing to D' and not used in the training. Having determined
the rangd80%, 90%j, it is constantirf70% 80%] and the the optimal number of training examples=£240), we eval-
choice of 80% protects us from the problems of overfitting. uated the error rate of the best KNN classifierTest#1 and
Since this behavior holds for all the tested, we selected Test#2, for a fixed model ordet:. Different values ofn,
p=240 as the best number of training examples to use foranging from 10 to 120, have been used to establish how
assessing the performances of the model. many observations have to be used to bujidsuch that the

www.nat-hazards-earth-syst-sci.net/8/1207/2008/ Nat. Hazards Earth Syst. Sci., 8 2182008
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Table 4. Classification error on gases, evaluated both on balanced dafasgtl) and on unbalanced on®et#2), by varying the length

m of model order. The last row of the table reports the percentage difference error rate obtained on each time series of gases.

m Error onTest#1 Error onTest#2
N> CO, CHy O Ar N2 CO, CHy O Ar
10 049 045 031 044 053 050 055 034 052 0.53
20 0.44 039 031 041 047 050 040 034 051 0.50
30 0.38 037 028 035 049 045 052 036 050 0.3
40 041 036 020 035 042 048 048 034 048 0.46
50 0.41 033 024 034 042 045 051 037 045 045
60 0.36 028 020 032 038 045 045 032 042 045
70 034 027 018 030 035 043 043 032 0.38 043
80 0.35 030 027 028 033 039 045 031 0.37 0.39
90 0.33 025 0.15 0.27 040 041 041 0.26 038 0.44
100 031 023 0.12 025 030 040 038 0.26 0.38 0.38
110 031 023 012 024 031 036 041 021 036 0.34
120 022 0.22 012 024 035 034 041 022 034 0.39
AopErTr
55% 51% 61% 45% 43% 32% 31% 38% 35% 36%
065 0.5 ‘
m=60
0.6 05}
0.55 0.45}
0.5 . 04r
% 0.45 E 0.35
é .l — | = 0.3
0.35f I
0.25}
0.3} 1
025l | 0.2t g
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0.2 ‘ ‘ 4‘0 5‘0 6‘0 7‘0 10 20 30 40 50 60 70 80 90
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Percentuage of training examples
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Percentuage of training examples

Fig. 8. The Leave-K-Out error in the three parameter time series isFig. 9. The Leave-K-Out error in the five gas time series is plotted
plotted versus the percentage of training examples&60. versus the percentage of training example;&60.

classifier accuracy should be as high as possible. Test eminimum error is obtained at=100 for ions and at=110

rors on ions, parameters and gases are reported in Tables for parameters and gases. In particular, when the balanced
3 and4 respectively. The results show that, under the samevalidation set is used, the error is lesser than 15% for ions
m, the test errors obtained drest#1 are comparable to the (Ca excepted); lesser than 25% for parameters (pH excepted)
ones obtained in the training phase. This behavior indicate@nd lesser than 30% for gases. In the case of unbalanced val-
that the error rates estimated during the learning phase of ilation set, the highest error (50%) is reached by pH and the
kNN classifier are a good estimates of the errors on nevefowest one (15%) by Na.

seen before examples, in the case of balanced data. In fact, By looking at the behavior of the error rate on each time
as the results oflest#2 show, the error rates in testing is series, the results show high variability in terms of percent-
noticeably grater than the ones in training. Moreover, weage difference, defined %%Errz%;i””i”xloo (see
observe that the classification error decreases by increasingst row of Table®, 3 and4). In details, onTest#1 we anno-

m, both onTest#1 andTest#2 such as during the training tate it varies from 80% (CI) to 55% (Ca) for ions, from 68%
phase. This confirms the behavior of the error rate as a funcfQ) to 42% (pH) for parameters, from 61% (@Ho 43%

tion of m estimated during training (data not shown). The (Ar) for gases; onfest#2 we annotate it varies from 68%
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(HCOg3) to 19% (Ca) for ions, from 61% (Q) to 22% (pH) for ability of a large amount of data improves the classification

parameters, from 38% (CHito 31% (CQ) for gases. accuracy. The same justification is true for Ca time series that
By analyzing the difference between the maximum andexhibits, atm=100, an error rate equal to 26% on balanced

minimum error rate of the classifiers by varying(see the  data and 35% on unbalanced one.

last row of Table®, 3 and4) we note that kNN classifiersare  In conclusion, we have proposed a quantitative approach

poorly influenced by the model order if they are trained to detect different seismic events, building classifiers by

on Ca, among ions; on pH, among parameters; on Ar (in thé!Sing a finite number of observations and estimating their

case of balanced data) and on£@ the case of unbalanced classifi'cation accuracy. The analysis was carried out on
data) among gases each time series related to hydrogeochemical measures in

groundwater content and the results suggest that, starting

from the knowledge of a finite and limited number of

) ) . examples, it is possible to detect the occurrence of seismic

5 Discussion and conclusions precursors. In order to better investigate how to improve
the classification accuracy, we plan to study the mutual

In this paper we address the problem of detecting hydrogeoeorrelations among these time series as future developments

chemical seismic precursors by a machine learning approachof this work.

in which short temporal windows of the original signal are

classified. Under this perspective the classification error esEdited by: M. Contadakis

timated by LKOCV provides a quantitative measure of the Réviewed by: two anonymous referees
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