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Abstract. The problem of detecting the occurrence of an
earthquake precursor is faced in the general framework of
the statistical learning theory. The aim of this work is both
to build models able to detect seismic precursors from time
series of different geochemical signals and to provide an es-
timate of number of false positives. The model we used is k-
Nearest-Neighbor classifier for discriminating “no-disturbed
signal”, “seismic precursor” and “co-post seismic precur-
sor” in time series relative to thirteen different hydrogeo-
chemical parameters collected in water samples from a natu-
ral spring in Kamchachta (Russia) peninsula. The measure-
ments collected are ion content (Na, Cl, Ca, HCO3, H3BO3),
parameters (pH, Q, T) and gases (N2, CO2, CH4, O2, Ag).
The classification error is measured by Leave-K-Out-Cross-
Validation procedure. Our study shows that the most discrim-
inative ions for detecting seismic precursors are Cl and Na
having an error rates of 15%. Moreover, the most discrim-
inative parameters and gases are Q and CH4 respectively,
with error rate of 21%. The ions result the most informa-
tive hydrogeochemicals for detecting seismic precursors due
to the peculiarities of the mechanisms involved in earthquake
preparation. Finally we show that the information collected
some month before the event under analysis are necessary to
improve the classification accuracy.

1 Introduction

One of the most challenging problems in earth science is the
simultaneous prediction of spatial and temporal localization
as well as magnitude of earthquakes in order to mitigate dam-
ages to things and people. Although forecasting of seismic
events remains an open issue and the focus of current de-
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bates (Geller et al., 1997; Wyss, 1997; Nature, 1999), many
geophysical parameters have been investigated to face this
problem.

Scientific efforts are directed toward the monitoring of
changes in seismicity (Vorobieva et al., 1993), ground electri-
cal resistivity and conductivity (Telesca et al., 2005), crustal
deformation rates (Stephenson et al., 2003), ground water
chemistry (Biagi et al., 2000; Guangcai et al., 2005), geo-
magnetic measurements (Rozhnoi et al., 2004; Hattori et al.,
2004). Traditionally, the detection of these changes is per-
formed by visual inspection of the filtered and smoothed time
series (Kingsley et al., 2001) or of the spectral content of
the signal (Biagi et al., 2006). Once the anomalous signal
shapes satisfy the IASPEI validation criteria for precursor
candidates (Biagi et al., 2000, 2001), the relation between
signal anomalies and earthquakes is looked for. To this end,
all possible phenomenon (i.e. meteorological conditions, vol-
canic activity, etc.) that could produce anomalies in the time
series are investigated to be sure of associating the anomalies
univocally to seismicity.
Although such approaches have successfully detected the as-
sociation between anomalies in the signals analyzed and the
occurrence of seismic events, they provide only qualitative
answers and do not address the problem of measuringquan-
titatively the ability of a model to predict an event by analyz-
ing geophysical signals.

In this paper we face two problems: a) to build models
which are able to detect seismic precursors from time series
of different geochemical signals, b) to assess the accuracy
of such models on never seen before cases. We have ap-
plied well founded models and principles developed in the
field of statistical learning theory (Vapnik, 1998), in which
classifiers of events are built starting from the knowledge
of examplesof events that we are interested to discrimi-
nate. In this setting, an example is an (input, output) pair
(xm

t , ym
t ) connectingm observations of the independent vari-

ablexm
t =(xt+1, xt+2, ..., xt+m) with the observation of the
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dependent variableym
t =yt+m. Here {xt }

∞

t=1 is a real val-
ued time series composed of daily observations of a given
hydrogeochemical measurement and{yt }

∞

t=1 is time series
of categorical variables withyt ∈ {−1, 0, +1}, indicating
the occurrence of “no-disturbed signal”, “seismic precur-
sor”, “co-post seismic precursor” respectively. This asso-
ciation was established both on the basis ofks index pro-
posed byMolchanov et al.(2003) and the ofε index pro-
posed byDobrovolsky et al.(1979). These indexes take
into account the relation between earthquake magnitude and
distance from the epicenter to capital city Petropavlovsk.
Then the problem is to build classifiers which are able to
discriminate different types of events starting from a set
S={(xm

1 , ym
1 ), (xm

2 , ym
2 ), ..., (xm

` , ym
` )} composed of a finite

and limited amount of examples which embodies the infor-
mation or knowledge of the phenomena that we are interested
to detect.

Under this perspective, the problem of seismic precursor
detection or classification can be seen asa supervised learn-
ing problem, ora learning from examplesproblem in which
the goal is to discriminate seismic precursors from no seis-
mic ones, or to distinguish among different types of events,
starting from the knowledge of a finite and limited number
of examples. This approach has been successfully applied in
several different application domains for solving actual prob-
lems such as object detection in images (Ancona et al., 2003),
odor classification (Distane et al., 2003), electroencephalo-
graphic signal analysis on patients with hemicrania (Ancona
et al., 2005), systolic pressure signal analysis (Ancona et al.,
2005), statistical assessment of cancer predictors (Ancona et
al., 2006). Independently of the specific applicative domain,
it is worth to point out that the ultimate goal of this model
is to determine the correct output relative to a never seen be-
fore input pattern, by using a training set composed of a finite
number of examples.

Here we applied k-Nearest-Neighbor classifier to thirteen
hydrogeochemical time series and we computed the classi-
fication accuracy by the Leave-K-Out-Cross-Validation pro-
cedure (Ambroise et al., 2002). We found that ions are more
effective than other hydrogeochemicals in discovering seis-
mic precursors. Whenm=100 observations are used, the es-
timated error rate is 15% for Cl and Na, 29% for H3BO3,
21% for HCO3 and 35% for Ca; pH, Q and T report a predic-
tion error of 50%, 21%, 34% respectively, whenm=110 is
set up; finally, the error on gases is 33% on average, choosing
m=110.

The details about the models we applied and the experi-
ments we carried out are in the following sections.

2 Theoretical framework

2.1 Seismic precursor detection as a machine learning
problem

The general formulation of the learning problem involves
three components (Vapnik, 1998): a set of input vectors
x ∈ Rm drawn independently from a fixed but unknown
probability p(x); a set of output valuesy for every input
vector x, according to the fixed condition densityp(y|x)

that is also unknown; thelearning machinecapable of im-
plementing a set of functionf (x, α), α ∈ �, where� is
a set of parameters used only to index the set of functions.
The problem of learning is that of choosing from the given
set of functionsf (x, α), the one which predicts the super-
visor’s response in the best possible way. The selection is
based on a training setS={(xi, yi)}

`
i=1 of ` independent and

identically distributed (i.i.d.) observations drawn according
to p(x, y)=p(x)p(y|x). To this end, theloss or discrep-
ancyL(y, f (x)) between the responsey of the supervisor to
a given inputx and the responsef (x) provided by the lean-
ing machine is measured. By definition, therisk functional
or generalization error, is given by the expected value of the
loss:

L[f ]=E{L(y, f (x))}=

∫ ∫
L(y, f (x))p(x, y)dxdy (1)

so the ultimate goal of learning problem is to find the func-
tion f (x) which minimize the risk functionalL[f ]. In the
cases whenp(x, y) is known andL is the form squared loss
function, i.e.

L(y, f (x)) = (y − f (x))2

then the function minimizing the risk functional (1) is the
regression function (Vapnik, 1999):

f ∗(x) =

∫
y p(y|x) dy

is the function minimizing the risk functional (1). Since in
the real cases of data analysis problems, the probability dis-
tribution is unknown, the only available information is con-
tained in the training setS. The bestf ∗(x) will be thema-
chinemost capable to generalize, that is to predict the correct
outputy relative to a never seen before input patternx, by us-
ing a training set composed of a finite number of examples
(Tibshirani et al., 2001). Thus the central problem is not clas-
sifying the training data inS, because any sufficiently com-
plex learning machine could separateS without errors. The
crucial problem is to design machines having low error rate
on new data.

In the problem at hand, an example is an input-output
pair (xm

t , ym
t ) where the input variablexm

t is composed of
m consecutive observations,xm

t =(xt+1, xt+2, ..., xt+m), of
a real valued time series{xt }

∞

t=1 of daily observations of a
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Figure 1: Energy indexes of the earthquakes occurred from January 1977 to December
2004, related to the location of the capital city Petropavlovsk: at the top the trend of the
ks index and at the bottom the trend of the ε index.
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Figure 2: Bounds on kNN error rates (LkNN): as k increases, LkNN gets progressively
closer to the lower bound, the Bayes rate (L∗).

Fig. 1. Energy indexes of the earthquakes occurred from January
1977 to December 2004, related to the location of the capital city
Petropavlovsk: at the top the trend of theks index and at the bottom
the trend of theε index.

given hydrogeochemical measurements and the output vari-
able ym

t =yt+m is a value of the time series of categorical
variable {yt }

∞

t=1, obtained by exploitingks and ε indexes,
with yt ∈ {−1, 0, +1}, indicating the occurrence of “no-
disturbed signal”, “seismic precursor”, “co-post seismic pre-
cursor” events respectively.

In the following two sections we will describe the class
of predictors used in this study, their properties and a well
founded statistical procedure for estimating the prediction
accuracy of models by using the data inS.

2.2 kNN classifier

For simplicity, let us consider a two-class classification prob-
lem in which the labelym

t can take values on{0, +1}. Let
x ∈ Rm be a sample to be classified by and reorder the`

i.i.d. examples inS={(xm
1 , ym

1 ), (xm
2 , ym

2 ), ..., (xm
` , ym

` )} ac-
cording to increasing values of‖xm

i −x‖. The reordered data
sequence is denoted by

(xm
(1), y

m
(1)), (x

m
(2), y

m
(2)), ..., (x

m
(`), y

m
(`))

and it is such that

‖xm
(1) − x‖ < ‖xm

(2) − x‖ < ... < ‖xm
(`) − x‖

By this notation,xm
(1) is the nearest neighbor ofx andxm

(k)

is thek−th nearest neighbor ofx in terms of the Euclidean
distance defined onRm.
TheNearest Neighbor(NN) rule is defined as:

g1(x) =

{
1 if I{ym

(1)
=1} > I{ym

(1)
=0}

0 if otherwise
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Fig. 2. Bounds on kNN error rates (LkNN): as k increases,LkNN
gets progressively closer to the lower bound, the Bayes rate (L∗).

whereIA is the indicator function that takes value 1 when
the eventA occurs. This rule assigns tox the labelym

(1) of
its nearest neighborxm

(1). In order to analyze the classifica-
tion error performed by the NN rule, let us consider the loss
function:

L(ym
(1), y) = I{g1(x) 6=y}

wherey is the “true” label ofx. Then, by applying (1), the
`−sample NN error is:

L(`) = E{L(ym
(1), y)} = P{ym

(1) 6= y}. (2)

and the “large sample” NN risk becomes:

LNN = lim
`→∞

L(`) (3)

It is to be pointed out that NN rule utilizes only the clas-
sification of the nearest neighbor and the`−1 remaining ex-
amplesxm

(i) are ignored. If the number of samples is large,
it makes sense to use, instead of the single nearest neighbor,
the majority vote of the nearest k neighbors, and we have the
k-Nearest Neighbor(kNN) rule:

gkNN(x) =

{
1 if

∑k
i=1 I{ym

(i)
=1} >

∑k
i=1 I{ym

(i)
=0}

0 if otherwise

In this case the loss function is:

L(gkNN(x), y) = I{gkNN(x)6=y}

and thè −sample kNN error becomes:

Lk(`) = E{L(gkNN(x), y)} = P{gkNN(x) 6= y}. (4)

Analogously to (3), in the case of “large sample”, the kNN
risk is:

LkNN = lim
`→∞

Lk(`) (5)
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It is to be noted that in the case of multiple-class classifi-
cation problem, the label of the sample is assigned according
the majority vote rule.

Although simple, kNN classifiers enjoy very interesting
asymptotic properties (Cover and Hart, 1967; Devroye et al.,
1996) which make it a model suitable for facing real predic-
tion problems. The most important being that for large values
of sample sizè, the algorithm is guaranteed to yield an error
rate no worse than twice the Bayes error which is minimum
achievable error rate. If we indicate withL∗ the Bayes error
(Duda et al., 1996) defined as:

L∗
=

{
0 if P{y = 0|x} ≥ P{y = 1|x}

1 if otherwise

then, for largè , the riskLkNN is related to the minimum
achievable riskL∗ of the Bayes classifier through the two
sided inequalities (Devroye et al., 1996):

L∗
≤...≤L(2k+1)NN≤L(2k−1)NN≤...≤L3NN≤LNN≤2L∗(1−L∗)≤2L∗.

Two notes have to be remarked: first the upper and lower
bounds are in general as tight as possible, since the Bayes
classifier is the best one (Duda et al., 1996); second, the pre-
vious inequalities show that as k increases, the upper bounds
get progressively closer to the lower bound (see Fig.2) and,
as k goes to infinity, the two bounds meet, making the kNN
ruleoptimal.

2.3 Assessment of the prediction accuracy

As we have already pointed out in Sect. (2.1), for measuring
the performances of a learning machine we have to estimate
the generalization error or riskL[f ] in (1) which is the prob-
ability to correctly classify new input pattern.
A common procedure used for estimating the risk is the
Leave-One-Out (LOO) error (Luntz and Brailovsky, 1969).
This procedure provides an almost unbiased estimate of
the risk (1) and it allows of assessing the performances
of a supervised learning machine from a finite number of
data. The computation of LOO is very simple: for ev-
ery i=1, ..., `, let fSi be the machine trained on the set
Si

={(x1, y1), ..., (xi−1, yi−1), (xi+1, yi+1), ...(x`, y`)} ob-
tained fromS removing thei−th sample. Then the function
fSi is tested on the left out example(xi, yi) and the value of
the loss functionL(yi, fSi (xi, α)) is measured. Finally, this
procedure is repeated on each of the` examples ofS and the
LOO error is given by the sum of the errors, i.e.:

L(S) =
1

`

∑̀
i=1

L(yi, fSi (xi))

Although the bias of LOO is low, it is highly variable and has
a little statistical significance (Ancona et al., 2006). On the
contrary, the Leave-K-Out cross validation (LKOCV) error
is more significant and so it makes sense using it to measure

the accuracy of the classifier (Ancona et al., 2006; Mukherjee
et al., 2006). Its computation is similar to LOO error, with
the exception that k examples are randomly removed fromS.
It is very expensive, because we should repeat the procedure
for `−choose−k possible trials. To make it more feasible, a
sampling procedure is adopted. In order to explain it, letp

be the training set size, withp=1, 2, ..., `−1 and letq=`−p

be the resulting test set size. We builds pairs (Dp, Tq) of
training and test sets withp andq examples, respectively,
by random sampling without replacement the data setS. For
each of theses random splits, we evaluate the error rateepi

of the classifier trained onDp examples and test it onTq . So,
the LKOCV errorep is given by:

ep =
1

s

s∑
i=1

epi
.

The same procedure has been applied for estimating the free
parameter (i.e. the number of neighbors) in kNN classifier.

3 Dataset description

In this study we have analyzed thirteen hydrogeochemical
time series relative to daily measurements of ion content
(Na, Cl, Ca, HCO3, H3BO3), parameters (pH, Q, T) and
gases (N2, CO2, CH4, O2, Ag) in water samples collected
from a “natural” spring (S1) 50 km far away Petropavlovsk,
Kamchachta peninsula (Russia).

The Kamchatka peninsula is an active margin where
the Pacific plate subducts beneath the North American and
Eurasia plate. More than 80 volcanoes exist and many of
them are active. The relative plate motion changes from
underthrusting of the Pacific plate at the Kuril-Kamchatka
arc to strike slip motion along the Aleutin arc at the junction
of the Kamchatka and Aleutian trench.

The majority of earthquakes occur in a zone located off-
shore 60–100 km south-east of the Pacific coast of the penin-
sula with focal depths up to 650 km; the direction of the max-
imum extension of their isoseismals is parallel to the east
coast of the peninsula. In this zone, earthquakes with magni-
tudes up to 9.0 could occur. Earthquakes also happen in the
continental part of Kamchatka, but with a frequency much
less than in the subduction zone. Basically these continen-
tal earthquakes are related to volcanic activity, their magni-
tude rarely exceeds 6.0 and their focal depth is not more than
50 km.

The hydrogeochemical time series we used in this study
have been collected by the Geophysical Service of Kam-
chatka since 1977 to 2004. In particular, the measurements
of Na, Cl, HCO3 and HBO3 ions started in 1977 and, up to
29 December, 2004 these time series are composed of 10 224
data; Ca measurements started in 1987 and the available data
are 6297 (see Fig.3).
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to 29 December, 2004. The Ca time series were collected from 04 October, 1987 to 29
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Fig. 3. Time series of Na, Cl, HCO3 and HBO3 ions, collected
from 2 January 1977 to 29 December 2004. The Ca time series
were collected from 4 October 1987 to 29 December 2004.

The time series of pH, Q and T, acquired in the period
1977–2004, are composed of 10 224 data (see Fig.4).

Finally, the gases have been collected since July 1984 up
to 1998 and the total number of data is 5282 (see Fig.5).

The Na and Ca concentration was measured by flame
emission spectrometry; the Cl, HCO3 and SO4 concentration
by titration methods; the pH value by pH-meter; the content
of dissolved gases after thermo-vacuum degassing was mea-
sured by means of gas chromatography. The accuracy of the
measurements ranges from 2% to 10%. Generally a sampling
frequency of three days was used for the hydrogeochemical
measurements although sometimes a frequency of six days
and rarely of one day was used. Finally, the dissolved ions
and gases listed above were recorded at S1 only if the value
of the content was over the sensitivity of the measurement
method.

The composition of each time series with respect the num-
ber of events for each class is reported in Table1.

Each time series is used for building a data set
Dm

n ={(xm
1 , ym

1 ), (xm
2 , ym

2 ), ..., (xm
n , ym

n )} composed ofn ex-
amples, wheren depends both on the measurements in the
time series and on the model orderm (see Sect.2.1). The
set of labels is obtained on the basis ofks index proposed by
Molchanov et al.(2003) and the ofε index proposed byDo-
brovolsky et al.(1979), shown in Fig.1. In order to associate
the correct label to each input vector, the Seismic Bulletin
of Kamchachta concerning the localization, magnitude and
time of earthquakes was looked up too.
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Fig. 4. Time series of pH, Q and T parameters, collected from 2 Jan-
uary 1977 to 29 December 2004.
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Fig. 5. Time series of N2, CO2, CH4, O2 and Ar gases, collected
from 13 July 1984 to 29 December 1998.

4 Experimental results

We estimated the classification accuracy of kNN model for
each datasetDm

n associated to each time series for different
model orderm. To this end we splitDm

n into a training and
validation set. The first one, composed of`=300 examples
(100 examples for each class) randomly chosen fromDm

n ,
was used for selecting the best classifier from the available
data. The validation set, composed of data not belonging to
the training set, was used for assessing the performances of
the selected classifier on never seen before data. It is worth
noting that the data in the validation set are not used for se-
lecting the free parameter k in kNN classifier. This ensures
that the estimate of the generalization error obtained is unbi-
ased.
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Table 1. Number of examples belonging to “no-disturbed signal”, “seismic precursor” and “co-post seismic precursor” class in the thirteen
time series analyzed.

Time series Number of examples Total

no-disturbed signal seismic precursor co-post seismic precursor

Na, Cl, Ca, HCO3, H3BO3, pH, Q, T 8497 1277 450 10 224
Ca 4570 1277 450 6297
N2, CO2, CH4, O2, Ag 3756 1076 450 5282
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Figure 6: Test errors, obtained by averadging the error rates on 500 cross-validations on a
classifier trained on Dp and tested on Tq, are plotted versus k, the parameter of the kNN
classifier. The trend is reported in a) for Na, b) for pH and c) for CO2, at m = 60 and
using p = 240 examples in training and q = 60 in test. For each k, a kNN classifier is
obtained. The best is the one minimizing the test error.

Fig. 6. Test errors, obtained by averadging the error rates on 500 cross-validations on a classifier trained onDp and tested onTq , are plotted
versus k, the parameter of the kNN classifier. The trend is reported in(a) for Na, (b) for pH and(c) for CO2, at m=60 and usingp=240
examples in training andq=60 in test. For each k, a kNN classifier is obtained. The best is the one minimizing the test error.

The best model was determined as the kNN classifier min-
imizing the LKOCV error measured on the training set. To
this end, for each value of the k parameter in a suitable range,
500 cross validations of the examples in the training set were
carried out. In each cross validation, the training set was split
in two setsDp andTq composed ofp andq=`−p examples
respectively. The error rate of kNN classifiers trained onDp

and tested onTq was evaluated. The best parameter k was
selected as the one minimizing the average error rate. To
elucidate the role of the k in kNN classifiers, we show the
behavior of the error rate as a function of k in the case of Na
ion, pH parameters and CO2 gas (see Fig.6a, b and c respec-
tively). The test error exhibits a minimum always at small
values of k pointing out that good generalization capability
can be reached by considering the labels of few neighbors of
the test pattern.

In order to understand the dependence of the error rate on
the numberp of the examples used in the learning phase, we
fixed the model orderm and we carried out experiments in
whichp andq varied. Then we repeated all the experiments
for different values ofm in the range[10, 120]. The main
reason for varying the value ofm was to establish how many
observations have to be analyzed for detecting precursors and
co-post seismic events in hydrogeochemical time series. For
safe of clearness, we underline that in each experiment where
m is fixed, we selected the best kNN classifier as explained
before and we associated the value ofp to the minimum test
error. In Figs.7, 8 and9, error rates on ions, parameters and
gases respectively have been plotted versus different values
of p, expressed in percentage, in the case ofm=60. As the
pictures show, increasing the numberp of examples used for
training, the error rate decreases of more than 10%. The best
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Table 2. Classification error on ions, evaluated both on balanced dataset (Test#1) and on unbalanced one (Test#2), by varying the lengthm
of model order. The last row of the table reports the percentage difference error rate obtained on each time series of ions.

m Error onTest#1 Error onTest#2

Cl Na Ca H3BO3 HCO3 Cl Na Ca H3BO3 HCO3

10 0.30 0.29 0.51 0.32 0.31 0.25 0.35 0.47 0.42 0.47
20 0.25 0.25 0.49 0.25 0.26 0.24 0.38 0.40 0.36 0.43
30 0.21 0.18 0.38 0.28 0.23 0.22 0.28 0.44 0.34 0.39
40 0.20 0.15 0.34 0.23 0.21 0.24 0.27 0.46 0.33 0.32
50 0.14 0.19 0.34 0.26 0.19 0.26 0.29 0.43 0.28 0.36
60 0.11 0.13 0.42 0.19 0.19 0.21 0.22 0.51 0.27 0.30
70 0.16 0.13 0.32 0.17 0.16 0.24 0.24 0.44 0.25 0.28
80 0.10 0.16 0.27 0.19 0.23 0.16 0.33 0.38 0.28 0.33
90 0.14 0.15 0.27 0.22 0.21 0.19 0.24 0.38 0.27 0.31
100 0.06 0.06 0.26 0.16 0.12 0.16 0.15 0.35 0.29 0.21
110 0.06 0.07 0.23 0.15 0.12 0.15 0.14 0.33 0.23 0.20
120 0.14 0.07 0.25 0.14 0.09 0.17 0.14 0.38 0.19 0.52

4%Err

80% 79% 55% 56% 71% 32% 60% 19% 55% 68%

Table 3. Classification error on parameters, evaluated both on bal-
anced dataset (Test#1) and on unbalanced one (Test#2), by varying
the lengthm of model order. The last row of the table reports the
percentage difference error rate obtained on each time series of pa-
rameters.

m Error onTest#1 Error onTest#2

pH Q T pH Q T

10 0.60 0.34 0.53 0.64 0.44 0.58
20 0.52 0.33 0.46 0.58 0.40 0.42
30 0.53 0.31 0.42 0.64 0.16 0.45
40 0.48 0.23 0.51 0.56 0.32 0.51
50 0.45 0.19 0.40 0.54 0.28 0.37
60 0.47 0.27 0.34 0.54 0.40 0.34
70 0.45 0.15 0.27 0.54 0.23 0.37
80 0.39 0.17 0.26 0.55 0.30 0.32
90 0.38 0.15 0.22 0.49 0.20 0.36
100 0.35 0.16 0.24 0.52 0.23 0.39
110 0.36 0.16 0.24 0.50 0.21 0.34
120 0.36 0.11 0.23 0.50 0.17 0.38

4%Err

42% 68% 58% 22% 61% 45%

performances were obtained withp=240, that is the 80% of
training set size. In fact, although the error rate decreases in
the range[80%, 90%], it is constant in[70%, 80%] and the
choice of 80% protects us from the problems of overfitting.
Since this behavior holds for all them tested, we selected
p=240 as the best number of training examples to use for
assessing the performances of the model.
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Figure 7: The Leave-K-Out error in the five ion time series is plotted versus the percentage
of training examples, at m = 60.Fig. 7. The Leave-K-Out error in the five ion time series is plotted

versus the percentage of training examples, atm=60.

The problem of studying the performances of the selected
kNN model on data not used in the training phase was faced
by using two validation sets:Test#1, a balanced set com-
posed of 900 examples (300 examples for each class), and
Test#2, an unbalanced set composed ofall the data belong-
ing toDm

n and not used in the training. Having determined
the optimal number of training examples (p=240), we eval-
uated the error rate of the best kNN classifier onTest#1 and
Test#2, for a fixed model orderm. Different values ofm,
ranging from 10 to 120, have been used to establish how
many observations have to be used to buildxm

t such that the
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Table 4. Classification error on gases, evaluated both on balanced dataset (Test#1) and on unbalanced one (Test#2), by varying the length
m of model order. The last row of the table reports the percentage difference error rate obtained on each time series of gases.

m Error onTest#1 Error onTest#2

N2 CO2 CH4 O2 Ar N2 CO2 CH4 O2 Ar

10 0.49 0.45 0.31 0.44 0.53 0.50 0.55 0.34 0.52 0.53
20 0.44 0.39 0.31 0.41 0.47 0.50 0.40 0.34 0.51 0.50
30 0.38 0.37 0.28 0.35 0.49 0.45 0.52 0.36 0.50 0.53
40 0.41 0.36 0.20 0.35 0.42 0.48 0.48 0.34 0.48 0.46
50 0.41 0.33 0.24 0.34 0.42 0.45 0.51 0.37 0.45 0.45
60 0.36 0.28 0.20 0.32 0.38 0.45 0.45 0.32 0.42 0.45
70 0.34 0.27 0.18 0.30 0.35 0.43 0.43 0.32 0.38 0.43
80 0.35 0.30 0.27 0.28 0.33 0.39 0.45 0.31 0.37 0.39
90 0.33 0.25 0.15 0.27 0.40 0.41 0.41 0.26 0.38 0.44
100 0.31 0.23 0.12 0.25 0.30 0.40 0.38 0.26 0.38 0.38
110 0.31 0.23 0.12 0.24 0.31 0.36 0.41 0.21 0.36 0.34
120 0.22 0.22 0.12 0.24 0.35 0.34 0.41 0.22 0.34 0.39

4%Err

55% 51% 61% 45% 43% 32% 31% 38% 35% 36%
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Figure 8: The Leave-K-Out error in the three parameter time series is plotted versus the
percentage of training examples, at m = 60.
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Fig. 8. The Leave-K-Out error in the three parameter time series is
plotted versus the percentage of training examples, atm=60.

classifier accuracy should be as high as possible. Test er-
rors on ions, parameters and gases are reported in Tables2,
3 and4 respectively. The results show that, under the same
m, the test errors obtained onTest#1 are comparable to the
ones obtained in the training phase. This behavior indicates
that the error rates estimated during the learning phase of a
kNN classifier are a good estimates of the errors on never
seen before examples, in the case of balanced data. In fact,
as the results onTest#2 show, the error rates in testing is
noticeably grater than the ones in training. Moreover, we
observe that the classification error decreases by increasing
m, both onTest#1 andTest#2 such as during the training
phase. This confirms the behavior of the error rate as a func-
tion of m estimated during training (data not shown). The
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Fig. 9. The Leave-K-Out error in the five gas time series is plotted
versus the percentage of training examples, atm=60.

minimum error is obtained atm=100 for ions and atm=110
for parameters and gases. In particular, when the balanced
validation set is used, the error is lesser than 15% for ions
(Ca excepted); lesser than 25% for parameters (pH excepted)
and lesser than 30% for gases. In the case of unbalanced val-
idation set, the highest error (50%) is reached by pH and the
lowest one (15%) by Na.

By looking at the behavior of the error rate on each time
series, the results show high variability in terms of percent-
age difference, defined as4%Err=Errmax−Errmin

Errmax
×100 (see

last row of Tables2, 3 and4). In details, onTest#1 we anno-
tate it varies from 80% (Cl) to 55% (Ca) for ions, from 68%
(Q) to 42% (pH) for parameters, from 61% (CH4) to 43%
(Ar) for gases; onTest#2 we annotate it varies from 68%
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(HCO3) to 19% (Ca) for ions, from 61% (Q) to 22% (pH) for
parameters, from 38% (CH4) to 31% (CO2) for gases.

By analyzing the difference between the maximum and
minimum error rate of the classifiers by varyingm (see the
last row of Tables2, 3 and4) we note that kNN classifiers are
poorly influenced by the model orderm if they are trained
on Ca, among ions; on pH, among parameters; on Ar (in the
case of balanced data) and on CO2 (in the case of unbalanced
data) among gases.

5 Discussion and conclusions

In this paper we address the problem of detecting hydrogeo-
chemical seismic precursors by a machine learning approach,
in which short temporal windows of the original signal are
classified. Under this perspective the classification error es-
timated by LKOCV provides a quantitative measure of the
capability of the kNN classifier in detecting no-disturbed sig-
nal/seismic precursor/co-post seismic signal. It mainly de-
pends on two factors: the training set size and the model or-
derm. As experimental results show, for a fixedm, the gen-
eralization error decreases increasing the number of training
data. It reaches a plateau with`=240. This shows that the
size of our data set is more than enough for training accurate
classifiers of this type of signals.
Concerning the numberm of consecutive measurements to
build xm

t , the results show that information collected some
months before the event under analysis are necessary to im-
prove the classification accuracy. In other words, it means
that to detect precursors in the ion, parameters and gas time
series we need to analyzem=100,m=110 andm=110 ob-
servations respectively.
In the light of the previous considerations, it follows that
ions are the most informative hydrogeochemicals for detect-
ing seismic precursors. This behavior can be justified by tak-
ing into account the peculiarities of the mechanisms involved
in earthquake preparation. In fact, the fractures and cracks
due to earthquakes produced the mixing of spring ground-
water with new waters characterized by larger salinity (Biagi
et al., 2006). As a consequence, deep changes in Na and
Cl water content are produced and these ions appear very
useful in detecting seismic precursors, since they have the
lower classification error. Also Q is strongly influenced by
this process and, among the hydrogeochemical parameters,
it can be considered a good time series to train kNN classi-
fiers with low error rates. Regarding gases, in active tectonic
environments, methane is released close to major crustal dis-
continuities. In particular, CH4 bearing spring gases are of-
ten present in volcanic environments (Toutain and Baubron,
1999). It could justify why CH4 is the most indicative hy-
drogeochemical gas in discriminating these types of signal
patterns. Finally, the gases have higher classification errors
than parameters and ions. This is due to the fact that the time
series analyzed are shorter in time. It means that the avail-

ability of a large amount of data improves the classification
accuracy. The same justification is true for Ca time series that
exhibits, atm=100, an error rate equal to 26% on balanced
data and 35% on unbalanced one.

In conclusion, we have proposed a quantitative approach
to detect different seismic events, building classifiers by
using a finite number of observations and estimating their
classification accuracy. The analysis was carried out on
each time series related to hydrogeochemical measures in
groundwater content and the results suggest that, starting
from the knowledge of a finite and limited number of
examples, it is possible to detect the occurrence of seismic
precursors. In order to better investigate how to improve
the classification accuracy, we plan to study the mutual
correlations among these time series as future developments
of this work.

Edited by: M. Contadakis
Reviewed by: two anonymous referees
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