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Abstract. The study of the Earth’s electromagnetic fields
prior to the occurrence of strong seismic events has repeat-
edly revealed cases were transient anomalies, often deemed
as possible earthquake precursors, were observed on electro-
magnetic field recordings of surface, atmosphere and near
space carried out measurements. In an attempt to under-
stand the nature of such signals several models have been
proposed based upon the exhibited characteristics of the ob-
served anomalies and different possible generation mecha-
nisms, with electric earthquake precursors (EEP) appearing
to be the main candidates for short-term earthquake precur-
sors. This paper discusses the detection of a ULF elec-
tric field transient anomaly and its identification as a possi-
ble electric earthquake precursor accompanying the Kythira
M=6.9 earthquake occurred on the 8 January 2006.

1 Introduction

This research work investigates signal characteristics related
to the nature of the great ULF electrical transient anomaly
and its possible identification as an electric earthquake pre-
cursor (EEP) accompanying theM=6.9 Kythira earthquake
occurred on the 8 January 2006 in the inner part of the
Southern Hellenic arc, with epicenter coordinates N 36.21◦,
E 23.41◦ and a focal-depth of 69 km. The ULF transient
electrical anomaly was recorded by the Technological Ed-
ucational Institute of Crete MVC-2DS recording station lo-
cated at N 35.44◦, E 24.05◦, at a distance of 103 km from the
epicentre of the main earthquake bearing N 34 W.

The MVC-2DS recording station was designed and de-
veloped by the Institute of Terrestrial Magnetism, Iono-
sphere and Radio-wave Propagation, Saint Petersburg Fil-
ial (SPbF IZMIRAN), Russian Academy of Sciences, under
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the INTAS-99-1102 project titled “Study of the ULF elec-
tromagnetic phenomena related to earthquakes (SUPRE)”.
The MVC-2DS recording station (Hattori et al., 2004) has
the capacity to measure three electric (telluric) components
(dynamic range±2.5 V) and uses a torsion photoelectric
magnetometer (frequency range∼15 Hz, measurement range
±5000 nT). The sampling frequency is 50 Hz. The magnetic
sensor is installed in the ground at 0.5 m depth and is covered
with a plastic waterproof box. A 24 bit ADC unit is set up in
a protective box in the vicinity of the magnetic sensor. Pb-
PbCl2 electrodes are buried in the ground at 1m depth for tel-
luric measurements forming an orthogonal couple of 100 m
short dipoles deployed in the directions NS and EW, respec-
tively. The ADC gets time stamp from a connected to it GPS
and the collected data are recorded via an RS-485 connection
by the acquisition PC located in a shelter approximately 80 m
away. The station has been operating since 2001.

No foreshocks have been observed whilst there were only
a few aftershocks considering the intermediate depth and the
magnitude of the main event. The two subplots on Fig. 1
demonstrate the seismic sequence (Fig. 1a) in parallel with
the observed electric transient anomaly (Fig. 1b). It is inter-
esting to note that the swarm of the aftershocks practically
ends with the return of the electric recordings to the back-
ground level (Fig. 1), although the main event occurred al-
most in the middle of the signal’s duty cycle. On the other
hand, we underline the preliminary fact of the absence of any
significant magnetic signature, i.e. the particular transient
anomaly accompanying the Kythira earthquake was solely
observed with great amplitudes upon the recordings of the
electric field (Figs. 2a and 3a) whilst there is no indication of
the latter upon the equivalent recordings of the magnetic field
(Figs. 2b and 3b) besides a huge variation during the main
shock due to the arrival of the elastic waves to the measuring
site, which was filtered for presentation purposes. The verti-
cal line on both subplots in Figs. 2 and 3 indicates the time
of occurrence of the main seismic event.
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Fig. 1. (a)The position of the asterisks indicate the magnitude (Ms)
and time of occurrence of the main earthquake and the following
aftershocks.(b) The observed transient electric anomaly in parallel
with the seismic sequence.

Fig. 2. (a) Recorded electric field signal (Ex – bearing N-S) from
approximately 9 p.m. on the 29 December 2005 till 1 p.m. on the
11 January 2006.(b) Simultaneous magnetic field recordings (Hx –
bearing N-S). The vertical line indicates the time of the occurrence
of the KythiraM=6.9 earthquake at approximately 11:35 a.m. on
the 8 January, 2006.

The observed characteristics of the recorded possible elec-
tric earthquake precursor support previous results (Konstan-
taras et al., 2002, 2004, 2006a, b; Varotsos, 2005) regard-
ing the features of EEP signals (Lighthill, 1996; Vallianatos
and Tzanis, 1998; Tzanis and Vallianatos, 2001; Varotsos,
2005). It is well accepted that EEP signals are transient elec-
tric potential anomalies external to the natural electromag-
netic field of the Earth (Hayakawa and Molchanov, 2002;
Vallianatos and Tzanis, 1998; Konstantaras et al., 2002).
To enhance and strengthen the detection and identification

Fig. 3. (a)Recorded electric field signal (Ey – bearing E-W) from
approximately 9 p.m. on the 29 December, 2005 till 1 p.m. on the
11 January, 2006.(b) Simultaneous magnetic field recordings (Hy –
bearing E-W). The vertical line indicates the time of the occurrence
of the KythiraM=6.9 earthquake at approximately 11:35 a.m. on
the 8 January, 2006.

of the observed transient electric field anomaly as an EEP
signal associated with the Kythira EQ, the authors have em-
ployed a pattern recognition application with the incorpora-
tion of neuro-fuzzy technology. A neuro-fuzzy model has
been trained to predict (Konstantaras et al., 2006a, b) the
recorded electric field signal during time-periods of minimal
seismic activity. Following successful training, the activation
of the neuro-fuzzy model upon the electric field recordings
around the time of the Kythira earthquake resulted in the re-
jection of the observed EEP signal from the surface electric
field recordings. The neuro-fuzzy model has “decided” that
the observed variation is not part of the natural electric field
of the Earth due to ionospheric variability, thereby consider-
ably suppressing the variation at its output.

2 Possible EEP signals extrinsic to the natural electric
field of the Earth

The problem that still remains open and controversial is how
to reliably discriminate earthquake-related signals from other
man-made or natural noises. The difficulty of clear detection
and undoubted identification of these signals obfuscates the
understanding of their generation and propagation mecha-
nisms. Several possible EEP generation mechanisms (Varot-
sos, 2005; Lighthill, 1996; Tzanis and Vallianatos, 2002) in-
cluding solid state physics mechanisms, such as stress stimu-
lating currents, charged dislocations and Lazarus model; and
electrokinetic phenomena, state that EEP signals are the re-
sult of a different generation mechanism to the source that
causes the natural electric field background. Furthermore,
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laboratory experiments (Freund, 2007; Hollerman, 2006;
Varotsos, 2005), have shown that when rocks such as gran-
ite or gabbro are subjected to deviatoric stresses electronic
charge carriers are activated. In addition the current flowing
through the rocks in the unstressed portion also increases sig-
nificantly. Stress relaxation causes the rocks to return to an
electrically inactive state.

To investigate this case, which strengthens the identifica-
tion of the observed signal as a transient anomaly associated
with the seismic activity in the Kythira region, we have re-
solved to a pattern recognition experiment with the incorpo-
ration of soft computing technology. A neuro-fuzzy model,
i.e. a neural network with intrinsic fuzzy logic abilities
(Jang, 1993), has been developed and trained to identify the
recorded electric field signal using the data recorded prior to
the occurrence of the possible electric earthquake precursor.
Then, propagating through the electric field recordings, the
neuro-fuzzy model is used to forecast the next sample of the
recorded signal based upon a number of previously recorded
data. The purpose of the experiment is to identify whether
the neuro-fuzzy model follows the detected EEP signal as
if it was a part of the natural due to ionospheric variability
electric field; or rejects it as an external distortion by consid-
erably suppressing the EEP aiming for the actual value of the
natural due to ionospheric variability electric field alone. The
Ex component of the recorded electric field signal has been
selected for training the neuro-fuzzy model because of the
clear distinction between the ULF electric transient anomaly
and the electric field background.

To train and evaluate the reaction of the neuro-fuzzy
model, 4096 data samples of electric field recordings
(Fig. 2a) have been selected (Konstantaras et al., 2004),
corresponding approximately to the time-period starting at
9 p.m. on the 29 December 2005 and ending at 1 p.m. on
11 January 2006, which include the possible electric earth-
quake precursor. Although the sampling frequency of the
recorded data isfs=1 Hz, the overall data set has been dec-
imated by a factor of 256 and filtered by a Chebyshev low-
pass filter to prevent aliasing, for it is very costly in process-
ing time (Kosko, 1991) to train a neural network with such
a heavy workload. A sliding window consisting of four pre-
vious inputs, atn−12,n−24,n−36 andn−48 (Addison and
Wermter, 2002), propagating though the time-series deter-
mines the input vectors to the neuro-fuzzy model. The first
half of the input vectors, i.e. the first 2048 samples in the
time-series, is used to train the neuro-fuzzy model to pre-
dict the next sample (n+1) in the time-series (Jang et al.,
1997), whilst the second half remains unseen. An initial
neuro-fuzzy model is obtained by applying grid partitioning
(Konstantaras et al., 2002) on the first half of the input data
set. This initial model is subjected to training with a hybrid
algorithm (Jang, 1993), a combination of the least squares
method and the backpropagation algorithm. During a for-
ward pass an input vector is fed to the neuro-fuzzy model
and the least squares estimator is used to adapt its consequent

Fig. 4. Input space partitioning into four fuzzy regions correspond-
ing to four fuzzy if-then rules. The number of inputs to the neuro-
fuzzy model is four corresponding to an overall number of sixteen
fuzzy if-then rules guiding the model.

parameters, which define the rules and output membership
functions (MFs) of the model. A training error is computed
by subtracting the output of the neuro-fuzzy model, for the
current set of parameters, from the required output (the actual
value of the electric field signal atn+1). The training error is
deployed during the backward pass through the neuro-fuzzy
model by the backpropagation algorithm to adapt its premise
parameters, which determine the shape and dimensions of the
input MFs. After every training epoch the neuro-fuzzy model
is tested with the first 500 samples of the unseen data (also
recorded before the occurrence of the possible electric earth-
quake precursor) to prevent overtraining (Jang et al., 1997).
The final neuro-fuzzy model holds the parameters set that
minimized the checking error.

3 Neuro-fuzzy model architecture and operation analy-
sis

To generate an initial fuzzy inference system grid partition-
ing was applied on the input data of the input/output data
set. For this particular application the two-dimensional input
space of every input was partitioned into four overlapping
fuzzy regions, each of which is governed by a fuzzy if-then
rule (Fig. 4). The structure of the neuro-fuzzy model depends
on the number of inputs and input membership functions per
input. The developed neuro-fuzzy model, shown in Fig. 5,
has four inputs (layer 1) each of which has assigned to it
two input membership functions (layer 2) and is guided by
sixteen rules (layer 3). The contribution of each rule to the
output of the neuro-fuzzy model is determined by the output
MF (layer 4) allocated to it, whilst the bias neuron (dashed
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Fig. 5. Neuro-fuzzy models’ architecture. Black nodes: inputs to
and output from the neuro-fuzzy model. White nodes: neurons.
Dashed node: rules’ bias neuron.

line in Fig. 5) sets a weighting factor to each rule. The neuron
in layer 5 defuzzifies the normalised weighted outputs of all
rules to produce a crisp output (layer 6). The layer by layer
operation of the developed neuro-fuzzy model is described
as follows (Jang, 1993):

Layer 1: The present and three previous samples of the
recorded signal (electric or magnetic) are used as inputs (A

to D) to the network introducing recursion.
Layer 2: Every nodei in this layer is an adaptive

node with a node function:O1,i=µAi(x), for i=1,2, or
O1,i=µBi−2(y), for i=3,4, or O1,i=µCi−4(z), for i=5,6,
or O1,i=µDi−6(k), for i=7,8, wherex (or y, or z, or k)

is the input to nodei and Ai (or Bi , or Ci , or Di) is the
equivalent membership function. The type of MFsA, B,
C andD is that of the generalised bell function:µA(x) =

1/

(
1+

∣∣∣ x−ci

ai

∣∣∣2b
)

, where{ai , bi , ci} are the premise param-

eters of the network which determine the shape and size of
the MF.

Layer 3: Every node in this layer is a fixed node
calculating the normalised firing strength of either rule:
O2,i=wi=

wi∑
i

wi
, wherewi=µAi(x)µBi(y)µCi(z)µDi(k).

Layer 4: Every nodei in this layer is an adaptive node us-
ing an output membership functions to compute the weighed
output of the equivalent rule, according to the following node
function:O3,i=wifi andfi=pi+qi+mi+ni+ri , where{pi ,
qi , mi , ni , ri} are the consequent parameters of the network
that specify the rules of the fuzzy inference system.

Layer 5: The single node in this layer is a fixed node,
which converts the weighted fuzzy outputs of all rules in the

Fig. 6. (a)Recorded electric field signal – the vertical line indicates
the time of the occurrence of the KythiraM=6.9 earthquake at ap-
proximately 11:35 a.m. on the 8 January, 2006;(b) Neuro-fuzzy
model output indicating rejection of the possible EEP signal as an
external addition upon the electric field recordings;(c) Error signal
– the difference between the recorded electric field signal the output
signal from the neuro-fuzzy model.

system into a single crisp output, as described by the follow-
ing node function:O4,1=

∑
i

wifi .

Layer 6: The node describes the actual output of the neuro-
fuzzy model for a given input data set.

4 Pattern recognition results

The proposed neuro-fuzzy model was initially trained upon
the first 2548 data-samples, of recorded electric field signal
shown in Fig. 2a aiming to identify the main characteristics
of the electric field variations and thus predict the next sam-
ple in the time-series. The initial 2048 data samples were
used for training the neuro-fuzzy model whilst the last 500
unseen to the network data samples (2049 to 2548) were
used to monitor its performance and prevent overtraining the
model.

The outcome of the neuro-fuzzy pattern recognition appli-
cation on the full electric field signal after training the neuro-
fuzzy model is shown in Fig. 6, where the vertical line on
subplot “a” indicates the time occurrence of the main seis-
mic event. Comparing subplots “a” and “b” on Fig. 6, there
is an apparent significant suppression of the density of the
possible recorded EEP signal. In detail, the output of neuro-
fuzzy model closely follows the recorded electric field signal
until the moment of the occurrence of the possible EEP at ap-
proximately data-sample 2752. The rapid rise in magnitude
of the recorded signal over the next few samples “confuses”
the neuro-fuzzy model and for a short time it becomes unsta-
ble, hence the large spikes observed between data-samples
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2780 and 2830. Thanks to the adaptive nature (Haykin, 1994)
of neural networks only a short time of approximately fifty
samples was required by the neuro-fuzzy model for it to re-
act to the new information received at its input. Following
data-sample 2830 the neuro-fuzzy model makes a decision
not to follow the information received at its input, i.e. the
signal shown by subplot “a” on Fig. 6, when deciding what
should be the value of the next sample in the time-series at its
output. Instead it tries to approximate the magnitude of the
natural electric field alone, hereby considerably suppressing
the possible recorded EEP signal. Around data sample 3510
the neuro-fuzzy is affected by a sudden drop in the magni-
tude data received at its input (ending of the possible EEP
signal). Once-more the neuro-fuzzy model temporarily be-
comes unstable and hence the large spikes observed between
data-samples 3530 and 3585. What is remarkable in this case
is that once the model becomes stable again, which is almost
immediately after the end of the duration of the EEP sig-
nal around data sample 3595, the neuro-fuzzy model follows
closely once more the recorded electric field signal.

The fact that the neuro-fuzzy model follows closely the
recorded electric field signal before (signal to difference ratio
of 30.46 dB) and after (signal to difference ratio of 28.40 dB)
the occurrence of the EEP signal, and the rejection of the
latter (signal to difference ratio of−39.69 dB) at the time of
its occurrence (Fig. 6c) makes us believe that the neuro-fuzzy
model treats the EEP signal as an external distortion added
upon the natural due to ionospheric variability electric field
of the Earth.

5 Conclusions

The possible electric earthquake precursor accompanying the
Kythira M=6.9 earthquake was detected upon the electric
field recordings of the electromagnetic field recording station
in Keramia, Crete, but with no indication of the latter upon
simultaneous magnetic field measurements. The outcome of
the neuro-fuzzy pattern recognition experiment, suggests that
this particular EEP-candidate signal is an extrinsic transient
electric potential anomaly of a different source to the natural
and of ionospheric origin electric field of the Earth. The er-
ror signal highlights the close proximity of the neuro-fuzzy
model’s output signal to the recorded electric field before and
after the occurrence of the possible recorded EEP signal as
well as the continuous incremental rejection of the latter at
the time of its occurrence. The neuro-fuzzy model was also
successful in estimating the boundaries of the observed tran-
sient electric potential anomaly which are in accordance with
the observed data. The duration of the possible EEP signal,
outlasts other detected EEP candidate signals, lasting for a
couple of days rather than a couple of hours. Furthermore,
the possible EEP signal attributed to the Kythira earthquake
precedes but also super-cedes the main seismic event which
occurred at 11:34 GMT on the 8 January, 2006. The rising

edge of the EEP signal occurred almost 36 h prior the main
seismic event around 01:00 GMT on 7 January 2006. The
EEP though outlasted the main seismic event with its falling
edge occurring approximately 25 h later, around 13:00 GMT
on the 9 January 2006.
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