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Abstract. In recent years, many new models for earthquake
recurrence were proposed. Some are focusing on the cluster-
ing properties on a small time scale, while others try to model
the long term behavior of large mainshocks. To this last pur-
pose, there is a growing interest for models that take into ac-
count the aperiodicity aiming to a time-dependent hazard es-
timate. It is well known that a limited number of inter-event
times (IETs) may lead to biased values of the distribution pa-
rameters. To overcome this problem different solutions were
proposed. This paper focuses on two of them: Monte Carlo
simulation of the process and aperiodicity estimated via a sta-
tistical proxy. The topics discussed are: 1) how many IETs
are needed for a correct estimate, 2) to which extent a Pois-
son distribution is equally able to describe the process, 3)
the influence of errors associated to paleoseismological IETs,
and 4) the goodness of the success ratio from simulations. A
simple test is proposed to discriminate real aperiodicity from
apparent aperiodicity coming from undersampling.

1 Introduction

The standard Poisson process requires only one parameter
to model the occurrence of earthquakes, that is the mean re-
currence time (µ). The standard deviation (σ ) is assumed
to be equal to the mean. The ratioα=σ/µ (coefficient of
variation or aperiodicity) is taken as an indication of statisti-
cal properties of the relevant time series and used in renewal
models for time-dependent hazard analysis. Whenα>1, the
time series exhibits clustering properties. Values<1 indicate
the possible presence of periodicity, with increasing proba-
bility for decreasingα. The Log-normal, Weibull and Brow-
nian Passage Time (BPT) models require to estimate from
sample data bothµ andα. Performing a bootstrap numer-
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ical simulation for 100 realizations of a BPT process with
µ=1 andα=0.5, Ellsworth et al. (1999) showed thatα is un-
derestimated when the number of events in the catalogue is
small (<10). Parsons (2005) implemented a more sophisti-
cated Monte Carlo simulation of a BPT, trying to simulate
observed sequences with a range of mean IET and aperiodic-
ity. Events were repeatedly drawn at random from each dis-
tribution, attempting to match the observed event windows.
The two sequences studied occurred both on the San Andreas
Fault: 14 event at Wrigthwood (Fumal et al., 2002) and 10
events at Pallet Creek (Sieh et al., 1989). Each distribution
was sampled 5 million times, with a success ratio equal to
5.4 10−6 for Wrigthwood and 2.8 10−6 for Pallet Creek.

The long paleoseismological records obtained in Califor-
nia can be hardly matched in other countries. The increasing
number of studies on active seismogenic sources prompted
researchers to find new ways of including these data in seis-
mic hazard estimates. An example is coming from Italy:
in recent years several studies on seismogenic sources al-
lowed for the creation of an on-line data base (DISS Working
Group, 2006). On the other hand, attempts were made to in-
clude paleoseismological data in seismic hazard estimates:
the most recent example is given by Pace et al. (2006). In
the area they studied (Central Italy) the longest record avail-
able is for the Fucino fault, with 5 events in about 8000 years
(Galadini and Galli, 1999). Pace et al. (2006) recognized
that the number of IETs was not sufficient for an unbiased
estimate ofα, so they decided to use a statistical proxy of
aperiodicity: for each fault they derivedµ andσ from the
distribution of mean recurrence times obtained with different
techniques from the same dataset. The distribution ofσ ver-
susµ and the histogram ofα are reported in Fig. 1. It can be
noted that the aperiodicity is concentrated around few values.
If compared with the values obtained by Parsons (2006) it is
also very small, leading to suspect a strong bias. At this point
a series of simulations were carried out to try to answer some
questions:
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Fig. 1  The distribution of  σ versus μ (left) and the histogram of α (right) for 28 seismogenic sources 

in Central Italy, according with Pace et al. (2006).

Fig. 1. The distribution ofσ versusµ (left) and the histogram ofα (right) for 28 seismogenic sources in Central Italy, according with Pace
et al. (2006).

Fig. 2 Numerical estimate of the underestimate of  α with a bootstrap procedure on 100 catalogues 
composed of 100 events each. For the two-parameters distribution the seed values were  μ=1 and  σ 
uniformly distributed between 0.95 and 1.05. The investigated parameter is the ratio between the true α 
and the one retrieved from the synthetic catalogues. For the Poisson case, the statistic is  α retrieved 
from data, or apparent aperiodicity.
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Fig. 2. Numerical estimate of the underestimate ofα with a boot-
strap procedure on 100 catalogues composed of 100 events each.
For the two-parameters distribution the seed values wereµ=1 and
σ uniformly distributed between 0.95 and 1.05. The investigated
parameter is the ratio between the trueα and the one retrieved from
the synthetic catalogues. For the Poisson case, the statistic isα re-
trieved from data, or apparent aperiodicity.

– How many IETs are needed for a correct estimate?

– To which extent a Poisson distribution is equally able to
describe the observed processes?

– Which is the influence of errors associated to paleoseis-
mological IETs?

– Which is he reliability of the success ratios obtained
from simulations?

2 Preliminary modeling and simulations

As mentioned above, Ellsworth et al. (1999) showed that for
a BPT process the estimate ofα is biased when the number
of event is<10. In the following of this paper the ability of
a Poisson process to reproduce the observed data will be dis-
cussed, so it was interesting to compare the bias in aperiodic-
ity estimate between a distribution with two free parameters
and one with a single parameter.

The first step was the generation of two sets of 100 cata-
logues composed of 100 events each. For the two-parameter
distribution (Log-normal or BPT), the values wereµ=1 and
σ uniformly distributed between 0.95 and 1.05. In this case
the investigated parameter was the ratio between the trueα

(that is the one used as seed of each simulation) and the one
retrieved from the synthetic catalogues. For the Poisson case,
the statistic was simplyα retrieved from data, or apparent
aperiodicity. The desired parameters were estimated for each
catalogue using a bootstrap procedure, with the number of
events varying from 3 to 100. The results are shown in Fig. 2
for the first 25 events (after that value the asymptotic behav-
ior continues smoothly and converges to unity for more than
50 events). The Poisson process shows a slightly larger un-
derestimate of the true aperiodicity. It is important to note
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Fig.  3  Bootstrap  procedure  simulating  100.000  realizations  of  two  Poisson  processes  having  μ 

estimated from the Fucino data (μ=1498) and from the most recent events of the Pallet Creek sequence 

(μ=120). For the  Pallet Creek data set the comparison is also with or without the request for exact 

matching of the sequence (less restrictive, exact Poissonian condition; see text for details)
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Fig. 3. Bootstrap procedure simulating 100.000 realizations of
two Poisson processes havingµ estimated from the Fucino data
(µ=1498) and from the most recent events of the Pallet Creek se-
quence (µ=120). For the Pallet Creek data set the comparison is
also with or without the request for exact matching of the sequence
(less restrictive, exact Poissonian condition; see text for details).

that here it is not included the effect on the estimate caused
by the “seismic drought” (Davis et al., 1989): this issue will
be discussed later. Another important point for further dis-
cussions is that for a number of events equal to the longer se-
quence available in Italy (5 earthquakes on the Fucino Fault),
the apparent aperiodicity for a true Poisson process is 0.8,
with 50% of the bootstrap values in the interval 0.70÷1.05.
According with Galadini and Galli, the last 5 events on the
Fucino fault occurred in 1915 AD, 508-618 AD, 1700-1300
BC, 3944-3516 BC, 5979-5576 BC. There are two previous
events, but with a large overlapping time window that pre-
vent their use in this analysis. Taking the midpoint of the
intervals, the estimate of the parameters isµ=1923.1±389.6
years. The aseismic period since the last event is 91 y (less
than 5% ofµ) so according to Davis et al. (1999) the “seis-
mic drought” effect is negligible. The aperiodicity estimates
givesα=0.2: if compared with Fig. 2, it may seem unlikely
that this distribution is Poissonian. More insights on the
statistics of the Fucino sequence may come from simulations
similar to those proposed by Parsons (2005). Figure 3 reports
the results of a bootstrap procedure simulating 100.000 real-
izations of two Poisson processes havingµ estimated from
the Fucino data and from the most recent events of the Pallet
Creek sequence. With a limited number of events, a Pois-
son process is able to reproduce the sequences with a suc-
cess ratio much higher than the one obtained for the full se-
quence by Parson (2005) with a BPT process (≈10−6). The
simulation was not carried out for the whole Pallet Creek
sequence, but the extrapolation of the negative exponential
trend in Fig. 3 gives an estimated success ratio≈10−8.

Fig. 4 Bootstrap simulation of Pallet Creek and Parkfield sequences, plus a sequence generated with a 

Poisson process with the same μ of Parkfield. The difference in success rate is due to the large 

errors  in  the  paleoseismological  datations,  which  are  absent  in  the  historical  sequence  of 

Parkfield.
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Fig. 4. Bootstrap simulation of Pallet Creek and Parkfield se-
quences, plus a sequence generated with a Poisson process with
the sameµ of Parkfield. The difference in success rate is due to the
large errors in the paleoseismological datations, which are absent in
the historical sequence of Parkfield.

The simulations were carried out imposing that the se-
quence of IETs should match exactly the real one. This
makes more sense if one aim to simulate a renewal process,
where the memory of the system has to be taken into account.
But for a Poisson process, the exact temporal sequence of the
IETs is not an issue: it is sufficient that each one of the simu-
lated recurrence times falls within the boundary of one (and
only one) of the intervals from the real data. This new con-
dition on the simulations greatly improves the success ratio.
Figure 3 shows what happens to the Pallet Creek data set: the
whole sequence can be simulated by a single-parameter Pois-
son process with a success ratio 10−3 times greater than the
one obtained by Parsons (2006) and 10−5 times greater than
the one previously estimated. Thus the conditions imposed
on the simulation regarding the memory of the system have
a very strong influence on the result.

Another factor that has to be investigated is the error as-
sociated to the paleoseismological data. The influence of the
datation errors can be evaluated using a sequence composed
of historical data only. The Parkfield sequence provides a
very good example. Bakun and Lindh (1985) suggest that
characteristic M = 6 earthquakes occurred in 1857, 1881,
1901, 1922, 1934, and 1966. Then in 2004 the 7th event
occurred, spurring a debate on the characteristic earthquake
model itself (Jackson and Kagan, 2006). 10 million simula-
tions were run, usingµ=24.5 and comparing against the real
Parkfield sequence and against a Poisson sequence randomly
generated using the sameµ. Also in this case the less restric-
tive rule on sequences was applied. The results are shown in
Fig. 4: the two simulations give very similar results, but with
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Fig. 5 ECDFs of aperiodicity from the first  n IETs and  from the whole sequences that match the 

Fucino data set (Poisson process, μ=1923 from real data, no restriction on exact sequence).
Fig. 5. ECDFs of aperiodicity from the firstn IETs and from the
whole sequences that match the Fucino data set (Poisson process,
µ=1923 from real data, no restriction on exact sequence).

a success ratio much smaller than the Pallet Creek one. The
drop in the success ratio is in the range 102−103. It is inter-
esting to note that the values obtained for Parkfield are simi-
lar to those obtained for Fucino and Pallet Creek sequences in
Fig. 3. This means that reducing the errors on paleoseismo-
logical data decreased the success ratio of the same amount
it is increased by lifting the restrictive condition on the exact
match of the sequence.

3 Testing aperiodicity from small samples

The test proposed for checking the earthquake aperiodicity
from short catalogues is based on the following assumptions,
derived from the insight gained in the previous chapter:

1. When small samples are considered, it is better to start
with 1-parameter simulation rather than 2-parameters
simulations. If the real sequence has a significant ape-
riodicity, it can be observed and proved against the null
hypothesis of Poissonian behavior.

2. Dealing with Poisson processes, the restriction on the
exact match between observed and simulated sequences
can be lifted. Instead, it will be sufficient that each one
of the simulated recurrence times must fall within the

Fig.  6 K-S statistics for the full  Fucino sequence (n=4) and for a Poisson process generated with 

μ=1923 y and an error similar to the paleoseismological data. The confidence limits refer to the 

rejection of equality hypothesis in the Smirnov test.

Fig. 6. K-S statistics for the full Fucino sequence (n=4) and for a
Poisson process generated withµ=1923 y and an error similar to the
paleoseismological data. The confidence limits refer to the rejection
of equality hypothesis in the Smirnov test.

boundary of one (and only one) of the intervals from
the real data.

3. The errors on the datation of pre-historic events greatly
affect the absolute value of success ratio. Their effect on
the trend of success ratio versus the number of events
in the catalogue is less important. Thus, the success
ratio alone is a poor estimate of the goodness-of-fit of
our simulations, given its large variability. Instead, the
simulations that match real sequences can be compared
against single realization of a Poisson process having
the sameµ.

If the above is true, then a simple procedure is implemented
in four steps:

1. Generate a set of two-parameters synthetic sequences
(S) longer than the real one (R). Repeated test showed
that 50 events are sufficient. Then, check for eachS

sequence if firstn IETs match then IETs of theR se-
quence;

2. For theS sequences that pass the above check, estimate
the aperiodicity from the firstn IETs (αn) and then from
the whole sequence (α50).

3. Calculate the Kolmogorov-Smirnov statistic (K-SS),
that is the absolute value of the maximum difference
between the two empirical cumulative distribution func-
tions (ECDFs) ofαn andα50;

4. generate a Poisson process with the sameµ of the R

sequence, then repeat step 1 and 2 to obtain the statistic
K-S R.
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Fig. 8 The distribution of  σ versus  μ and the histogram of  α obtained for the Fucino sequence with 

100.000 trials. The black arrow marks the α obtained for the Fucino fault by Pace et al. (2006), 

while the white one is the α estimated directly from the data given by Galadini and Galli (1999)

Fig. 7. The distribution ofσ versusµ and the histogram ofα obtained for the Fucino sequence with 100.000 trials. The black arrow marks
theα obtained for the Fucino fault by Pace et al. (2006), while the white one is theα estimated directly from the data given by Galadini and
Galli (1999).

5. perform a Smirnov test on the K-SS and K-SR statis-
tics. The second one should always pass the test at any
significativity level, and act as a control group. If the
first set does not pass the test, this means that we may
suppose that the real IETs distribution is not Poissonian.

Let us examine the practical case of the Fucino sequence. To
check if the proposed procedure is reliable also for smaller
sequences, the first two steps are performed forn=2,3,4. The
results is shown in Fig. 5. The aperiodicity estimated from
the whole sequences is much higher, and the mean value is
close to 1, as expected for a Poisson process. The aperi-
odicity estimated from the firstn IETs yields a much lower
value, and the ECDFs are similar forn=2,3,4. Figure 6
shows the K-S statistics for the full Fucino sequence (n=4)
and for a Poisson process generated withµ=1923 years and
an error similar to the paleoseismological data. While the
Kolmogorov-Smirnov test verify if an empirical CDF is dif-
ferent from a theoretical one, the Smirnov test checks if the
hypothesis that two ECDFs are coming from the same pop-
ulation can be rejected. In both cases, the inequality of dis-
tributions is proved if the maximum value of K-S statistics
exceeds a given confidence level. In this case there are no
doubt about rejecting the equality of the ECDFs for the real
case. The difference between the ECDF of the aperiodicity
estimated for the first 4 IETs and for the full sequence is al-
ways greater than the test limits. A collateral advantage of
the proposed procedure is that at this point we can use the
distribution of aperiodicity estimated from the firstn syn-
thetics IETs. Figure 7 shows the distribution ofσ versusµ
and the histogram ofα obtained for the Fucino sequence with
100 000 trials. The success rate is about 1.10−3. The black

arrow marks theα obtained for the Fucino fault by Pace et
al. (2006), while the white one is theα estimated directly
from the data given by Galadini and Galli (1999). Both ap-
pears to a lower bound of the distribution.

4 Discussion and conclusions

The simulation of synthetic sequences of earthquakes on a
single fault (Parsons, 2005) proved to be an effective tool for
the understanding the time distribution of events. However,
the success ratio alone is a poor estimate of the goodness-
of-fit of our simulations, given its large variability due to the
width of errors on paleoseismological datation and more or
less restrictive hypothesis on exact match of real data. A sim-
ple technique is proposed to evaluate if the aperiodicity es-
timated from short catalogues is real. The test was checked
on the longest sequence of earthquakes associated to a single
fault in Italy, the Fucino sequence. Even for a reduced num-
ber of events, it is possible to reject the hypotehsis that the
data are coming from a pure Poisson process.
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