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Abstract. Avalanche disasters are associated with significant
monetary losses. It is thus crucial that avalanche risk assess-
ments are based on a consistent and proper assessment of the
uncertainties involved in the modelling of the avalanche run-
out zones and the estimations of the damage potential. We
link a Bayesian network (BN) to a Geographic Information
System (GIS) for avalanche risk assessment in order to facil-
itate the explicit modelling of all relevant parameters, their
causal relations and the involved uncertainties in a spatially
explicit manner. The suggested procedure is illustrated for
a case study area (Davos, Switzerland) located in the Swiss
Alps. We discuss the potential of such a model by comparing
the risks estimated using the probabilistic framework to those
obtained by a traditional risk assessment procedure. The pre-
sented model may serve as a basis for developing a consistent
and unified risk assessment approach.

1 Introduction

Economical damages from natural hazards are on the rise
(MunicheRe, 2006). In order to deal with the increasing
costs associated with the damages to buildings, structures,
and fatalities, decision-makers need suitable methods to es-
timate the risks. Especially in mountainous areas such as
the Swiss Alps, where snow avalanches (e.g. avalanche win-
ter 1999) and floods (e.g. floods in 2000, 2002, 2005) have
caused high costs in the last decade, there is a need for a con-
sistent modelling of the risks. Risk analysis is recognized
to be the best method for estimating the dangers from par-
ticular natural hazards (e.g. Einstein, 1988; Cruden and Fell,
1997). Risk is defined as a function of the probabilities P(Ai)
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of all potential eventsAi and the expected consequences un-
der these eventsC(Ai):

R =

∑
i

P(Ai) · C(Ai) (1)

C(Ai) can be understood as the product of the damage poten-
tial and the corresponding vulnerability (e.g. Varnes, 1984;
Morgan et al., 1992).

Estimations of risk using Eq. (1) are dependent on many
variables subject to uncertainty. On the one hand, multiple
authors have investigated the uncertainties related to the esti-
mation ofP(Ai) in recent years (e.g. Barbolini et al., 2003;
Ancey et al., 2003; Ancey, 2004). These studies, sited in the
field of avalanche hazards, mainly concentrate on the sensi-
tivity of avalanche run-out distances to model assumptions.
Because land-use planning based on avalanche hazard maps
relies on the calculated run-out distance, these model uncer-
tainties can have large effects on the regional economical de-
velopment. In Straub and Grêt-Regamey (2006), we present
a Bayesian probabilistic framework for modelling avalanche
hazards, which serves as a basis for the risk assessment pre-
sented in this paper. On the other hand, little attention was di-
rected towards the assessment of the expected consequences
C(Ai), which is based on a combination of observational in-
formation and expert opinion. As a consequence, studies
quantifying uncertainties related to this part of the risk as-
sessment are missing. However, failure to include these un-
certainties in the risk calculation may lead to significant in-
consistencies. Furthermore, explicitly addressing the uncer-
tainties in the model facilitates future model improvements.

Bayesian Networks (BN) are known to facilitate the ex-
plicit modelling of uncertainties in an integral probabilistic
framework (Friis-Hansen, 2000; Faber et al., 2002). Based
on acyclic graphs, BN provide a detailed evaluation of the
joint influence of different input parameters on the risk. Al-
lowing a traceable and concise representation of the causal
relationships between the considered variables, this is also
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highly useful for natural hazard risk assessment, which in-
volves various uncertain variables and requires communica-
tion between interdisciplinary groups of specialists. To our
knowledge, there are only few reported applications of BN
in the field of natural hazards: Amendola et al. (2000) points
out the use of BN to consider the chain of indirect damages
caused by natural hazards. Antonucci et al. (2003) assess
debris flow hazards using credal nets. Hincks et al. (2004)
use dynamic BN to model volcanic hazards. Bayraktarli et
al. (2005) suggest a generic framework for the assessment of
natural hazard risks using BN, and Straub (2005) illustrates
the potential of BN for rock-fall hazard ratings. All these
studies, however, do not estimate risk in a spatially explicit
manner, which is essential for land-use planning.

Geographic Information Systems (GIS) have the capacity
to incorporate the complexities of spatial dimension within
such analyses. A large number of GIS applications for natu-
ral hazards have been developed, particularly during the past
decade (e.g., Wadge et al., 1993; Carrara and Guzzetti, 1995;
Chen et al., 2003; Bell and Glade, 2004). Until now, in spite
of the recognized uncertainties in spatial models and data
(Fischer, 1991; Hunter and Goodchild, 1995), the output of
GIS has mostly been considered deterministically. We are
only aware of one previous attempt at using BN in a spatially
explicit manner. Stassopoulou et al. (1998) assess the risk of
desertification of burned forests in the Mediterranean region
by combining information from different sources of data us-
ing a GIS and a BN. This study is based on Aspinall (1992),
who uses Bayes’ theorem to combine datasets in a GIS for
predicting the spatial distribution of red deer in Scotland.

The objective of this study is to show how a BN can be
linked to a GIS in order to (1) estimate risk and the associ-
ated uncertainties in a spatially explicit manner and (2) expli-
citly include uncertainties at all levels of the risk assessment
procedure. We illustrate the approach by assessing the risk
of avalanches in a case study region – the Landscape Davos
(Switzerland). We compare the results calculated using the
BN approach to those obtained by a traditional risk assess-
ment approach; the latter ignoring the probability distribu-
tion of the variables and their joint probability distribution.
Furthermore, we identify the major sources of uncertainty
and show the potential of Bayesian inference techniques to
improve the model using observed data.

2 Method

2.1 Risk assessment using Bayesian Networks

A generic probabilistic framework for the assessment of
natural hazard risk has been suggested by Bayraktarli et
al. (2005), and Straub (2005) gives a detailed overview of
its composition. It is a breakdown of Eq. (1) into three cat-
egories including system exposureO, system resistanceF ,
and system robustnessK. The system exposure describes

the probability of occurrence of the potential hazards to the
considered system, such as the avalanche hazard event. The
system resistance includes all intermediate processes and el-
ements which may modify the exposures in the system, e.g.
avalanche defence structures. The system robustness de-
scribes how the system reacts on the damaging events, in-
cluding the behaviour of people in the event of an avalanche.
The framework helps structure the problem and provides an
overview on all involved processes and aspects. In a generic
format, risk can be formulated using conditional terms as fol-
lows:

R = EO,F,K [CT ] =

∫
O

∫
F

∫
K

P(k|o, f )P (f |o)P (o)

·CT (o, f, k)dkdf do (2)

where E denotes the expected value of the total conse-
quencesCT with respect toO, F andK. The probabilities
P(k|o, f )P (f |o)P (o) correspond to the first part of Eq. (1),
whereas the total consequencesCT (o, f, k) correspond to
the second part of Eq. (1). Note that the classification of a
specific process into the three categories is not strictly pre-
scribed, and should only be viewed as a support to structure
the problem.

Risks considered in this study include not only costs of
damaged buildings or vehicles, but also costs associated with
damaged contents, infrastructure, and societal losses. Of the
latter, we consider deaths in buildings and on roads. The loss
of productivity in agriculture areas, injuries to livestock, loss
of land or cleaning up costs are not included in the analysis,
but are object of actual research; inclusion of those factors in
the model at a later stage is straightforward.

2.1.1 Bayesian Networks (BN)

Pearl (1988) and Jensen (2001) give a comprehensive sum-
mary of BN. In the following, we will only give a condensed
introduction. BN are a form of probabilistic graphical model.
Specifically, BN are directed acyclic graphs in which nodes
represent random variables, and the arcs represent depen-
dence relations among the variables. Hence, they provide
an intuitive representation of the joint probability distribu-
tion P(x) of a set of random variables (X=X1, . . . , Xn). The
BN of the avalanche risk assessment developed in this study
is given in Fig. 1. The arcs represent causal relations between
the random variables. Those are characterized by their asso-
ciated conditional probability tables, conditional on the states
of any parent nodes that interact with it. The joint probability
distribution of such a network is given as:

P(x) = P(x1, .., xn) =

n∏
i=1

P(xi |pa(xi)) (3)

wherepa(xi), is a set of values of the parents ofXi . The
distribution ofXi given its parents may have any form, but
efficient algorithms for solving the BN are available only for
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Figure 1: Bayesian Network of avalanche risk assessment. The blue nodes represent the 
input nodes, the yellow oval nodes represent the causal relations in the system, the red 
boxes are the decision nodes, and the green rhomboid-shaped nodes are the utility 
functions, characterizing the risk. 

Fig. 1. Bayesian Network of avalanche risk assessment. The blue nodes represent the input nodes, the yellow oval nodes represent the causal
relations in the system, the red box is a decision node, and the green rhomboid-shaped nodes are the utility functions, characterizing the risk.

the case where the nodes have discrete or Gaussian distribu-
tions. Thus, we restrict ourselves to variables with discrete
states in this study. BN can be extended to decision graphs
by including decision nodes and utility nodes in the network.
The decision nodes (Di) are used to set choices of possi-
ble protection measures and are represented as boxes. The
rhomboids (Ui) represent the utility nodes; utilities are here
quantified in monetary values.

Figure 1 shows the BN for the risk assessment procedure
arranged in accordance with the generic categories exposure,
resistance and robustness. The blue nodes represent the input
nodes, the yellow oval nodes are variables introduced to rep-
resent the causal relations in the system and the rhomboid-

shaped nodes are the utility functions, characterizing the risk.
The Appendix A gives the description of the content of the
conditional probability tables corresponding to each node.
The system exposure is expressed as the annual probability
of occurrence of snow pressure at a defined location. The
two nodes linked to the pressure node represent the posterior
avalanche model applied in the risk assessment computations
(Straub and Gr̂et-Regamey, 2006). The system resistance
is described by the probability that an avalanche damages
buildings, cars or buses. One protection measure (evacua-
tion) and its associated effectiveness are included as a sepa-
rate box and a node in this part of the network to illustrate
their effect on the risk. Several nodes model the relations
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describing the robustness of the system, i.e. the consequences
of the impact of the avalanche on people or properties. The
dependencies can be directly read from the network. Finally,
the utility nodes define the expected costs as a function of
the number of people killed and the physical damage to cars,
buses, and houses. They are expressed in monetary terms.

BN enhance the utilization of evidence in the assessment
of risks: Probabilities in the network are updated when new
information is available. Finding the conditional distribution
of a subset of the variables, conditional on known values for
some other subset (the evidence) is the goal of inference.
This conditional distribution is known as the posterior dis-
tribution of the subset of the variables given the evidencee.
For example, when the state of a variable is observed to bee,
this information will propagate through the network and the
joint probability of all nodes will change to its posterior:

P(x|e) =
P(x, e)

P (e)
(4)

Several algorithms exist to facilitate the updating of a prior
probabilistic model using Bayes’ theorem (Murphy, 2001).
We select the BN modelling shell Hugin (Hugin Expert,
2005) to solve the equations. We will use Bayesian inference
to determine the joint probability distribution of the uncer-
tainties associated with the avalanche model based on obser-
vations of avalanches in the case study area.

2.1.2 Embedding BN into GIS

In order to estimate the risk on a cell basis, we integrate the
BN created in the Hugin environment into ArcGIS 8.3 (ESRI,
2000). The HUGIN API is provided in the form of a library
that can be linked to the Visual Basic programming language
(Aitken, 1998). Using ESRI’s MapObjects 2.2 ActiveX com-
ponents, the objects contained in the library can be called
using the Visual Basic platform available in the ArcGIS en-
vironment. Figure 2 shows the modelling framework, which
is run for each of the 5 m×5 m raster cells of the case study
area as follows:

1. The input nodes of the BN are initialized with values
provided by spatially explicit datasets. The arrows be-
tween the maps and the input nodes of the BN in Fig. 2
illustrate how the BN retrieves the values of the vari-
ables from the datasets at each location. For example,
the input nodes “building type” and “road type” (see
Fig. 1) receive information about the location and the
type of building and road at each location from a land-
use map. The digital elevation model (DEM) provides
information used in the avalanche model to calculate
values used as evidence for the conditional probabil-
ity tables of the “friction parameter” and the “pressure”
nodes.

2. For each cell of the case study area, the evidence pro-
vided by the spatially explicit datasets is propagated

through the BN. This process is entirely conducted
within the Hugin shell, which supplies the mathemat-
ical algorithms.

3. The main output of the BN is the annual risk for each
cell expressed in monetary terms. These output values
are provided in the ArcGIS environment and can imme-
diately be drawn in maps.

2.1.3 Avalanche modelling

The probabilistic avalanche hazard modelling is presented in
details in Straub and Grêt-Regamey (2006). Here, we pro-
vide only an overview.

The model is based on a two-dimensional avalanche dy-
namic program, the AVAL-2D (Gruber, 1999). The AVAL-
2D identifies the sizes of avalanche release zones, predicts
run-out distances, flow velocities and impact pressures of
dense snow avalanches. The sizes of the avalanche release
zones are determined based on terrain characteristics and
fracture depths. Snow fracture depths are built upon statis-
tical analyses of maximum snow accumulation for three-day
periods over the historical record (Salm et al., 1990). As
these records only exist for about 60 years, the estimates
of snow accumulations for events with a larger return pe-
riod are extrapolated from the statistical record applying ex-
treme value statistics. The fracture depths are adapted to
slope and altitude based on Burkard and Salm (1992). The
flow simulation model employs a “Voellmy-fluid” flow law,
which assumes small shear strains in the flow body. Flow
resistances, given by a dry-Coulomb type friction (µ) and
a velocity squared friction (ξ), are assumed to be concen-
trated at the base of the avalanche. The latter is here mod-
elled as a deterministic parameter, with different values for
different slope angles, topographical classifications (such as
open, confined, gully or flat) and surfaces (e.g., a value of
400 m2/s is assumed in forest areas). The values ofµ are
modelled by groups of stochastic variables, whose proba-
bilistic model is obtained through Bayesian inference from
observed avalanches recorded yearly from 1950 to 2003 in
the winter reports of the SLF (unpublished data, SLF Davos,
Switzerland).

The output of the avalanche hazard analysis is a proba-
bilistic model of the annual maximum of the pressureP at
any location. The AVAL-2D establishes a database with the
calculated pressure at each cell as a function of the friction
parameters and the release scenario. In combination with
the joint probabilistic model of the friction parameters and
the release scenarios, this represents a complete probabilis-
tic model ofP , which then serves as input variable to the
rest of the risk assessment. As discussed in Straub and Grêt-
Regamey (2006), we do not include the influence of errors in
the numerical avalanche model in an explicit manner.
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Figure 2: Illustration of the integration of a BN created in Hugin into ArcGIS 8.3

Fig. 2. Illustration of the integration of a BN created in Hugin into ArcGIS 8.3.

2.1.4 Uncertainty analysis

BN represent uncertainty by means of conditional and un-
conditional probability tables. For example, the node repre-
senting building damages describe the probability of differ-
ent degrees of damages for given building types and given
snow pressure. By solving the BN presented in Fig. 1, the
uncertainties in the different nodes are propagated through
the network and allow the determination of the distribution
of the expected cost with respect to these uncertainties.

One of the advantages of using BN in risk assessment is
that it facilitates determining which uncertainties should be
reduced in order to increase confidence in the model. Not
all uncertainties, however, can be decreased by an increase
in knowledge. While aleatory uncertainties are inherent to a
system and cannot be reduced by more detailed information
(Parry, 1996), epistemic uncertainties result from incomplete
knowledge of the object under investigation and may be re-

duced as more knowledge about the processes and parame-
ters used in the model is obtained. Assigning the uncertainty
sources of our model into these two classes is not always
straightforward as in some cases no clear distinction between
natural variability and lack-of-knowledge can be made. We
will only incorporate epistemic uncertainties in the analysis,
as these reflect our confidence in the model. Table 1 lists
all the uncertainty sources in our BN and highlights the ones
that we consider as epistemic.

To represent the epistemic uncertainty in the analysis, we
determine the upper (u) and lower (l) bounds of the 95%
Bayesian credible interval (sometimes also interpreted as
confidence interval) for the total cost at each location. These
upper and lower bounds are calculated from the distribution
of the total costCT E as:

u = F−1
CT E

(0.975) (5)

l = F−1
CT E

(0.025) (6)
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Table 1. Sources of uncertainty in the risk assessment model sep-
arated into aleatory and epistemic uncertainty. Only the epistemic
uncertainty is considered in the uncertainty analysis.

Aleatory uncertainty Epistemic uncertainty

avalanche release scenario friction parameters
car presence building damage
bus presence car damage
people’s presence in building bus damage

lethality in buildings
lethality in cars
lethality in buses
persons per building
persons per car
persons per bus

With F−1
CT E

(p) being the inverse of the cumulative proba-
bility distribution function of the total cost. The probability
distribution ofCT E is obtained by calculating the total cost
for given values of the input variables at each location and
by performing the expectation operation with respect to all
aleatory uncertaintiesXA:

CT E = EXA [CT ]

In a similar way, the aleatory uncertainties may be analysed,
in particular the uncertainties regarding the avalanche release
scenarios. The distribution of the total cost with respect to
these uncertainties is of utmost importance for the planning
of mitigation actions for extreme events.

2.1.5 Sensitivity analysis

Another way to establish the effect of the uncertainty associ-
ated with the distribution of the variables used in the BN is
to conduct a sensitivity analysis. In the present context, it is
useful to determine which variables have the largest impact
on the uncertainty in the total cost in order to economize re-
sources when improving the model. The Shannon measure
of mutual information provides a measure for ranking infor-
mation sources (Shannon and Waver, 1949; Pearl, 1988). It
is an indicator for the overall contribution of all the variables
toward reducing the uncertainty in a target variable (T). It is
based on the assumption that the uncertainty regarding any
variableX characterized by a probability distribution P(x)

can be represented by the entropy function:

H(X) = H(xi, ..., xn) = −

n∑
i=1

P(xi) log(xi) (7)

Based on Eq. (7) Shannon’s mutual information, which is
interpreted as the total uncertainty-reducing potential ofX,
is defined as (Pearl, 1988):

I (T , X) = H (T ) − H (T |X)

= −

n∑
i=1

m∑
j=1

P(tj , xi) log
P(tj , xi)

P (tj )P (xi)
(8)

Here, the target variable (T ) is the total cost of the avalanche
hazard in monetary terms,CT . To compute this quantity us-
ing the BN, we combine all utility nodes into one probabil-
ity node with states corresponding to the monetary values.
The variablesX include all the variables described in the BN
given in Fig. 1.

2.2 Risk assessment using the “traditional approach”

The approach traditionally applied for risk analysis is also
based on Eq. (1) (e.g. Wilhelm, 1997). We multiply the prob-
ability of each avalanche release scenario by the value of the
object exposed to the hazard, the probability of exposure, and
the vulnerability. In this study, the results of the AVAL-2D
provide snow pressures at each location. These data points
are linked to the damage potential using GIS. The data used
in the traditional approach is the same as the data used in
the BN approach, and is described in detail in Appendix A.
But, as opposed to the BN approach, the risk is computed
from the expected value of each random variable, thus ig-
noring the probability distribution of the variables and their
joint probability distribution. In other words, we replace all
probability distributions of the random variables by the mean
probabilities and calculate separately the risk for each build-
ing and road type for a given avalanche release scenario. If
all the relations among the variables in the BN were linear
(e.g. if the lethality in buildings was a linear function of the
building damage), then the BN approach would lead to the
same results as the traditional approach.

For example, we estimate the building damage costs of
a one-family house exposed to a 30-year avalanche release
scenario given a snow pressure between 20 kPa and less than
30 kPa by multiplying the probability of a 30-year avalanche
release scenario (0.03) with the probability of damage (0.74)
and a building value of 1.07 Mio CHF, which gives a risk of
23 000 CHF. Using the BN approach, we introduce an un-
certainty in the variable “building damage” by adding a state
“some damage”. The risk calculated using the BN amounts
then to 17 300 CHF.

Authors applying the traditional approach in avalanche
risk assessment often approximate modelling uncertainties
by means of deterministically defined buffer zones of the
avalanche pressure zones. This approach was used, for ex-
ample, to estimate uncertainties related to the damage poten-
tial in the Landschaft Davos by assessing the probable maxi-
mum loss (e.g. Fuchs et al., 2005; Bründl et al., 2006), which
would correspond to some fractile value of the distribution of
CT in our approach.

2.3 Case study and data sources

The study area is the “Landschaft Davos”, a commune in
the eastern part of the Swiss Alps. The area consists of a
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Fig. 3. The commune of Davos, covering totally 254 km2, is located in the eastern part of Switzerland. The Landwassertal is the main valley,
the Dischmatal is a hardly populated SE-oriented side-valley.

NE-SW-oriented main valley (Landwassertal) and four SE-
NW-oriented valleys. The Landschaft Davos has always been
an avalanche-prone area. The susceptibility of this area to
avalanche damages is illustrated by the facts that the altitude
of the valley bottoms is at 1400–1600 m above sea level, and
highest peaks are over 3000 m above sea level, approximately
40% of the precipitations fall as snow, and, as a general rule,
a closed snow cover is found from beginning of November
to the end of May. In 2000, approximately 13 000 inhabi-
tants lived in Davos, and up to 45 000 tourists were present
during winter time (BfS, 2001). In this study, we will specif-

ically focus on the “Landwassertal” and a sparsely populated
side-valley, the “Dischmatal” (Fig. 3). The two areas are de-
lineated based on a valley length of 6 km, and the surface
encompassing all avalanche release areas potentially threat-
ening these valley segments.

Main spatially explicit data sources include the vector25
dataset based on the National Map 1:25 000 (Swisstopo,
2003), which provides the locations and types of roads and
buildings on a resolution of 5 m×5 m. A detailed forest
cover map with forest structures on a 5 m×5 m raster based
on aerial photographs from 1950 and 2000 was provided by

www.nat-hazards-earth-syst-sci.net/6/911/2006/ Nat. Hazards Earth Syst. Sci., 6, 911–926, 2006
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Figure 4: Total annual risk including fatalities and property damages in the Davos area. 
 
Fig. 4. Total annual risk including fatalities and property damages in the Davos area.

Lardelli (2003). Topographical variables are obtained from
the 25 m DEM (DEM25, Swiss Federal Office of Topogra-
phy) and interpolated to a 5 m×5 m raster using the proce-
dure described in Gruber (1999).

Other values used in the risk assessment procedure are
based on literature data or were obtained by calculations.
Appendix A summarizes the source and values of the data in-
cluded in the nodes of the BN. Gaussian distributions based
on expert knowledge are used to model the variables and re-
lations for which no factual information is available. The
probability distribution of each variable reflects its degree of
uncertainty. Thus, it is necessary to consider all the available

information about the distribution of each variable. These
values can be updated in a later step knowing the importance
of their influence on the risk, which is investigated in the sen-
sitivity analysis.

3 Results

3.1 Risk calculations

Annual risks calculated using the BN in the section consid-
ered of the Landwassertal (3.1 Mio. CHF) exceed the annual

Nat. Hazards Earth Syst. Sci., 6, 911–926, 2006 www.nat-hazards-earth-syst-sci.net/6/911/2006/
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Table 2. Comparison of the annual risk given a 30-year and a 300-year avalanche release scenario in a section of the Landwassertal estimated
using the traditional approach and a Bayesian Network.

30-year avalanche release scenario 300-year avalanche release scenario
Traditional Bayesian % difference Traditional Bayesian % difference
approach Network approach Network
[CHF/yr] approach [CHF/yr] approach

[CHF/yr] [CHF/yr]

multiple family house 1 392 502 996 266 28 419 012 269 788 36
one-family house 620 871 485 565 22 114 342 84 892 26
hospital and clinic 0 0 0 87 061 42 080 52
hotel 70 850 51 279 28 41 971 30 130 28
asylum 0 0 0 29 020 21 040 28
guest-house 56 266 40 350 28 23 330 14 953 36
administration 120 658 95 736 21 20 110 15 956 21
factory and one-family house 6300 4568 27 14 240 4153 71
ski-lift 0 0 0 11 190 4888 56
school and sport facilities 0 0 0 7916 5739 28
trafo 31 290 22 685 28 5215 3781 27
industry 0 0 0 2918 2114 28
agricultural building 2346 1701 27 484 345 29
industrial garage 56 40 29 93 7 93
chapel 0 0 0 0 0 0

risks in the section of the Dischmatal (1.7 Mio. CHF) by far
(Fig. 4). The difference is mainly due to larger number of
objects exposed to avalanches in the Landwassertal. The col-
lective risk on roads is negligible in both valleys, amounting
to 9500 CHF/year in the Landwassertal and 10 900 CHF/year
in the Dischmatal. This is because in the Landwassertal, only
a few road segments are exposed to risk, in the Dischmatal,
the traffic frequency is low. Evacuation measures are calcu-
lated to reduce the risk by 10% in the Landwassertal and 30%
in the Dischmatal. We are, however, not considering risk ac-
ceptance criteria for highly exposed individuals such as road
workers and rescuers for which specific presence probabili-
ties would have to be assessed.

BN cannot only be used to estimate risk in a spatially ex-
plicit manner. They allow also the computation of the total
annual risk in a region as associated with the different snow
conditions, here represented in a discrete manner through the
different release scenarios, as illustrated in Fig. 5. It is ob-
served that the decrease in annual risk under larger and rarer
avalanche events is gradual in the Dischmatal. In contrary,
the low risk related to smaller avalanche events (the sce-
nario corresponding to an assumed 10 years return period) in
the Landwassertal reflects the fact that frequent but smaller
avalanches do not reach highly populated areas.

Risk calculated using the traditional approach (6 Mio.
CHF in the section of the Landwassertal) is 50% higher than
the risk computed using the BN. The difference is mainly
due to the probability distributions introduced in the vari-
ables “building damage” and “lethality in building”, which
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Fig. 5. Distribution of the total annual risk in the Landwassertal and
the Dischmatal for different avalanche release scenarios.

influence the monetary consequences. Table 2 illustrates this
difference in costs by building categories under the 30-year
and the 300-year avalanche release scenario. Risks in one-
and multiple-family houses, which are by and large at risk in
the case study area, are the main drivers of this difference.
Furthermore, these results confirm the findings presented in
Fig. 5, where the 30-year avalanche release scenario causes
more damage than the 300-year avalanche release scenario.
In Fuchs and McAlpin (2005), the maximum probable loss
for the area was estimated as amounting to 714 Mio. Euro
using building insurance values.

www.nat-hazards-earth-syst-sci.net/6/911/2006/ Nat. Hazards Earth Syst. Sci., 6, 911–926, 2006



920 A. Gr̂et-Regamey and D. Straub: Avalanche risk assessment linking Bayesian network to a GIS

Table 3. Shannon mutual information I (CT , X), Eq. (7), withCT

as the total cost of the avalanche hazard, andX, all variables influ-
encingCT .

Variables Shannon mutual
information

house construction 0.73
people’s presence in buildings 0.66
pressure 0.29
lethality in buildings 0.07
evacuation effectiveness 0.01
lethality in car 2.16×10−3

car damage 1.55×10−4

lethality in bus 8.40×10−5

friction parameter 7.67×10−6

snow fracture depth 4.71×10−7

bus damage 4.64×10−7

persons per car 1.39×10−7

All nodes not listed in this table have entropy reduction values of 0.

3.2 Uncertainty and sensitivity analyses

The uncertainty analysis yields Bayesian credible intervals
for the overall costs, including all sources of epistemic un-
certainty presented in Table 1. The maximum credible in-
terval calculated from these uncertainty distributions is large
(1.4 Mio. CHF) compared to the maximal expected cost of
235 000 CHF. As the intervals are relevant on the scale of
buildings, Fig. 6 shows a credible interval map of a selected
area in the Landwassertal. Uncertainties related to costs on
roads were not represented as the costs are negligible com-
pared to those of buildings. As all the lower bound values lie
between 0 and 1000 CHF, they are not represented in Fig. 6.
A comparison of the expected costs with the upper credible
interval allows assessing the confidence in the results and the
areas of greatest potential error. A map of expected cost val-
ues used alone would give a false impression of precision:
Risk values located at the border of the avalanche run-out
zones have large confidence intervals, pointing to the large
uncertainties in the estimation of the costs at these locations,
and showing that a more reliable calculation of the avalanche
pressures are crucial for reducing the uncertainty in the risk
assessment. Furthermore, in zones affected mainly by low
pressure avalanches, uncertainties are larger for light weight
construction buildings such as agricultural buildings because
of the uncertainties related to the size of the damage (“some
damage” or “total damage”) of these buildings under low
avalanche pressures. The fact that the pressure and the house
construction nodes are two main sources of uncertainty is
confirmed in the sensitivity analysis.

Based on the sensitivity analysis, the variables “house con-
struction” and “people’s presence in buildings” are identi-
fied as having the greatest influence on the total cost of the

avalanche hazard (Table 3). Next most influential variable is
the pressure node. As the source of uncertainty of the vari-
ables “house construction” and “people’s presence in build-
ings” is epistemic, this result suggests that decision-makers
should prioritize local data collection efforts on these vari-
ables rather than on other variables listed in the BN. The un-
certainty in the pressure node can be reduced using observed
data as described in the next section.

3.3 Model improvement

As the avalanche pressure node was identified as having a
large influence on the cost values, we applied Bayesian in-
ference to determine a probabilistic model of the variables
influencing the calculated avalanche pressure using observa-
tions of past avalanches (Straub and Grêt-Regamey, 2006).
According to the BN presented in Fig. 1, we are thus in-
cluding uncertainties related to the physical parameters, and
the assumptions made in the release scenario. Figure 7
shows a section of the Landwassertal with the annual prob-
ability that an avalanche occurs using the original hazard
model and the improved Bayesian model. The original model
predicts a larger amount of shorter avalanches, whereas
the posterior model predicts fewer but larger avalanches.
This pattern is reflected in the risk values amounting to
3.1 Mio. CHF for risk in buildings and on roads using the
original avalanche hazard model and 6.5 Mio. CHF under
the improved Bayesian probabilistic model. In the original
avalanche hazard model, the parameters used in the AVAL-
2D were based on expert information (Gruber, 1999); in con-
trary, the parameters in the improved avalanche hazard model
were determined using Bayesian inference based on the ob-
servation of past avalanches.

4 Discussion

BN applied to natural hazards, as described in this paper,
has a number of specific advantages over the traditional ap-
proach, especially when operated within the context of a GIS.

Primarily, it allows for a consistent modelling of the risk
arising from natural hazard. We show that the organization of
the risk assessment procedure into a BN supports a structured
approach to the interdisciplinary task requiring information
from different specialist fields. For example, Fig. 1 shows
the complexity of the factors involved in natural hazard risk
assessment: The modelling of exposure, usually carried out
by natural scientists, the assessment of system resistance as
well as the robustness generally performed by engineers, and
the monetarisation of the damages involving economists are
assembled into a single model, which facilitates the commu-
nication between the experts. If specialists identify variables
which might have an impact on the risk but are missing data,
they still can include them into the structure of the network
leaving them uninstantiated. If at a later stage information

Nat. Hazards Earth Syst. Sci., 6, 911–926, 2006 www.nat-hazards-earth-syst-sci.net/6/911/2006/



A. Grêt-Regamey and D. Straub: Avalanche risk assessment linking Bayesian network to a GIS 921

 

1.4 Mio. CHF/year 

 
 
Figure 6: Bayesian credible intervals map. The red bars represent the expected cost value 
at each location; the yellow bars are the upper bound values of the credible interval. The 
lower bound values are not represented as they all lie between 0 and 1000 CHF. The grey 
areas represent the avalanche extent under a 300-year scenario.

Fig. 6. Bayesian credible intervals map. The red bars represent the expected cost value at each location; the yellow bars are the upper bound
values of the credible interval. The lower bound values are not represented as they all lie between 0 and 1000 CHF. The blue areas represent
the avalanche extent under a 300-year scenario.

becomes available regarding these variables, it can then sim-
ply be incorporated in the procedure.

Moreover, the integration of the probabilistic approach
into a GIS allows quantifying and visualizing uncertainties in
a spatially explicit manner, which is a basis to provide credi-
ble information to planners. We show that, in the case study
area, the risks estimated using a traditional risk approach are
approximately 50% higher than the risks estimated using the
BN. Uncertainties are large at the border of the avalanche
run-out areas and are visualized in terms of credible inter-
vals of the overall cost values (Fig. 6). Such maps thus allow
objectively expressing confidence in the model results and
visualizing its geographical variation.

Another advantage of using BN in natural risk assessment
is the possibility to identify the variables causing large un-
certainties in the results. In this study, we examine the dif-
ferent sources of model uncertainties, and identify uncertain-
ties related to the house construction, people’s presence in
buildings, and the pressure variables as having the largest im-
pact on the costs. By improving the avalanche model using
Bayesian inference (Straub and Grêt-Regamey, 2006) we see
that the calculated risk increases by 34%. Such finding is rel-

evant for land-use planning activities such as hazard maps, as
uncertainties in avalanche run-out areas can have a large im-
pact on decision-making, especially in view of the increas-
ing pressure to build into the near boundary of the endan-
gered areas. By explicitly addressing these uncertainties, the
BN approach allows quantifying their effects and facilitates
identifying where future model improvements and data col-
lection efforts should be concentrated. For example, we find
that by improving the avalanche run-out model, collecting
more data on people’s presence in buildings and vulnerabili-
ties of buildings to avalanche pressure, confidence in the risk
assessment results can be increased.

Yet, as the causal relationships between the variables in-
fluence the results, it is important that the design of the net-
work is discussed in an early planning step with specialists
and decision-makers in order to include the important fac-
tors in the analysis. Here, we did not include nodes describ-
ing the comprehensive valuation of indirect costs. We sim-
ply added a percentage of the building costs for quantify-
ing indirect consequences based on the literature. A detailed
analysis of the indirect costs including demographical, en-
vironmental, medical, psychological, social and economical,
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Fig. 7. Annual probability that an avalanche occurs, as evaluated with the prior model(a) and the posterior model(b) model. The annual
probabilities range from 2.5×10−9 (brown) to 0.15 (blue).

structural and lifeline, and historical consequences (Faizian
et al., 2004) may increase the risk considerably. Furthermore,
other uncertainty factors especially related to the GIS data
such as the vector25 dataset or the DEM could also be in-
cluded in such analysis; thus providing an approach to com-
municate error in spatial databases and study their impact on
risk analysis.

The proposed framework offers many possibilities for fur-
ther development in regard to the assessment and presenta-
tion of the spatial and temporal distribution of the risk. In its
present version, the BN is evaluated for each cell individu-
ally, and thus only the risks and the credible intervals of the
costs at each location are assessed. The spatial and temporal
dependency structure of the risk is not evaluated. This de-
pendency structure is of eminent importance for the planning
of mitigation actions as well as for the inclusion of societal
follow-up consequences. A small illustration of this aspect
is given in Fig. 5, showing the distribution of the risk under
different release scenarios: Objects in the Landwassertal are
threatened by less frequent but much larger events compared
to objects in the Dischmatal. However, this example is based
on the simplifying assumption that the release scenarios are
fully independent for the entire area (clearly an unrealistic
assumption). Also, other dependencies of the variables in
the model are not considered, e.g. the occupancy of different
houses is clearly not independent, as the regional economy is
dominated by tourism and thus introducing a common tem-
poral fluctuation in housing occupancy. These spatial and
temporal dependencies can be included by combining indi-
vidual BN in the model to one single model. As long as

the individual BN are only related through common parent
nodes, such a combination is computationally tractable.

If applied for the purpose of defining mitigation action
plans, BN integrated into a GIS can be extended to provide a
tool for optimal risk based decision making. In this study, we
only consider evacuation as protection measure and ignore
all the protection measures actually in place at many loca-
tions in the case study area. Investigating the effect of differ-
ent protective actions on the risk values using the framework
presented in this paper will be an important future applica-
tion of the model.

5 Conclusions

Considering the importance of an explicit consideration of
uncertainties, BN linked to a GIS are supportive for present-
ing credible risk assessments to decision-makers. The ap-
proach unifies human expertise and quantitative knowledge
in a coherent framework, which overcomes a major limita-
tion of previous approaches; thus enhancing the understand-
ing of the interdependencies of the involved processes and
decisions. Furthermore, confidence intervals represented in
a spatially explicit manner support the spatial interpretation
of the risk. Lastly, as BN support modelling of the various in-
terdependencies caused by common influencing parameters,
such an approach might also have a large potential for link-
ing different natural hazard risks in a single system, which is
worthy of further investigation.
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Table A1. Values used in the BN nodes, organized into the generic categories exposure, resistance and robustness.

Node # states Description of states Source of probability distribution

E
xp

os
ur

e

Avalanche release
scenario

5 1 year/10years/30 years/100
years/300 years

Direct function of the corresponding return period
(Straub and Gr̂et-Regamey, 2006): 0.89, 0.06, 0.03,
0.015, and 0.005

Friction parame-
ters

9 µ1, µ2, µ3, µ4, µ5, µ6,
µ7, µ8, µ9

Following Straub and Grêt-Regamey (2006)

Pressure 5 0 kPa
>0 kPa and<=3 kPa
> 3 kPa and<=10 kPa
>10 kPa and<=20 kPa
>20 kPa and<=30 kPa
>30 kPa

Deterministic relations, calculated with AVAL-2D as a
function of the friction parameters and the release sce-
narios.

R
es

is
ta

nc
e

Building damage 3 yes/some/no For one-family and multiple -family house: Barbolini
et al. (2004), Fig. 4;
otherwise Borter (1999), p. 125; added state “some
damage” (90% of damage =“yes”).
Upslope buildings within the snow accumulation area
were not accounted for the protection of buildings
downslope.

Car damage 2 yes/no assumed 99% car damage under avalanche event

Bus damage 2 yes/no assumed 99% bus damage under avalanche event

Car presence 2 yes/no Presence =p* g*DTV/v*24 (Wilhelm, 1997), where
p ( presence probability) = 113 days/181 days
g=0.025
DTV (average number of cars per day) = 100 on first
class road; 5 on second class road, 1 on third class road,
and 0 on fourth class road
v (average speed) = 50 km/h on first class road, and
30 km/h on other roads

Bus presence 2 yes/no Wilhelm (1997), where
p=113 days / 181 days
DTV=2000 on first class road; 50 on second class road,
30 on third class road, and 20 on fourth class road
v=50 km/h on first class road, and 30 km/h on other
roads

House construc-
tion

6 agricultural building
administration building
one-family house
multiple-family house
armed concrete
safety construction

Borter (1999), p. 125

Building type 18 agriculture building, garage,
one-family house, multiple-
family house, administration,
school, hotel, industry, hospi-
tal , living and work, chair-
lift, apparthotel, staff house
restaurant, trafo, reservoir,
shop, church, depot

Hard labeling based on location of buildings given by
Ingenieurb̈uro Darnuzer, Davos, (unpublished data)
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Table A1. Continued.

Node # states Description of states Source of probability distribution

People’s presence
in building

2 yes/no presence =T* D/24*7 (Borter, 1999a, p. 64), where
T is the average presence time in hours per day, D is the
average presence time in days pro week

Road type 4 1. class road
2. class road
3. class road
4. class road

Hard labeling based on location of roads (Vector25
data, SWISSTOPO, 2003)

Evacuation effec-
tiveness

2 Effective/non-effective Fuchs and McAlpin (2005)

Evacuation costs 1000 CHF per building based on amount of people evacuated, time for evacu-
ation, frequency of evacuation per year, hourly rate of
helpers.

R
ob

us
tn

es
s

Lethality in build-
ings

2 yes, no Barbolini et al. (2004), Fig. 5. For the category “some
damage”, assumed 50% lethality of “total damage”

Lethality in cars 2 yes, no Borter (1999a, p. 72) for pressures 0–3 kN, and
>21 kN. The other values are extrapolated from the val-
ues of Borter (1999a)

Lethality in buses 2 yes, no Borter (1999a, p. 72) for pressures 0–3 kN, and
>21 kN. The other values are extrapolated from the val-
ues of Borter (1999a)

Persons per build-
ing

101 numeric: 0–100 Mean based on Wilhelm (1997); variance proportional
to mean.

Persons per car 3 Numeric: 1, 1.6, 2 Mean based on Borter (1999a, p. 72); variance propor-
tional to mean.

Persons per bus Numeric: 2, 20,50 Mean based on Borter (1999a, p. 72); variance propor-
tional to mean.

Cost of human
death

1 5 Mio. CHF Life Quality Index approach amounting according to
Merz et al. (1995)

Cost of destroyed
car

30 000 CHF assumed based onhttp://wdb.wardsauto.com/ar/auto
averagenewcarprice

Cost of destroyed
bus

1 Mio. CHF assumed

Cost of destroyed
building
Indirect costs
of destroyed
building

Belongings: 24%, infrastruc-
ture: 15%, socio-economic
costs: 10% of building value.

Communal cadastral register (Davos commune, unpub-
lished data)
Wilhelm (1997), pp. 230–236
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versẗat Zürich und SLF Davos, pp. 106, 2003.

Merz, H. A., Schneider, T., and Bohnenblust, H.: Bewertung
von technischen Risiken – Beiträge zur Strukturierung und zum
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