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Abstract. Although there is an accumulated charge of theo-
retical, computational, and numerical work, like catastrophe
theory, bifurcation theory, stochastic and deterministic chaos
theory, there is an important feeling that these matters do
not completely cover the physics of real catastrophic events.
Recent studies have suggested that a large variety of com-
plex processes, including earthquakes, heartbeats, and neu-
ronal dynamics, exhibits statistical similarities. Here we are
studying in terms of complexity and non linear techniques
whether isomorphic signatures emerged indicating the tran-
sition from the normal state to the both geological and bi-
ological shocks. In the last 15 years, the study of Com-
plex Systems has emerged as a recognized field in its own
right, although a good definition of what a complex system
is, actually is eluded. A basic reason for our interest in com-
plexity is the striking similarity in behaviour close to irre-
versible phase transitions among systems that are otherwise
quite different in nature. It is by now recognized that the
pre-seismic electromagnetic time-series contain valuable in-
formation about the earthquake preparation process, which
cannot be extracted without the use of important computa-
tional power, probably in connection with computer Algebra
techniques. This paper presents an analysis, the aim of which
is to indicate the approach of the global instability in the pre-
focal area. Non-linear characteristics are studied by apply-
ing two techniques, namely the Correlation Dimension Esti-
mation and the Approximate Entropy. These two non-linear
techniques present coherent conclusions, and could cooper-
ate with an independent fractal spectral analysis to provide a
detection concerning the emergence of the nucleation phase
of the impending catastrophic event. In the context of similar
mathematical background, it would be interesting to augment
this description of pre-seismic electromagnetic anomalies in
order to cover biological crises, namely, epileptic seizure and
heart failure.

Correspondence to:K. A. Eftaxias
(ceftax@phys.uoa.gr)

1 Introduction

Prediction of natural phenomena has always been a well-
pondered problem. In physics, the predictability degree of
a phenomenon is often measured by how well we understand
it. Despite the large amount of experimental data and the
considerable effort that has been undertaken by the material
scientists, many questions about the fracture remain stand-
ing.

When a heterogeneous material is strained, its evolution
toward breaking is characterized by the nucleation and co-
alescence of micro-cracks before the final break-up. Both
acoustic as well as electromagnetic (EM) emission in a
wide frequency spectrum ranging from very low frequen-
cies (VLF) to very high frequencies (VHF), is produced
by micro-cracks, which can be considered as the so-called
precursors of general fracture. These precursors are de-
tectable both at a laboratory and a geological scale. Sev-
eral experimental results, which illustrate the connection
between anomalous VLF-VHF electromagnetic phenomena
and acoustic phenomena with earthquake preparation, were
presented in a rather comprehensive collection of papers
edited by (Hayakawa and Fujinawa, 1994; Hayakawa, 1999;
Hayakawa and Molchanov, 2002).

Aiming at recording VLF-VHF electromagnetic precur-
sors, since 1994 a station was installed at a mountainous
site of Zante island (37.76◦ N–20.76◦ E) in western Greece
(Fig. 1).

An important earthquake (Ms=5.9) occurred on 7 Septem-
ber 1999 at 11:56 GMT at a distance of about 20 km from the
center of the city of Athens, the capital of Greece. Very clear
electromagnetic anomalies have been detected in the VLF
band (Fig.2), i.e. at 3 kHz and 10 kHz, before the Athens
EQ (Eftaxias et al., 2000, 2001). The whole EM precursors
were emerged from 31 August to 7 September 1999 (Fig.2).
It is characterized by an accelerating emission rate (Fig.2),
while, this radiation is embedded in a long duration quies-
cence period concerning the detection of EM disturbances
at the VLF frequency band. These emissions have a rather
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Fig. 1. The map demonstrates the location of the Zante RF station (�) and the epicentres of the Athens and Kozani-Grevena earthquakes
(©).

long duration, (the data were sampled at 1 Hz), and thus it
provides sufficient data for statistical analysis.

Recently, in a series of papers (Eftaxias et al., 2001, 2002;
Kapiris et al., 2003, 2004b,a; Eftaxias et al., 2004), we at-
tempt to establish the hypothesis that the pre-seismic elec-
tromagnetic emissions offer a potential window for a step
by step monitoring of the last stages of earthquake prepara-
tion processes. However, it is difficult to prove association
between any two events (possible precursor and earthquake)
separated in times. As a major result, the present study indi-
cates that it seems useful to combine various computational
methods to enhance the association of the pre-seismic EM
phenomena with micro-fracturing in the pre-focal area. The
achievement of converging estimations would definitely im-
prove the chances for an understanding of the physics behind
the generation of earthquakes.

2 Background information

In this section, we briefly describe the algorithms that were
used and compared in this study. Their main characteristics
as well as the reasons they were chosen are discussed.

2.1 The Delay Times Method

The Delay Times method is an important tool in non-linear
analysis and gives both a qualitative and quantitative mea-
sure of the complexity of the time-series under examination.
It was first established by (Grassberger and Procaccia, 1983)
and is based on the Takens Theorem (Takens, 1981). A time-
series is constructed from a set of successive and experimen-
tally derived values. From the original time-series we then
construct a new series, which in this case is composed of
vectors. For the construction of each of the vectors the es-
timation of two parameters, the embedding dimension,m,
and the time lag,τ , is required. The time lag represents
the window that is used for the computation of the coordi-
nates of these vectors. It is estimated from the decorrelation
time, which is the window beyond which the signal ceases
to present periodicities. The decorrelation time is calculated
either from the first zero-value of the autocorrelation func-
tion, or from the first value of the mutual information func-
tion (Farmer and Swinney, 1986) that is close to zero. The
mutual information function is a widely accepted method that
computes non-linear and linear correlation of a signal. The
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Fig. 2. Time-series of the 10kHz (E-W) magnetic field strength between 4 July 1999 and 11 September 1999 in arbitrary units. The
precursory accelerating emission is embedded in a long duration of quiescence period. The star indicate the time of the Athens earthquake
occurrence.

parameterm is assigned increasing integer values, in a range
that satisfies both the Takens criterion and the maximum ad-
mitted window length, according to basic non-linear dynam-
ics theory. Appendix A includes analytical information on
these parameters, as well as a detailed description of the en-
tire Delay Times method.

Once the above is completed, the correlation integral,
C(r), is computed for increasing values ofr. This integral
basically computes how many of the above vectors have a
distance between them less thanr, wherer is a ray in the
vector space. We are then able to plot ln(C) vs. ln(r), where
ln is the natural logarithm function. From this plot, we se-
lect a scaling region and compute the slope of the curve in
that region. This process is repeated for increasing values of
the embedding dimension,m, and if the values of the slopes
converge, then we have found the Correlation DimensionD2
of the time-seriesX(t). The convergence value of the slope
is an estimation of the Correlation Dimension. A time-series
that results from a complex non-linear dynamic system yields
a larger value for the Correlation Dimension, as opposed to a
time-series which results from a regular and linear dynamic
system, lower Correlation Dimension values. Generally, the

Correlation Dimension,D2, represents the independent de-
grees of freedom that are required for the proper description
of a system or for the construction of its model.

2.2 The Approximate Entropy

There are various definitions of entropy, most of which usu-
ally arise from entropy computation such as the Shannon
entropy or the Kolmogorov-Sinai entropy. From all known
methods, Approximate Entropy (ApEn) is chosen, since it
has been introduced as a quantification of regularity in data
and as the natural information parameter for an approximat-
ing Markov Chain to a process (Pincus, 1991).

Given the original time-seriesX(t), we construct a series
of vectors, and then we find the heuristic estimation of an in-
teger parameter,m, which in this case represents a window
size. We then, one again, heuristically estimate a thresh-
old, r, which arises from the product of the standard devi-
ation of the time series and an arbitrary constant form 0 to
1, which is kept the same for all time-series. We then ap-
ply an iterative procedure which finally produces an approx-
imation ofApEn(m, r). Generally, random time-series pro-
duce increasing values ofApEn(m, r), compared to regular
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Fig. 3. View of the time-series of 10kHz E-W. The four epochs in which the calculation are made are depicted.

time-series, a property which we exploit here. More details
as well as a more analytical description of the method are
included in Appendix B.

2.3 The fractal spectral analysis

The concept of fractal is most often associated with irregular
geometric objects that display self-similarity. Fractal forms
are composed of subunits (and sub-sub-units, etc.) that re-
semble the structure of the overall object. The fractal analy-
sis can be applied not just in irregular geometric forms that
lack a characteristic (single) scale of length, but also to cer-
tain complex processes that generate irregular fluctuations
across multiple time scales, analogous to scale-invariant ob-
jects that have a branching or wrinkly structure across mul-
tiple length scales. Earthquakes happen in self-organizing
complex systems consisting of many non linear interacting
units, namely opening micro-cracks. Self-organized com-
plexity manifests itself in linkages between space and time
producing fractal processes and structures. Herein, we con-
centrate on the question whether distinctive alterations in as-
sociated scaling parameters emerge as earthquakes are ap-
proaching.

We focus on the statistics of the detected electromagnetic
fluctuations with respect to their amplitude, let’s sayA(ti).
We attempt to investigate autocorrelation structures in these
time-series. Any time series may exhibit a variety of autocor-
relation structures; successive terms may show strong (brown
noise), moderate (pink noise) or no (white noise) correlation
with previous terms. The strength of these correlations pro-
vides useful information about the inherent “memory” of the
system. The power spectrum,S(f ), which measures the rela-
tive frequency content of a signal, is probably the most com-
monly used technique to detect structure in time-series. If
the time-seriesA(ti) is a fractal time series that series cannot
have a characteristic time scale. But a fractal time series can-
not have any characteristic frequency either. The only pos-
sibility is then that the power spectrumS(f ) has a scaling
form:

S(f ) ∼ f −β (1)

where the power spectrumS(f ) quantifies the correlations at
the time scaleτ∼1/f andf is the frequency of the Fourier

transform. In a lnS(f )− ln(f ) representation the power
spectrum is a line with linear spectral slopeβ. The linear
correlation coefficient,r, is a measure of the goodness of fit
to the power law Eq. (1).

Our approach is to calculate the fractal parameterβ and
the linear correlation coefficientr of the power law fit di-
viding the signal into successive segments of 1024 samples
each, in order to study not only the presence of a power law
S(f )∼f −β but, mainly, the temporal evolution of the asso-
ciated parametersβ andr. The Continuous Wavelet Trans-
form (CWT), using Morlet wavelet, is applied to compute the
power spectrum, since being superior to the Fourier spectral
analysis providing excellent decompositions within the max-
imum admitted window length (Kaiser, 1994).

3 Methods – Results

A convenient way to examine transient phenomena is to di-
vide the measurements in time windows and analyze these
windows. If this analysis yields different results for some
precursory time intervals (epochs), then a transient behaviour
can be extracted. We apply this technique for each of the
methods used below.

We discriminate four epochs in the EM time series under
study (Fig. 3). The first epoch refers to the electromagnet-
ically quiescent period preceding the emergence of the EM
anomaly. The second and third epochs include the precur-
sory (possibly seismogenic) EM activity. We separate two
time intervals during the detection of this EM anomaly, be-
cause we mainly search for the appearance of transient phe-
nomena during the last preparation stage of the main shock.
Finally, the fourth epoch refers to the period after the abrupt
termination of the recorded EM anomaly.

3.1 Application of the Delay Times method

Through the use of the autocorrelation and mutual informa-
tion functions, a value was determined for the time lag,τ ,
that is most suitable for this study and that wasτ=7. The di-
mensions chosen for the phase space reconstruction started
at m=3 and went tom=20. Both m and τ values were
based on the fact that after several trials these values yield
the best reconstruction and thus lead to more accurate results
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to the EM precursory activity. We observe a dramatic shift of the distribution of theD2-values in epoch 3. This evidence indicates a strong
reduction of complexity during the emergence of the two strong EM bursts in the tail of the precursory emission.
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Fig. 5. We first estimate the Approximate Entropy,ApEn, in consecutive segments of 3000 samples each. Then, we trace the distribution of
theseApEn-values for four consecutive epochs that correspond exactly to the four epochs of Fig.4. In the epoch 2, we observe an important
shift of ApEn-values to lower values. This indicates that the emerged EM emission has a behavior far from this of the EM background. The
right lobe that appears in epoch 3 corresponds to the EM background, while the left lobe corresponds to the EM precursory activity. We
observe a dramatic reduction of complexity during the emergence of the two strong EM bursts in the tail of the precursory emission.

and subject discrimination. The correlation integral was then
calculated for an extended range ofr (up to 108, experimen-
tally determined).

We calculate the correlation dimension,D2, associated
with successive segments of 3000 samples each and study
the distributions of correlation dimensionD2 in four con-
secutive time intervals (Fig.3). We recall that the recorded
VLF EM anomaly of gradual increasing activity has been
launched through a long duration kilohertz EM quiescence,
while they ceased a few hours before the Athens earthquake.
The first time interval corresponds to the quiescence EM pe-
riod preceding the EM anomaly. The second and third time
intervals correspond to the period of the recorded precursory
anomaly; the third time interval includes the two strong im-
pulsive bursts in the tail of the precursory emission. The
fourth time interval refers to the quiescence period after the
cessation of the precursory emission.

We underline the similarity of the distributions of theD2-
values in the first and fourth time intervals (Fig.4). This
allmost common distribution characterizes the order of com-

plexity in the background noise of the EM time series. The
associated predominanceD2-values, from 7 up to 10, indi-
cate a strong complexity and non linearity. Notice, that a
relevant lobe remains in the distributions ofD2-values in the
second and third time interval, as it was expected.

Now, we focus on the second and third time intervals,
namely during the emergence of the precursory emission.
We observe a significant decrease of theD2-values as we
move from the second to the third time window. The ob-
served significant decrease of theD2-values signals a strong
loss of complexity in the underlying fracto-electromagnetic
mechanism during the launching of the two strong EM bursts
in the tail of the precursory emission. This evidence might
be indicated by the appearance of a new phase in the tail of
the earthquake preparation process, which is characterized by
a higher order of organization. Sufficient experimental evi-
dence seems to support the association of the aforementioned
two EM bursts with the nucleation phase of the impending
earthquake (Eftaxias et al., 2001; Kapiris et al., 2004b).
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Fig. 6. (a)We first estimate the exponentβ, in consecutive segments of 1024 samples each. Then, we trace the distribution of theseβ-values
for four consecutive epochs. The four epochs are depicted in Fig.3 and correspond exactly to the four epochs of Fig.4 and Fig.5. Insets show
percentage of segments withr>0.85. It is evident that the closer the final stage of seismic process, the larger the percentage of segments
with r>0.85, and the larger shift ofβ to higher values. Notice that in epoch 3 the signal becomes persistent.(b) The propability distributions
of linear coef.r beyond 0.85.

These findings suggest that there is important informa-
tion in terms of correlation dimension hidden in the hetero-
geneities of the pre-seismic time series. The correlation di-
mensionD2 in the sequence of the precursory EM pulses
seems to measure the distance from the global instability: the
larger theD2-values the larger the distance from the critical
point.

3.2 Application of the Approximate Entropy method

The Approximate Entropy was computed for a variety ofr-
values proposed by previous researchers and it was found
that the optimum value yielding clearest discrimination was
the valuer=0.65ST D, whereST D is the standard deviation
of the time-series.

We calculate the Approximate Entropy associated with
successive segments of 3000 samples each and study the dis-
tributions of theApEn-values in four consecutive time in-
tervals, as in the case of the study in terms of Correlation
Dimension (Fig.5).

We observe again the similarity of the distributions of the
ApEn-values in the first and fourth time intervals: this all-
most common distribution refers to the background noise of
the EM time series. A relevant lobe remains in the distribu-
tions of theApEn-values in the second and third time inter-
val, as it was expected.

Now, we concentrate on the second and third time inter-
vals, namely during the emergence of the precursory emis-
sion. We observe a significant decrease of theApEn-values
as we move from the second to the third time window. The

observed considerable decrease of theApEn-values in the
third time interval reveals a strong loss of complexity in
the underlying mechano-electromagnetic transduction dur-
ing the launching of the two strong EM bursts in the tail
of the precursory emission. In other words, the pre-focal
area seems to be less responsive to the external stimuli when
the pre-seismic EM signals are characterized by lowApEn-
values.

In summary, in the pre-seismic EM time-series the values
of the Correlation Dimension and Approximate Entropy are
reduced as the main event is approached. This evidence
indicates that the underlying fracto-electromagnetic mech-
anism exhibits a strong complexity and non-linearity far
from the global failure. A significant loss of complexity and
non-linearity is observed close to the global instability. This
considerable alteration in bothD2-values andApEn-values
might be considered as candidate precursor of the impending
event.

Remark

According to the appendixes, the method of Correla-
tion Dimension (CorrDim) embeds the original time series
into a phase space of dimension 3 to 20, examining thus
the probability distribution of a norm defined in this phase
space, contrary to the Approximate Entropy method which
embeds the original time series in a 2-dimensional phase
space only. As a result, the CorrDim method yields a more
detailed description of a system’s complexity, comparing to
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theApEn method, which focuses mainly to coarse grained
characteristics. When the examined time series is generated
by a low dimensional process, it is better to use theApEn

method. On the other hand, when the complexity of the
examined time series increases, the CorrDim method is
more suitable as it is more sensitive to high complexity.
In the cases of epochs 2 and 3 in Figs. 4 and 5, we are
able to observe the above mentioned property. Focusing
to epoch 2 in Fig. 5, the shift ofApEn-values to lower
values witnesses the reduction of complexity, and thus the
emergence of the precursor. In epoch 3 the complexity
has further been diminished. Thus theApEn method is
the proper one to describe the associated grouping activity
of the structures. Indeed, we observe that the probability
distributions of EQ-D2 and Background-D2 values seem to
be similar (epoch 3 in Fig. 4), while in the case ofApEn

method, the probability of EQ-ApEn values is larger than
the BackgroundApEn-values.

3.3 Application of fractal-dynamics

The spectral fractal analysis reveals that the pre-seismic elec-
tromagnetic fluctuations exhibit hidden scaling structure. We
observe alterations in the associated dynamical parameters,
which seem to uncover important features of the underlying
earthquake preparation process (Kapiris et al., 2002; Eftax-
ias et al., 2003; Kapiris et al., 2003, 2004b,a; Eftaxias et al.,
2004).

Figure6 exhibits the temporal evolution ofr as the main
event is approached. We observe a gradual increase of the
correlation coefficient with time: at the tail of the precursory
activity the fit to the power law is excellent. The fact that
the data are well fitted by the power-law (1) suggests that the
pre-seismic EM activity could be ascribed to a multi-time-
scale cooperative activity of numerous activated fundamental
units, namely, emitting-cracks, in which an individual unit’s
behavior is dominated by its neighbours so that all units si-
multaneously alter their behavior to a common large scale
fractal pattern. On the other hand, the gradual increase of
r indicates that the clustering in more compact fractal struc-
tures of activated cracks is strengthened with time.

Now we focus on the behavior ofβ-exponent. Two classes
of signal have been widely used to model stochastic frac-
tal time series (Heneghan and McDarby, 2000): fractional
Gaussian noise (fGn) and fractional Brownian motion (fBm).
These are, respectively, generalizations of white Gaussian
noise and Brownian motion. The nature of fractal behav-
ior (i.e. fGn versus fBm) provides insight into the physical
mechanism that generates the correlations: the fBm repre-
sents cumulative summation or integration of a fGn. A for-
mal mathematical definition of continuous fBm was first of-
fered by (Mandelbrot and Ness, 1968).

For the case of the fBm model the scaling exponentβ lies
between 1 and 3, while, the range ofβ from−1 to 1 indicates
the regime of fGn (Heneghan and McDarby, 2000). Fig. 6
reveals that during the epochs 2 and 3 (Fig. 3) theβ-values

are distributed in the region from 1 to 3. This means that the
possible seismogenic EM activity follows the fBm model.

We concentrate on the quiescent EM period (first epoch in
Fig. 3), preceding the emergence of the EM anomaly (sec-
ond and third epochs in Fig. 3). We observe that only a very
small number of segments, approximately 5%, follows the
power law (1) (see inserts in Fig. 6). We can conclude that
during the epoch 1 the associated time series do not behave
as a temporal fractal. Moreover, if we concentrate on the 5%
of the segments, the associatedβ-values range from 0 to 1,
namely, this minority of segments may follow the fGn model.
We conclude that regime of the quiescent period is quite dif-
ferent from those of the possible seismogenic emission. The
transition to the fractal structure and fBm class further iden-
tify the launch of the fracto-electromagnetic emission from
the background (noise) of EM activity.

The distribution ofβ-exponents is also shifted to higher
values (Fig.6) during the precursory period.

The precursory shift of the distribution of bothβ-exponent
andr-coefficient to higher values reveals important features
of the underlying mechanism. The fractal-laws observed cor-
roborate to the existence of memory; the system refers to
its history in order to define its future. As theβ-exponent
increases the spatial correlation in the time-series also in-
creases. This behaviour signals the gradual increase of the
memory, and thus the gradual loss of complexity in the pro-
cess.Maslov et al.(1994) have formally established the re-
lationship between spatial fractal behaviour and long-range
temporal correlations for a broad range of critical phenom-
ena. By studying the time correlations in the local activ-
ity, they show that the temporal and spatial activity can be
described as different cuts in the same underlying fractal.
Laboratory results support this hypothesis:Ponomarev et al.
(1997) have reported in phase changes of the temporal and
spatial Hurst exponents during sample deformation in labo-
ratory acoustic emission experiments. Consequently, the ob-
served increase of the temporal correlation in the pre-seismic
time-series may also reveal that the opening-cracks are cor-
related at larger scale length with time.

The following feature goes to the heart of the prob-
lem: first, single isolated micro-cracks emerge which, subse-
quently, grow and multiply. This leads to cooperative effects.
Finally, the main shock forms. The challenge is to determine
the “critical time-window” during which the “short-range”
correlations evolve into “long-range” ones. Fig.6a indicates
that the closer the global instability the larger the percent-
ages of segments withr close to 1 and the larger the shift
of β-exponent to higher values; theβ-values are maximal at
the tail of the pre-seismic state (Fig6b). This behaviour may
reveal the “critical time-window”.

The exponentβ is related to the Hurst parameter,H , by
the formula (Turcotte, 1992)

β = 2H + 1 with 0 < H < 1 and 1< β < 3 (2)

for the fBm model (Mandelbrot and Ness, 1968; Heneghan
and McDarby, 2000). Consequently, segments with Hurst-
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exponents estimated by the previous formula out of the range
0<H<1 do not follow the fBm model.

The exponent H characterizes the persistent/anti-
persistent properties of the signal according to the following
scheme. The range 0.5<H<1 (2<β<3) suggests persis-
tence of the signal, i.e. if the amplitude of fluctuations
increases in a time interval it is likely to continue increasing
in the interval immediately following. The range 0<H<0.5
(1<β<2) suggests anti-persistence of the signal, i.e. if the
fluctuations increase in a period, it is likely to continue
decreasing in the interval immediately following and vice
versa. H=0.5 (β=2) indicates no correlation between
the process increments, that is the system is characterized
by random fluctuations (Mandelbrot and Ness, 1968;
Hristopulos, 2003). Consequently, the particular valueβ=2
takes on a special physical meaning: it signals the transition
from anti-persistent to persistent behaviour in the time series.

Remark

As it was mentioned, the range−1<β<1 implies fGn
behavior. For this model the exponentβ is related to the
Hurst parameter by the formulaβ=2H−1 (Heneghan and
McDarby, 2000). Thus,H is also constrained to lie between
0 and 1 in epochs 1 and 4 (Fig. 6).

Physically, the Hurst exponent express the strength of
the effect of excitation associated with the preceding event
on succeeding events, or equivalently, the degree of nega-
tive/positive feedback in the dynamics. The range 0<H<0.5
(1<β<2) during the first period of the EM precursor in-
dicates a very large anti-persistency. This behaviour im-
plies a set of fluctuations tending to induce a greater stabil-
ity in the system. The observed shift of localH -exponents
can be understood if we accept that the micro-heterogeneity
of the system becomes less anti-correlated with time. The
anti-persistent properties during this period are consistent
with the existence of a non-linear feedback mechanism that
“kicks” the cracking rate in the pre-focal area away from ex-
tremes. The systematic increase of theβ-exponent (or Hurst-
exponent) indicates that the fluctuations become less anti-
correlated with time, i.e. the nonlinear negative feedbacks
gradually lose their ability to kick the system away from ex-
tremes. In other words, the decrease of heterogeneity appears
to lead to a decrease in the ability to drive the system away
from a persistent mode of opening-cracks evolution. It might
be argued that “the first anti-persistent part of the precursory
electromagnetic radiation is triggered by micro-fractures in
the disordered system that surrounds the, allmost, homoge-
neous backbones within the pre-focal area”.

For times close to breakthrough, allmost homogeneous
backbones of high strength sustain the elastic strain energy.
In the limit of a homogeneous system, once a crack nucle-
ates in the rock, the stress is enhanced at its tip and therefore
the next micro-crack almost surely develops at the tip. The
appearance of persistence properties within the two strong
impulsive signals at the tail of the precursory time series is
thought to be clue to the fracture of the high strength ho-

mogeneous backbones (Kapiris et al., 2004b; Eftaxias et al.,
2004; Kapiris et al., 2004a). This behaviour may witness that
the system has been starting to self-organize by a positive
feedback process, and thus, this acquires to a great degree
the property of irreversibility. The concept that the launch
of the persistence activity could give a significant hint of a
considerable probability for a forthcoming global instability,
namely, a significant event, can be accepted.

We have paid attention to the following experimental ev-
idence: The accelerating EM precursor (Fig.3) ends in two
clear persistent signals with an energy ratio (second to first
signal)∼5. The radar interferometry analysis showed activa-
tion of two separate faults with corresponding energy release
ratio (second to first signal)∼5 (Eftaxias et al., 2001; Kapiris
et al., 2004a). This surprising correlation in the energy do-
main enhances the consideration that the launch of persistent
dynamics may signals the emergence of the nucleation stage
of earthquake preparation.

It is worth mentioning that laboratory experiments by
means of acoustic and electromagnetic emission also show
that the main rupture occurs after the appearance of per-
sistence behaviour (Ponomarev et al., 1997; Alexeev and
Egorov, 1993; Alexeev et al., 1993) in the time-series.

We conclude that the aforementioned three methods
present coherent results: they clearly and accurately identify
significant alteration in terms ofD2-values,ApEn-values,
and Hurst-values, between the initial and terminal phase of
the pre-seismic EM emission. The coherent results signal
a significant loss of complexity in the tail of the precursory
EM activity, while the underlying fracto-electromagnetic
mechanism becomes persistent. The dynamical parameters,
D2, ApEn, and H , seems to represent a measure of the
distance of the system from the global instability. The lower
the D2-values, the lower theApEn-values, and the higher
the Hurst-values, then, the smaller the distance of the system
from the “critical point” (global instability).

Remark

A fundamental characteristic of probable EM precur-
sors is their appearance in a wide frequency band, ranging
from DC-ULF, ELF, VLF, and LF to VHF. The time elapsed
from the detection of the DC-ULF pre-seismic EM activity
to the occurrence of strong EQ (Varotsos et al., 1996;
Hayakawa et al., 1999, 2000; Telesca and Lapenna, 2001;
Varotsos and Sarlis, 2002; Ramirez-Rojas et al., 2004),
is longer than the time for the VLF-VHF emissions e.g.
(Gershenzon and Bambakidis, 2001; Eftaxias et al., 2001,
2002). Therefore, we can accept the concept that pre-seismic
signals may arise from different mechanisms, which do not
lie within the same time scales.

Authors have studied pre-seismic ULF geo-magnetic
(Hayakawa et al., 1999, 2000) and geo-electrical signals
(Telesca and Lapenna, 2001) in terms of fractal spectral anal-
ysis. Regarding the behavior of the spectralβ-exponent
observed, it seems that this is in contrast to the behavior
observed during the present study. Characteristically, the
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β-values showed a tendency to gradually decrease during the
process of the earthquake preparation. We think that this
difference supports the hypothesis that the ULF signals on
one hand and the VLF-VHF signals on the other hand may
have originated on different mechanisms. Indeed, it has been
suggested that the ULF geo-electical signals could be ex-
plained in these terms: (i) “Pressure Stimulated Currents”
that are transient currents emitted from a solid containing
electric dipole upon a gradual variation of pressure (Varotsos
and Alexopoulos, 1984a,b; Varotsos et al., 1996). (ii) The
electro-kinetic effect e.g (Mizutani and Ishido, 1976; Dobro-
volsky et al., 1989; Gershenzon and Bambakidis, 2001). Be-
cause electro-kinetic effect is controlled by the diffusion of
water with the diffusion time comparable to the period of
ULF emissions, more energy is provided to the ULF range
(Gershenzon and Bambakidis, 2001). We note that recently,
(Surkov et al., 2002) have explained the logarithmic depen-
dence of electric field amplitudeE on the earthquake mag-
nitudeM that is indicated by experimental results (Varotsos
et al., 1996).

4 From the normal state to the seismic shock or epilep-
tic seizure in terms of complexity

The world is made of highly interconnected parts on many
scales, the interactions of which results in a complex behav-
ior that requires separate interpretation of each level. The
laws that describe the behavior of a complex system are qual-
itatively different from those that govern its units. New fea-
tures emerge as one moves from one scale to another, so it
follows that the science of complexity is about revealing the
principles that govern the ways in which these new properties
appear.

A basic reason for our interest in complexity is the striking
similarity in behaviour close to irreversible phase transitions
among systems that are otherwise quite different in nature
(Stanley, 1999, 2000; Sornette, 2002; Vicsek, 2001, 2002;
Turcotte and Rudle, 2002). Recent studies have demon-
strated that a large variety of complex processes, including
earthquakes (Bak and Tang, 1989; Bak, 1997), forest fires
(Malamud et al., 1998), heartbeats (Peng et al., 1995), human
coordination (Gilden et al., 1995), neuronal dynamics (Wor-
rell et al., 2002), financial markets (Mantegna and Stanley,
1995) exhibits statistical similarities, most commonly power-
law scaling behaviour of a particular observable.Stanley
(2000) offer a brief and somewhat parochial overview of
some “exotic” statistical physics puzzles of possible interest
to biophysicists, medical physicists, and econophysics.

Interestingly, authors have suggested that earthquake’s dy-
namics and neurodynamics could be analyzed within similar
mathematical frameworks (Rundle et al., 2002). Character-
istically, slider block models are simple examples of driven
non-equilibrium threshold systems on a lattice. It has been
noted that these models, in addition to simulating the as-
pects of earthquakes and frictional sliding, may also repre-
sent the dynamics of neurological networks (Rundle et al.,

1995, and references therein). A few years ago,Bak et al.
(1987) coined the term self-organized criticality (SOC) to
describe the phenomenon observed in a particular automa-
ton model, nowadays known as the sandpile-model. This
system is critical in analogy with classical equilibrium criti-
cal phenomena, where neither characteristic time nor length
scales exist. In general, the strong analogies between the dy-
namics of the “self-organized-criticality” (SOC) model for
earthquakes and that of neurobiology have been realized by
numerous of authors (Hopfield, 1994), (Herz and Hopfield,
1995, and references there in), (Usher et al., 1995), (Zhao
and Chen, 2002, and references there in), (Beggs and Plenz,
2003).

Complexity does not have a strict definition, but a lot of
work on complexity centers around statistical power laws,
which describe the scaling properties of fractal processes and
structures that are common among systems that at least qual-
itative are considered complex. The big question is whether
there is a unified theory for the ways in which elements of
a system organize themselves to produce a behavior that is
followed by a large class of systems (Vicsek, 2002).

The aforementioned concepts motivated us to investigate
whether common precursory patterns are emerged during the
precursory stage of both epileptic seizure and earthquake (Li
et al., 2004).

The brain possesses more than billions neurons and neu-
ronal connections that generate complex patterns of be-
haviour. Electroencephalogram (EEG) provides a window,
through which the dynamics of epilepsy preparation can be
investigated. Fig.7 exhibits rat epileptic seizure.

As in the case of the pre-seismic EM emission, we moni-
tor the evolution of fractal characteristics of pre-epileptic ac-
tivities toward criticality in consecutive time windows. Our
analysis reveals that numerous distinguishing features were
emerged during the transition from normal states to epilep-
tic seizures (Li et al., 2004): (i) appearance of long range
power-law correlations, i.e. strong memory effects; (ii) in-
crease of the spatial correlation in the time-series with time;
(iii) gradual enhancement of lower frequency fluctuations,
which indicates that the electric events interact and coalesce
to form larger fractal structures; (iv) decrease of the fractal
dimension of the time series; (v) decrease with time of the
anti-persistent behavior in the precursory electric time series;
(vi) appearance of persistent properties in the tail of the pre-
epileptic period. Fig.7 shows the aforementioned precursory
behavior.

Notice that the aforementioned candidate precursors of
the impending epileptic seizure or earthquake are launched
in a way striking similar to those occurring just before
the “critical point” of phase transition in statistical physics.
Based on this similarity, it might be argued that the earth-
quake/epilepsy may be also viewed as “a generalized kind of
phase transition” (Kapiris et al., 2004b; Contoyiannis et al.,
2004).

Our results indicate that an individual firing neuron or an
opening crack is dominated by its neighbours so that all acti-
vated biological or geological units simultaneously alter their
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Fig. 7. A rat epileptic seizure (red signal) in EEG time-series (upper part). Two electrodes were placed in epidural space to record the EEG
signals from temporal lobe. EEG signals were recorded using an amplifier with band-pass filter setting of 0.5–100 Hz. The sampling rate
was 200 Hz. Bicuculline i.p injection was used to induce the rat epileptic seizure. The injection time is at 7:49 (m-s) and the seizure at 12:55
(m-s), respectively. This pre-seizure period is depicted by the yellow part of the EEG time series. We estimate the exponentβ, in consecutive
segments of 1024 samples each. Then, we trace the distribution of theseβ-values for four consecutive epochs (lower part). The four epochs
are depicted in the upper part with numbered dashed frames. Insets show percentage of segments withr>0.97. Notice that at the last stage
of the pre-ictal period (epoch 3) the signal emerges persistent behavior.

behavior to a common fractal pattern as the epileptic seizure
or the earthquake is approaching. Interestingly, common al-
terations in the associated parameters are emerged indicating
the approach to the global instability in harmony with rele-
vant theoretical suggestions (Hopfield, 1994; Herz and Hop-
field, 1995; Usher et al., 1995; Zhao and Chen, 2002; Run-
dle et al., 2002; Beggs and Plenz, 2003). Consequently, the
present analysis seems to support the concept that, indeed,
a unified theory may describe the ways in which elements
of a biological or geological system organize themselves to
produce a catastrophic event.

5 From the normal state to the seismic shock or heart-
failure in terms of Correlation Dimension, Approxi-
mate Entropy and Multifractality

Recently,Fukuda et al.(2003) have investigated similarities
between communication dynamics in the Internet and the au-
tonomic nervous system. They found quantitative similari-
ties between the statistical properties of (i) healthy heart rate
variability and non-congested Internet traffic, and (ii) dis-
eased heart rate variability and congested Internet traffic. The
authors conclude that their finding suggest that the under-
standing of the mechanisms underlying the “human-made”
Internet could help to understand the “natural” network that
controls the heart. In the sense of this approach, we search

for similarities from the normal state to the seismic shock or
heart-failure.

5.1 Similarities in terms of multifractality

Mathematical analysis of both long-term heart-rate fluctua-
tions (Ivanov et al., 1999; Stanley et al., 1999; Goldberger
et al., 2002) and pre-seismic EM emissions (Kapiris et al.,
2004b) show that they are members of a special class of com-
plex processes, termed multi-fractals, which require a large
number of exponents to characterize their scaling properties.
In general, the detection of multi-fractal scaling may indicate
that the underlying nonlinear mechanism regulating the sys-
tem might interact as part as a coupled cascade of feedback
loops in a system operating far from equilibrium (Meneveau
and Sreenivasan, 1987).

Monofractal signals can be indexed by a single global ex-
ponent, i.e. the Hurst exponentH (Hurst, 1951). Multifrac-
tal signals, on the other hand, can be decomposed into many
subsets characterized by different local Hurst exponentsh,
which quantify the local singular behavior and thus relate
to the local scaling to the time series. Thus, multifractal
signals require many exponents to characterize their scal-
ing properties fully (Vicsek, 1993). The statistical proper-
ties of the different subsets characterized by these different
exponentsh can be quantified by the functionD(h) , where
D(h0) is the fractal dimension of the subset of the time series
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Fig. 8. Two segments of the precursory 41MHz electromagnetic signal, recorded on 12 May 1995 (upper row) and 13 May 1995 (lower row)
before the Kozani-Grevena earthquakeMs=6.6 on May 13, 1995 at 08:47:12.9 UTC. On the right part of the figure the corresponding fractal
dimensionsD(h) are presented.

characterized by the local Hurst exponenth0. Ivanov et al.
(1999) have uncovered a loss of multifractality, as well as
a loss of the anti-persistent behaviour, for a life-threatening
condition, congestive heart failure. Following the method of
multifractal analysis used byIvanov et al.(1999), we exam-
ined multi-fractal properties in the VHF time series, namely,
the spectrum of the fractal dimensionD(h), as a candidate
precursor of the Kozani-Grevena earthquake (Kapiris et al.,
2004b). Figure8 shows that as the main event approaches,
the EM time series manifest: a significant loss of multi-
fractal complexity and reduction of non-linearities, display-
ing a narrow (red) multifractal spectrum, and their fluctua-
tions become less anti-correlated, as the dominant local Hurst
exponents is shifted to higher values. These results reflect
that for both the heart and pre-focal area at high risk the
multi-fractal organization allmost breaks down.

In summary, the multifractality of the heart-beat time se-
ries and pre-seismic EM time series further enables us to
quantify the greater complexity of the “healthy” dynamics
compared to those of “pathological” conditions in both heart
and pre-focal area.

5.2 Similarities in terms of Correlation Dimension and Ap-
proximate entropy

Recently, we have studied several methods which have been
used for the categorization of two subjects groups, one which
represents subjects with no prior occurrence of coronary dis-
ease events and another group who have had a coronary
disease event (Nikolopoulos et al., 2003; Karamanos et al.,
2004). It is worth mentioning that the Delay Times method
and the computation of the Approximate Entropy present co-
herent results and succeed in clearly and accurately differ-
entiating healthy subject ECGs from those of unhealthy sub-
jects and coronary patients.

Heart Rate Variability (HRV) time series coming from
coronary patients exhibit more regular and periodical be-

haviour compared to ones coming from healthy subjects. The
correlation dimensions of healthy time series are aboutD2 ≈

9 when the respective ones for the patients are aboutD2≈6
(Nikolopoulos et al., 2003). Similarly, the meanApEn value
for the healthy time series was aboutApEn≈1.2 and for the
patientsApEn≈0.4 (Nikolopoulos et al., 2003). A simi-
lar reduction of complexity for heart failures has been ob-
served in terms of Block-Entropy by some of the present au-
thors (Karamanos et al., 2004). It is important to note that
theD2-values andApEn-values associated with the second
time interval of the pre-seismic EM time series are close to
the ones coming from healthy subjects, while, theD2-values
andApEn-values associated with the third time interval are
close to the ones coming from patient subjects. Based on this
analogy, we could say that the EM emissions in second and
third time interval implies a kind of “healthy” and “patient”
pre-focal area correspondingly. We focus on this analogy.

We recall that the EM time series in the second time inter-
val is characterized by strong anti-persistence and multifrac-
tality. The multifractality indicates that the underlying non-
linear mechanism regulating the system might interact as part
as a coupled cascade of feedback loops in a system operat-
ing far from equilibrium (Meneveau and Sreenivasan, 1987).
The anti-persistent properties during this period imply a set
of fluctuations tending to induce a greater stability in the sys-
tem. Thus, by the term “healthy pre-focal area”, we mean
a candidate focal area, which is consistent with a non-linear
negative feedback system that “kicks” the cracking rate away
from extremes.

By the term “patient pre-focal area”, we mean a pre-focal
area in which the system has been starting to self-organize
by a non-linear positive feedback process, and thus, this
acquires to a great degree the property of irreversibility. This
behaviour may imply that the nucleation stage, the most in-
teresting phase in the preparation process of the catastrophic
fracture, has already been emerged.
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The study of pre-failure EM signals seems to provide a
way for observing the Earth’s crust ability to respond to
stresses. Hallmarks of the “patient pre-focal area” are: the
persistence behavior, the low multifractality, the low Corre-
lation Dimension and the low Approximate Entropy. These
hallmarks characterize a life-threatening condition for the
human heart, too. Briefly, the “patient pre-focal area” and
the “patient human heart” are characterized by a low com-
plexity. On the other hand, signatures indicating the “healthy
pre-focal area” are: the anti-persistence behavior, the high
multifractality, the high Correlation Dimension, and the high
Approximate Entropy. These signatures also characterize
healthy human heartbeat. Briefly, the “healthy pre-focal
area” and the healthy human heart are characterized by high
complexity.

In a geometrical sense, the dynamical parameterβ speci-
fies the strength of the signal’s irregularity as well. Qualita-
tively speaking, the irregularity of the signal decreases as the
memory in the time-series increases. For the fBm model the
fractal dimensiond is found from the relationd=(5−β)/2,
which, after considering the aforementioned shift ofβ ex-
ponent to higher values, leads to a decrease of fractal di-
mension as the earthquake approaches. We recall the West-
Goldberger hypothesis that a decrease in healthy variability
of a physiological system is manifest in a decreasing fractal
dimension (Goldberger et al., 2002, and references there in).
Our results imply that this hypothesis could be extended to
geological systems as well.

6 Conclusions

A method to asses the approach to the global instability has
been applied in EM pre-seismic anomalies. The study of
these pre-failure signals seems to provide a way for observ-
ing the Earth’s crust ability to respond to stresses. The Delay
Times method, the computation of the Approximate Entropy,
and the monitoring of alteration of Fractal Spectral charac-
teristics of pre-seismic EM activity toward global instability
in consecutive time windows, present coherent results and
succeed in a potential differentiation of the nucleation phase
from previous stages of the earthquake preparation process.
More precisely, the emergence of long-range correlations,
i.e. appearance of long memory effects, the increase of the
spatial correlation in the time series with time, the predom-
inance of large events with time, as well as the gradual de-
crease of the anti-persistent behaviour may indicate the ap-
proach to the nucleation phase of the impending catastrophic
event. The appearance of persistent properties in the tail of
the precursory time series, the significant divergence of the
energy release, the sharp significant decrease of the Approx-
imate Entropy, and the quick reduction of the Correlation Di-
mension as well, all these, may hints that a new phase, prob-
ably the nucleation phase of the earthquake, has been started.
This analysis may provide a useful way to the understanding
of the fracture in the disordered media. The agreement of
the “diagnostic” information given by each one of the meth-

ods indicates the necessity of further investigation, combined
use, and complementary application of different approaches.

The performed analysis reveals that common precursory
signs emerge in terms of fractal dynamics as the epileptic
seizure and earthquake are approaching: common distinc-
tive alterations in associated scaling dynamical parameters
emerge as biomedical or geophysical shock is approaching.
The experimental results verify relevant theoretical sugges-
tions that earthquake dynamics and neural seizure dynam-
ics should have many similar features and should be an-
alyzed within similar mathematical frameworks (Hopfield,
1994; Herz and Hopfield, 1995; Usher et al., 1995; Zhao and
Chen, 2002; Rundle et al., 2002; Beggs and Plenz, 2003).

In principle, it is difficult to prove associations between
events separated in time, such as EQs and their precursors.
The present state of research in this area requires a refined
a definition of a possible pre-seismic anomaly in the record
of EM radiation, and also the development of more objec-
tive methods of distinguishing seismogenic emissions from
non-seismic EM events. A study in terms of complexity
would seem to be useful in this regard. EEG time-series
provide a window through which the dynamics of biologi-
cal shock preparation can be investigated in the absence of
non-biological events. We observe that both kinds of catas-
trophic events under investigation follow common behavior
in their pre-catastrophic stage. This evidence may support
the seismogenic origin of the detected EM anomaly.

We find also quantitative similarities between the prop-
erties of (i) healthy heart rate variability and initial anti-
persistence part of the pre-seismic EM time series, and (ii)
diseased heart rate variability and terminal persistence part
of the pre-seismic EM activity. These similarities have been
emerged in terms of Correlation Dimension, Approximate
entropy, and multifractal dynamics.

Fukuda et al.(2003) recall that very simple models of
very complex systems in many cases provide deep insights.
For example the Ising model and its simple variants as the
Heisenberg model are sufficient to quantitatively describe a
wealth of very complex systems in regions of their respective
phase diagrams where scale invariant is displayed. The prin-
ciple of “universality” in chemistry and physics, whereby di-
verse systems are described by the identical (simple) model,
may have its counterpart in physiology (Stanley, 1999). Even
the numerical values of the critical-point exponents describ-
ing the quantitative nature of the singularities are identical
for large groups of apparently diverse physical systems. It
was found empirically that one could form an analog of the
Mendeleev table if one partitions all critical systems into
“universality classes”. Two systems with the same values
of critical-point exponents and scaling functions are said to
belong to the same universality class. In the frame of this
approach we have shown that the pre-seismic VHF emis-
sion belongs to the 3D-Ising-transition class (Contoyiannis
et al., 2004). Fukuda et al.(2003) argue that their finding
suggest that the understanding of the mechanism underly-
ing the “human-made” internet could help to understand the
“natural” network that controls the heart. In this sense, it
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appears that the fracture in the disordered systems may pro-
vide another useful “model system” to investigate the mecha-
nism responsible for the dynamics of the autonomic nervous
system (ANS), which controls involuntary the heart or the
epilepsy generation. In terms of complexity, this possibility
is not implausible.

The science of complexity is in its infancy, and some re-
search directions that today seem fruitful might eventually
prove to be academic cul-de-sacs.Sethna et al.(2001) show
that the seemingly random, impulsive events by which many
physical systems evolve exhibit universal, and , to some ex-
tend, predictable behavior. Nevertheless, it is reasonable to
believe that the results of the present study indicate that it
is useful to transfer knowledge from the domain of biomed-
ical shock preparation to the domain of earthquake genera-
tion and vice versa. This work could serve as an invitation
to other specialists in these areas to transfer knowledge from
the one field of research to the other.

Appendix A Delay Times method

Given a timeseries,X(t), t is an integer,t ∈ (1, N) andN

is the total number of timeseries points. The Delay Times
method was first established byGrassberger and Procaccia
(1983) and based on the Takens Theorem (Takens, 1981).
According to this method, the timeseriesx(t) is a measure of
a single coordinate of anm-dimensional system’s underlying
dynamics. Assuming m is the embedding dimension (the di-
mension of space in which the assumed system’s trajectory is
unfolded) andτ is the time lag, then phase space reconstruc-
tion (described below) is performed with time delays and the
following m-dimensional vectors are constructed:

x(t) = [X(t), X(t−r), X(t−2τ ), . . . , X(t−(m−1)τ )](A1)

In this way, using the original timeseries,X(t), we are able
to construct a new vector timeseries,x(t), which represents
the trajectory fromx(0) up to and includingx(t) within the
reconstructed phase space.

These vectors are defined in anm-dimensional phase space
and are used in constructing the trajectory of the signal dy-
namics to this space. If the original phase space of the dy-
namics produce the attractorA, then the reconstruction of
the phase space with the Delay Times method produces the
reconstructed attractor,A′. If the reconstruction is accurate,
thenA′ is the topological conjugate of the original attractor,
A. Consequently, all dynamic properties ofA are projected
to A′. The criterion of the Takens Theorem (Takens, 1981)
for a precise phase space reconstruction of an experimen-
tal trajectory dictates that m must be greater then[2mc+1],
wheremc is the estimated dimension of the attractor.

According to the Takens Theorem, this is efficient when
the number of points of the timeseries,N , is infinite, mean-
ing that for an infinite number of points,A andA′ have the
same properties. However, for most experimental methods,
N is a finite number and in many cases is confined to 3000–
4000 points. Therefore, onlyA′ is estimated in the recon-

structed space and retains only some of the properties ofA

(not all). Essential to phase space reconstruction, especially
for the Delay Times method, is the estimation of the time
lag, τ . There is a range of methods for estimatingτ , the
most popular being the calculation of the decorrelation time.

The decorrelation time is calculated either from the first
zero-value of the Autocorrelation function or from the first
minimum value of the mutual information function. The Au-
tocorrelation function has been described in the previous sec-
tion. The mutual information method is widely accepted and
it computes the nonlinear and linear correlation of the Auto-
correlation function. Once the Autocorrelation function has
been normalized, the decorrelation time is found from the
smallest time lag for which the function tends to zero. Simi-
larly, the decorrelation time can also be found from the small-
est time lag for which the mutual information function tends
to zero.

According toBroomhead and King(1986); Albano et al.
(1988); Kugiumtzis(1996) the results of a time-series anal-
ysis depends on the window length(m−1)τ , which incorpo-
rates both the embedding dimensionm and the time lagτ .
Therefore, the constraint to the above methods is the limit
on the size of the window,(m−1)τ . A proper value for the
window size provides good phase space reconstruction and
ensures that all the points of the reconstructed phase space
come from the same trajectory. As mentioned above, the
Takens theorem dictates that proper phase space reconstruc-
tion is achieved whenm is greater than[2mc+1]. This crite-
rion is difficult to satisfy for increased values ofτ due to the
subsequently larger values of(m−1)τ . A consistent window
arises from the decorrelation time, seen as the time needed
for the first decay of the Autocorrelation function. A time
lag,τ , is chosen and the reconstructed dynamics are embed-
ded in them-dimensional phase space.

After the phase space reconstruction of the system’s as-
sumed dynamics, non-linear dynamics algorithms are de-
veloped for the experimental analysis of a timeseries. The
most popular algorithmic method is the Delay Times method,
also known as the Algorithm ofGrassberger and Procaccia
(1983), which estimates the Correlation Dimension from the
computation of the correlation integral.

The Grassberger Procaccia Algorithm (Grassberger and
Procaccia, 1983) assumes a time-series,X(i), which is a
measure over timei of a parameter of anm-dimensional dy-
namic system, fori∈[1, N ]. The phase space reconstruc-
tion of this system is done according to the Takens theo-
rem. Once again, the vector coordinates are constructed
as in Eq. (8) and it is assumed that this vector is the tra-
jectory vector of thei-th time point of the reconstructed
phase space of the dynamic system. The whole trajectory
is x(1), x(2), . . ., x(i), P . . ., x(ρ) where ρ=N−(m−1)τ .
As mentioned and according to the Takens theorem,A′ is
the attractor to the reconstructed system dynamics and the
topological conjugate to the original attractorA. Properties
such as the Correlation Dimension are maintained after the
projection ofA to A′. The Correlation Dimension is defined
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as

D2 = lim
N→∞

log(C(m, r, τ ))

log(r)
(A2)

wherer is a distance radius in the reconstructed phase space.
The index 2 inD2 is used because the Correlation Dimension
is a special case of the generalized dimensionDq whereq

integer. C(m, r, τ ) is the correlation integral and is defined
as

C(m, r, τ ) =
2

N − 1

N∑
i=1

N∑
j=i+1

2
[
r − ||xi − xj ||

]
, (A3)

wherexi andxj are as in Eq. (8).2 is the Heavyside func-
tion:

2(i) =

{
1, if i ≥ 0
0 if i ≤ 0

(A4)

The Euclidean norm used in the above equation states that
the difference betweenxi andxj is the maximum difference
among their coordinates:

||xi − xj || =

{∣∣X(i) − X(j)
∣∣2 +

∣∣X(i + τ) − X(j + τ)
∣∣2+

. . . +
∣∣X(i + (m − 1)τ ) − X(j + (m − 1)τ )

∣∣2} 1
2
. (A5)

The formula Eq. (10) simply says: for specificm, r, τ find
all pairs ofxi andxj in the reconstructed time-seriesx(t) for
which the distance||xi−xj || is smaller thanr.

According to this algorithm theC(m, r, τ ) is computed for
increasing values ofm and for a steady range ofr. For each
log(C) versus log(r) plot a scaling region is been selected
and the slope of the curve is calculated for this scaling region
with a simple method (i.e. least squares). If the slope values
estimated for eachm converge in a steady value, then this
steady value corresponds to the correlation dimension of the
timeseries.

Appendix B Approximate Entropy

Given N data points, X(1), X(2), X(3), . . ., X(N), the
ApEn(m, r, N) is estimated, wherer is a threshold
and m a window size. The vector sequences neces-
sary for phase space reconstruction,x(i), are constructed
with x(N−m+1), defined byx(i)=[X(i), . . ., X(i+m−1)].
These vectors representm consecutiveX values, using the
i-th point as the starting point. The distance||x(i), x(j)||

is defined between the vectorsx(i) andx(j) as the infinity
norm

||X(i) − X(j)|| = max
{
|X(i) − X(j)|,

|X(i + 1) − X(j + 1)|,

. . . , |X(i + m − 1) − X(j + m − 1)|
}
. (B1)

The probability that|X(i+m−1)−X(j+m−1)|≤r given
that |X(i)−X(j)|≤r and |X(i+1)−X(j+1)|≤r and
|X(i+2)−X(j+2)|≤r and . . . is true is termedCm

r (i),

where, once again,r is the a threshold andm the win-
dow size. For example, ifm=2, C2

r (i) for i=1, . . ., N

is the probability that|X(i+1)−X(j+1)|≤r given that
|X(i)−X(j)|≤r.

The sequence in Eq. (14) is used to construct theCm
i (r)

for eachi≤N−m+1 as in

Cm
r (i) =

[no.ofj ≤ N−m + 1, suchthat||x(i)−x(j)|| ≤ r]

N − m + 1
. (B2)

8m(r) is defined as

8m(r) =
1

N − m + 1

N−m+1∑
i=1

ln Cm
i (r) , (B3)

where ln is the natural logarithm. Then Approximate Entropy
is defined as

ApEn(m, r) = lim
N→∞

[8m(r) − 8m+1(r)]. (B4)

It is therefore found that−ApEn=8m+1(r) − 8m(r) and
is equal to the average overi of the natural log of the con-
ditional probability that|X(j+m)−X(i+m)|≤r, given that
|X(j+k)−X(i+k)|≤r, for k=0, 1, 2, . . ., m−1.

Several trials of this algorithm were run on the HRV data
and it was adjusted accordingly in order to obtain a better
distinction between the two subject groups. The first step
in computing the Approximate Entropy is finding the length
vector form=2, which is[X(i), X(i+1)], denotedx(i). All
vectors that are close tox(i), x(j)=[X(j), X(j+1)], are
identified. As has already been stated, the vectorx(j) is
close tox(i) if ||x(i), x(j)||≤r. This, by definition, means
that both|X(i)−X(j)|≤r and|X(i+1)−X(j+1)|≤r apply.
A count of all the vectorsx(j) close tox(i) is found and
calledB. The next step is to compute the rest of thex(j) vec-
tors for which|X(i+2)−X(j+2)|≤r, and call itA. The ratio
of A/B represents the conditional probability thatX(j+2) is
close toX(i+2), given that the vectorx(j) is close tox(i).

The above process is repeated for each length 2 vector
x(i), calculating the conditional probability. TheApEn is
found by calculating the average of the logarithm of these
conditional probabilities and taking its negative (to make it
positive), as seen in Eq. (18)

−ApEn = 8m+1
r − 8m

r

=

[ 1

N − m

N−m∑
i=1

ln(Cm+1
r (i))

]
−

[ 1

N − m

N−m+1∑
i=1

ln(Cm
r (i))

]
'

1

N − m

N−m∑
i=1

[
ln(Cm+1

r (i)) − ln(Cm
r (i))

]
=

1

N − m

N−m∑
i=1

ln(Cm+1
r (i))

ln(Cm
r (i))

(B5)
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The calculation of the conditional probabilities will result
in values between 0 and 1. If the timeseries is regular,
the valuesX(i), X(i+1), X(i+2) are expected to be close
to each other, as areX(j), X(j+1), X(j+2). There-
fore, the differences|X(i)−X(j)|, |X(i+1)−X(j+1)| and
|X(i+2)−X(j+2)| will be close to each other for many val-
ues ofi, j . This means that the conditional probabilities are
expected to be closer to 1 for time-series coming from more
regular processes. The negative logarithm of such a value
will be closer to 0.

Conversely, random processes will produce conditional
probabilities closer to 0, the negative logarithms of which
will be closer to 1. The comparison of subsequent vectors
in a random signal will result in different values in the suc-
cessive vector distances. Thus, theApEn values for signals
coming from regular processes will be lower than theApEn

values coming from random signals. In this application, this
implies that lowApEn values are to be clinically associated
with cardiac pathology, while high values indicate a healthy
and robust heart.

The previous algorithm calculates an estimation of the
value of the Approximate Entropy, which is equal to the the-
oretical one, when theN tends to infinity. An examination of
this algorithm reveals that it is analogous to the Grassberger
& Procaccia Algorithm (the Delay Times method) for the
Correlation Dimension estimation. Theoretical calculations
by Wolf et al.(1965) indicate that reasonable estimations are
achieved with anN value of at least 10m and preferably 30m.
In the experimental analysis,N=2000 andm=2 were used,
producing satisfactory statisticalApEn validity.

However, theApEn is a biased statistic. The expected
value ofApEn(m, r, N) increases asymptotically withN to
ApEn(m, r) for all processes. The choice of window for
each vectorx is also important for theApEn estimation.
However, the interest in this method is not in the recon-
structed space, but rather in having a sufficient number of
vectors in close proximity to each other, so that accurate
conditional probabilities can be found. This work was partly
supported by the PYTHAGORAS fellowships.

Edited by: M. Contadakis
Reviewed by: two referees
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