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Abstract. A landslide hazard zonation is a division of the
land surface into areas, and the relative ranking of these areas
according to degrees of actual or potential hazard from land-
slides on slopes. Zonation from scientific research does not
generally imply legal restrictions, but can be useful to those
people who are charged with the land management, by pro-
viding them with information that is indispensable for plan-
ning and regulation purposes. This paper presents a zonation
of rock slopes in carbonate mountains on the boundary to
the east of the valley of the Sele River (Campania, south-
ern Apennines of Italy). The mountains are severely affected
by rock falls and topples, and the related hazard is, there-
fore, very high; the presence of inhabited areas (the towns
of Valva, Colliano and Collianello) and other human infras-
tructures at the slope foothills make these phenomena ex-
tremely dangerous to the anthropogenic environment. The
area is highly seismic, as experienced on the occasion of sev-
eral moderate to strong earthquakes that have hit this sector
of the Apennines. According to the zonation proposed here,
the ridge of Mount Valva and Mount Marzano is subdivided
into four main areas on the basis of the processes which take
place in the different sectors of the mountains: the source
area, the talus slope, the rock-fall shadow (where scattered
outlying boulders are present), and the safe area (outside of
the reach of fallen blocks).

The four sectors were identified through air-photo inter-
pretation and detailed field surveys, aimed in particular at
characterizing and interpreting the main rock mass joint pat-
terns, and their relative orientation with respect to the lo-
cal slope direction. Geological, morphological and structural
analyses permitted one to evaluate and classify those parts of
the slope that are more susceptible to detachment of rocks,
and to identify the more diffuse types of failure. Due to high
seismicity of the study area, particular attention was given to
the evaluation of the seismic susceptibility to rock falls, by
applying two methods recently proposed in literature. Re-
sults from this phase of the study were then integrated by ad-

Correspondence to:M. Parise (cerimp06@area.ba.cnr.it)

ditional information from historical research on slope move-
ments occurred previously in the area.

The landslide hazard zonation, shown on large-scale car-
tography, could be compared to maps depicting the distribu-
tion and typology of the anthropogenic activities, and thus
constitutes a useful tool for administrators and planners, in
order to evaluate the hazards related to slope movements,
and the vulnerability of settlements, roads, and other man-
made infrastructures.

1 Introduction

Rock falls are among the most common type of slope move-
ments in mountain areas worldwide (Porter and Orombelli,
1981; Whalley, 1984; Flageollet and Weber, 1996). They
consist of the detachment of a rock from a steep slope, and
the consequent descent of material mainly through the air by
falling, bouncing, or rolling, which may follow a rock slide
or topple. High to very high velocity of the detached ma-
terial can make this type of landslide extremely dangerous
to man and manmade structures, even when involving only
small volumes of rocks. Nevertheless, rock falls (and par-
ticularly those involving small volumes) have received less
attention than many other types of landslides by students and
researchers. Regarding destructive mass movements, much
focus has, in fact, been addressed concerning catastrophic
rockfall-debris avalanches that exhibit a horizontal runout
distance, which is dependent on the magnitude of the event,
and can result in a travel distance 50–20 times the vertical
fall height (Hs̈u, 1975; Dade and Huppert, 1998). Rock
avalanches have certain distinguishing characteristics that are
produced by virtue of their size and transport mechanism; to
explain their long runout, several hypothesis have been of-
fered so far (e.g. Kent, 1966; Shreve, 1968; Howard, 1973;
Goguel, 1978; Melosh, 1979, 1987). The great attention on
long-runout rock falls and avalanches was related to the high
number of casualties and heavy damage suffered on the oc-
casion of the occurrence of these catastrophic phenomena
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Fig. 1. Location map and geologi-
cal sketch of the upper valley of the
Sele River. Explanation: 1) Allu-
vial, lacustrine and volcanic deposits
(Pleistocene–Holocene); 2) Conglom-
erate, sands and clays (Pliocene); 3)
Argillaceous, marly calcareous, arena-
ceous turbidites (Trias–Miocene); 4)
Carbonate rocks (Trias–Cretaceous);
5) Administrative boundary between
Campania (to the west) and Basilicata
(to the east). The inset refers to the
Mt. Valva–Mt. Marzano ridge, shown
as Fig. 2.

(Heim, 1932; Abele, 1972; Voight, 1978; Eisbacher, 1979;
Voight et al., 1983; Erismann and Abele, 2001).

Small- to medium-size rock falls, on the other hand, have
received much less attention in the scientific literature, de-
spite their greater frequency in many mountain areas of the
world. Thus, the related risk for communication routes and
inhabited areas located at the mountain foothills has often
been underestimated. Rock falls can also induce collateral
geological hazards, such as the generation of airblast and
abrasive, dense sandy clouds (Morrissey et al., 1999; Wiec-
zorek et al., 2000). Moreover, rock falls are the most abun-
dant type of landslide triggered by earthquakes, as shown by
historical worldwide earthquake-induced landslide data com-
piled by Keefer (1984), and by numerous landslide invento-
ries from post earthquake investigations (e.g. Tazieff, 1961;
Hadley, 1964; Harp et al., 1981, 1984; Carrara et al., 1986;
Barrows, 1993; Harp and Jibson, 1996; Keefer, 2000; Espo-
sito et al., 2000). A magnitude threshold of 4 is in fact suf-
ficient for triggering falls on the occasion of a seismic event
(McCalpin and Nelson, 1996), even though fracturing in the
rock mass could locally control the shaking intensity thresh-
old which is required to induce rock falls (Harp and Wilson,
1995); therefore, moderate earthquakes are also able to pro-
duce a significant number of these slope movements.

This paper analyzes the susceptibility of slopes to rock
falls in the valley of the Sele River (southern Apennines
of Italy), aimed at providing an example of zonation of the
slopes that could be useful to administrators and planners, in
order to create an awareness of the rock-fall hazard and to
mitigate the related risk, by reducing its negative effects on
the anthropogenic environment. Even though most of the
paper will deal with rock falls, toppling failures will also
be briefly treated. Topple is defined as a slope movement

where “...the forward rotation out of the slope of a mass of
rock about a point below the center of gravity of the dis-
placed mass” occurs (Cruden and Varnes, 1996); geological
and structural settings which are the most prone to toppling
failures are also highly susceptible to rock falls, and topples
generally lead to falls of the displaced mass (de Freitas and
Watters, 1973; Caine, 1982).

2 The study area: geology, geomorphology, seismicity

The mountain areas of Italy are severely affected by rock-fall
activity, which causes serious damage throughout the coun-
try, from the Alps, to the central and the southern Apennines
(Eisbacher and Clague, 1984; Budetta and Santo, 1994).

The study area is located in the Irpinia region, within a
very complex sector of the southern Italian Apennine thrust
belt. The Sele River runs in a N-S valley (Fig. 1) carved
in flyschoid deposits, and made of a complex alternance of
different lithologies (clays, marls, sandstones, limestones)
with an overall prevalence of clay-like materials; the val-
ley is bounded on both sides by carbonate massifs, namely
the Picentini Mountains to the west, and the Mount Valva
– Mount Marzano – Mount Ogna ridge to the east (Figs. 1
and 2). Apennine tectonics, which started in the middle to
late Miocene and continued throughout the Plio-Pleistocene,
caused large-scale dislocations of the Mesozoic-Tertiary car-
bonates and the overlying Messinian and Pliocene terrige-
neous marine deposits (Ippolito et al., 1975; Brancaccio et
al., 1991; Cinque et al., 1993). The present morphostruc-
tural setting of the valley and nearby areas has been mostly
shaped during the last Pliocene-Quaternary events (Amato et
al., 1992).
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Fig. 2. Topography of the study area.
Black dots mark the rock falls identified
through historical investigation. Circled
numbers and open arrows indicate loca-
tion and view of photo sites. Inhabited
areas and main communication routes
are also shown.

Fig. 3. View of the Mt. Valva–Mt. Marzano ridge. The town of
Colliano is at the center of the photo, while the houses of Collianello
are visible at the top of the rocky spur above Colliano.

The mountain ridge formed by the peaks of Mount Valva
(1248 m a.s.l.) and Mount Marzano (1527 m a.s.l.), and the
towns of Valva, Colliano and Collianello, which are located
at the immediate mountain foothills (Figs. 2 and 3), are the
objects of this study: the ridge rises at the eastern border
of the valley, at the administrative boundary between Cam-
pania and Basilicata. Elongated in a NW-SE direction, it is
formed by a Trias-Cretaceous carbonate succession made of
limestones and, subordinately, of dolomitic limestones and
dolomites, and is limited by normal faulting on its western
side. Rock mass is heavily fractured. Slope height is on the
order of several hundred meters; the outer portions of the car-
bonate massifs are characterized by steeply inclined to verti-
cal walls that border the mountains toward the valley of the
Sele River.

Fig. 4. Cemented limestone breccias on the western slope of Mt.
Valva. The largest boulder at the upper right corner is 1.2 m long.
Breccias are inclined following the average slope gradient, that is
35◦ in this sector.

In the lower valley, on the other hand, structurally com-
plex terrains crop out, with prevailing clay-like lithofacies,
which determines an overall high susceptibility of the slopes
to landsliding (Parise, 2001). Scree accumulations connect
the steeply inclined to vertical carbonate rock walls to the
flysch successions in the valley. They consist of fragments
of rocks ranging extremely in size, which form high-gradient
slopes with a natural sorting by size, showing the coarsest
boulders toward the base of the slope, a common feature on
the talus slope in mountain areas (Kotarba and Stromquist,
1984). The deposits on the talus slope have an indurated crust
made of well cemented carbonate breccias (Fig. 4). Slopes
are scarcely vegetated, and in wide areas vegetation is ab-
sent or consists only of shrubs. The upper valley of the Sele
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Table 1. List of great earthquakes felt in the study area (data from Boschi et al., 2000).I0 is epicentral intensity,IL local intensity (localities
between brackets),M magnitude

Date Epicentral area I0 IL M

8 September 1694 Irpinia – Basilicata X–XI VIII (Valva and Colliano) 6.8
9 April 1853 Irpinia IX VI (Colliano), IV-V (Valva) 5.9
16 December 1857 Basilicata XI VI (Valva) 6.9
7 June 1910 Irpinia – Basilicata VIII VI (Colliano) 5.8
23 November 1980 Irpinia – Basilicata X VIII (Colliano and Valva) 6.8

River is an active seismogenetic zone: Table 1 lists the main
earthquakes felt in the study area, and also provides the local
intensity at Valva and Colliano for each event. Landsliding
events (including rock falls at Valva and Colliano) have been
recorded on the occasion of the 1694 and 1980 earthquakes.
No historic documents have been found about the occurrence
of rock falls during the other listed earthquakes; however,
this possibility cannot be excluded.

3 Rock falls and topples

3.1 Rock slope instability in the valley of the Sele River

Rock falls have peculiar features which distinguish them
from the other types of slope movements: a rock-fall deposit
is rarely in contact with, or resting at a short distance from
its source area; more commonly, it is able to travel, also for
great distances, and stop after quite a long path. Thus, distri-
bution and sorting of rock-fall deposits reflect these features,
yet they are controlled by other factors, such as topography,
morphology, and the presence and type of vegetation on the
slopes (Broili, 1977; Moriwaki, 1987).

As previously stated, the valley of the Sele River is highly
prone to landsliding due to its geological and structural char-
acteristics. In spite of slope movements being the main geo-
morphic process shaping the landscape in the area, landslides
were only briefly mentioned in the geological literature of
this sector of the southern Apennines, and only one paper
(de Riso, 1967) specifically dealt with them before the 1980
earthquake: in this paper, the author highlights mostly the
slope movements involving the clay-like materials by subdi-
viding the area into four main sectors. Rock falls deserve
only a brief citation, and the overall degree of hazard from
this type of slope movement is considered to be low, when
compared to that of the other sectors, characterized mostly
by flow-type landslides (de Riso, 1967).

In the aftermath of the 1980 seismic event, many stud-
ies have been dedicated to slope movements triggered by the
earthquake, from analysis at a regional scale to specific-site
studies dealing with single landslides. In particular, the maps
accompanying the works by Budetta (1983) and by Carrara
et al. (1986) show a number of rock-fall source areas on the
slopes above the towns of Valva, Colliano and Collianello.

Fig. 5. Rock-fall source area in the mountain above the town of
Valva. Note the high gradient of the talus slope, and the freshness
along the rock-fall path, the latter testifying to recent slope move-
ment activity.

Research carried out in the last few years permitted one to
collect data on the location and time of occurrence for more
than 20 rock falls in the study area (Fig. 2; Parise, 1999); this
number appears low when considering information obtained
from local inhabitants, who report frequent, although gener-
ally small in size, rock falls every winter and spring season.
The numerous fresh rock scars, as well as the accumulations
of rock blocks in chutes fed from the rock walls, also attest to
the continuing occurrence of rock falls and topples (Fig. 5).
Many rock fragments and blocks of different size may rest
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Fig. 6. Topographic profiles at the
western slopes of Mt. Valva and
Mt. Marzano (for location see Fig. 2).
Explanation: RSA = rock-fall source
area; TS = talus slope; RS = rock-fall
shadow; SA = safe area.

after disintegration, due to the impact following the first fall
on ledges eventually present on the slopes; from there, they
can again be subject to a fall, or be involved in other falls
from material movement from the above cliff, thus being a
nuisance to roads found below. Even small rock falls can, in
fact, be a real danger when buildings and roads are located
at the mountain foothills. Based on these considerations,
some authors have proposed a distinction between primary
and secondary falls (Matznetter, 1956; Luckman, 1976): pri-
mary falls are those just released from the rock face, while
secondary falls are those which result from the transport of
previously released material that has been resting on ledges.
Such distinction, which is not always an easy task, can be
performed through detailed observation of fresh source areas
on the rock cliff, and of weathered surfaces on the fallen ma-
terial, or of their lichen cover. Local morphology of the Mt.
Valva – Mt. Marzano ridge is characterized at very few sites
by changes in the slope gradient below the rock cliff: more
commonly, the talus slope shows high to very high gradients
(Fig. 6) which make it less likely to stop fallen blocks, and
for secondary falls to occur. Thus, nearly all of the rock falls
in the study area can be considered as primary.

3.2 Structural survey

One of the most obvious problems in investigating a rock
cliff is accessibility. Practical problems of measurements had

to be faced during the survey at Mt. Valva and Mt. Marzano:
due to verticality of many rock walls, and to the difficulty
in the accessibility of some sites, speleological techniques of
caving explorations have been used. This permitted one to
collect data on the source areas of all the known rock falls
(and particularly those triggered by the 1980 earthquake),
and to characterize their areas of detachment and type of fail-
ures. Macroscopic and mesoscopic structural analysis have
been conducted by means of surveying the main joint sets
and the prevailing directions of kinematic indicators. In or-
der to diminish as much as possible any inaccurate represen-
tation of the true joint pattern, which could derive from mea-
sures performed only at the more accessible sites (Terzaghi,
1965; La Pointe and Hudson, 1985; Dershowitz and Einstein,
1988), a systematic survey through equally-spaced scanlines
covering the ridge along its overall length and height was
performed; this was integrated by measurements taken at the
known rock-fall source areas. Eventually, more than sixty
measurement stations were surveyed, with an average spac-
ing between stations of about 50 m. At those sites where
significant changes in the fracturing of the rock mass was
observed, additional stations were established.

The survey was focused on the identification and interpre-
tation of the most important features needed for a complete
characterization of the rock mass (Geological Society Engi-
neering Group Working Party, 1977; Hoek and Bray, 1981;
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Hudson and Priest, 1983): type of discontinuity, orientation,
spacing, aperture, infilling, persistence, etc.; particular atten-
tion was also paid to karst features and weathering. The
effect of weathering can be very important in the rock-fall
predisposition of slopes: some authors state that it is pos-
sible to view rock fall as a whole as a form of weathering
process. In other words, it can be considered as the expres-
sion of weathering at work in the outermost few metres of
rock faces (Whalley, 1984). In the case of limestone terrain,
effects of weathering can be very severe, due to a combina-
tion of physical alteration and limestone solution (Dearman,
1981; Fookes and Hawkins, 1988). The latter, in particular,
may play a significant role in enlarging joints and fractures,
and in favouring detachment of rocks along the outer ridges
(Kowalski, 1991).

Bedding in limestones and dolomitic limestones in the
study area is identifiable only at few sites, due to massive as-
pects of carbonate rocks; in addition, measured beddings are
not consistent, as a consequence of faulting that produced lo-
cal changes in the strata attitude. It has to be noted that strat-
ification does not appear to control the failures in the rock
mass, while much more important is the structural control ex-
erted by other discontinuities. The most significant rock dis-
continuities identified and recorded in the field study were,
in fact, faults and joints, whose main directions are elongated
in NW-SE trending (subordinate, but frequent, directions are
NE-SW, and NNW-SSE). These trends reflect the orienta-
tion of the entire ridge, bounded on its western and south-
ern slopes by normal faults. Regarding slickensided fault
surfaces, it has to be stressed that subvertical or high-angle
faults are much more diffuse, and have a fresher appearance,
than fault surfaces with oblique slickensides; they cut other
low-angle faults with compressional character. Thus, nor-
mal high-angle faults related to extensional tectonics, which
began in the Pliocene-Pleistocene time, and are still active
at the present time, are the most recent tectonic features in
the area; this is in agreement with the results of a structural
survey performed at Mount Marzano and nearby carbonate
massifs of the southern Apennines of Italy by Coppola and
Pescatore (1989).

Joints were observed in all of examined rock outcrops; in
detail, at each measurement station, at least two families of
joints were identified. They generally define blocks whose
largest dimensions ranges from less than 15 cm to greater
than 20 m; some of them are precariously balanced on the
slopes (Brune, 1996) and constitute a serious hazard to the
roads below. Eventually, cracks related to karst processes,
and microforms related to limestone solution, were also ob-
served.

The outer portions of the ridge were characterized by a
system of release joints, whose trending mostly follows the
edges of the ridge: in these cases, joints are open to loose,
and a large number of the sites that are considered more
likely to fail correspond to blocks delimited by such sys-
tem. Release joints, decompression effects, and stress relief
are a common feature in many mountain areas of the world
(Mencl, 1974; Bovis and Evans, 1995).

Fig. 7. View of the western slope of Mt. Marzano: the two main
discontinuity systems that are present in this portion of the mountain
make likely detachment as wedge failures in the carbonate rocks.

Most of the type of failures observed at the headscarps of
known rock falls were of the sliding-type (Fig. 7). Sliding is
actually limited to the first translational stage of failure along
the rock surface, while subsequent development of rock fall
commonly occurs through air free fall, impact on the under-
lying talus slope, and bouncing or rolling, or a combination
of the two processes. Much more limited are topple failures,
generally related to the above described release joint systems.
The combined effect of many factors, such as block size,
rock-joint strength, geometry and orientation of blocks with
regard to the slope, seismic shaking, precipitation, freeze-
thaw activity, etc., makes very hard the specific prediction of
the headscarps which are most likely to fail. Nevertheless,
overhanging blocks, likely warning of future failures, were
observed at many sites.

3.3 Seismic rock-fall susceptibility

It may happen that, prior to some seismically-induced rock
fall, a given site appeared to have had only a minimal rock-
fall hazard potential. However, the unpredictability of the
rock-fall path always has to be considered, as many unex-
pected episodes of rock falls have repeatedly demonstrated
(e.g. Zellmer, 1987). Even though rock-fall events occur
every year, according to reports by local inhabitants, it is cer-
tain that moderate to strong earthquakes in Irpinia and nearby
seismogenetic regions are able to trigger a much higher num-
ber of rock falls, and other types of landslide as well (Parise,
2000). For this reason, two recently proposed empirical
methods, which are based on a collection of characteristics
and properties of slopes, and of fractures and joints in the
rocks, have been implemented in order to evaluate the seis-
mic susceptibility to rock falls along the Mt. Valva – Mt.
Marzano ridge. These methods represent the methodology
proposed by Keefer (1993), and that proposed by Harp and
Noble (1993).

The method by Keefer uses data from existing maps, re-
ports, aerial photographs, and reconnaissance-level field ob-
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servations, to assess the seismic stability of rock slopes at a
regional scale. It is based on observed associations between
landslide concentrations (number of landslides per square
kilometer) and slope characteristics in 24 earthquakes that
occurred in various parts of the world. Eight slope charac-
teristics (steepness, local relief, weathering, induration, open
fissures, closely spaced fissures, vegetation, water) are orga-
nized into a dichotomous decision tree, which is also sup-
plemented by additional criteria for pre-existing landslide
deposits, engineered slopes, and potential rock-avalanche
sources. As Keefer himself stated, the level of detail in the
assessment of seismic rock-slope stability depends primarily
on the level of detail in the available input data and secon-
darily on such other conditions as the heterogeneity of the
slope materials being evaluated (Keefer, 1993). In this case
study, most of the examined ridge resulted from having high
seismic susceptibility to rock falls, which becomes very high
at the edges of the rock cliffs. Low susceptibility was deter-
mined at a few sites where local fracturing in the rock mass
appeared to be less pervasive.

Harp and Noble (1993) devised an engineering criteria for
evaluating the seismic susceptibility of slopes to rock falls
that uses the characteristics of rock discontinuities (fractures,
joints, bedding) to quantify its potential for failure under seis-
mic conditions. The method is based on the modification
of an engineering classification which was originally used in
tunnel design (rock mass quality designation, Q, by Barton et
al., 1974). It is an empirical method which was first imple-
mented by analyzing the landslides triggered by the 25–27
May 1980 earthquake sequence of Mammoth Lakes, Cali-
fornia (Harp et al., 1984). Harp and Noble (1993) calculate
the “rock mass quality” through analysis and description of
six factors which depend directly or indirectly on the frac-
ture properties of a rock mass. These are:Jv, total num-
ber of joints per cubic meter;Jn, number of joint sets in the
rock mass;Jr , joint roughness number;Ja , joint alteration
number;Jw, joint water reduction factor; AF, aperture factor.
These six factors are evaluated by comparing the discontinu-
ities in the rock mass with descriptive tables. The value ofQ

at each survey station is given by the following equation:

Q =

[
(115− 3.3)Jv

Jn

] [
Jr

Ja

] [
1

AF

]
.

It has to be stressed that the authors assume the joint wa-
ter reduction factor,Jw, to be equal to unity; they state that
“...for the purposes of evaluating seismic stability of slopes at
the surface, this generally is not a significant factor because
most rock slopes are dry ... ” (Harp and Noble, 1993). Values
of Q lower than 1.00 would indicate a high degree of suscep-
tibility, while moderate susceptibilities are comprised within
the range 1.00–9.9, and low susceptibilities are indicated by
values ofQ greater than 10.0 (Wieczorek and Harp, 2000).
In the case of the Mt. Valva – Mt. Marzano ridge, 61% of
the examined sites haveQ < 1, which attests to an over-
all high seismic susceptibility to rock falls; in many cases,
susceptibility is very high, withQ values down to 0.12.

Table 2. Factors considered in the methods by Keefer (1993) and
by Harp and Noble (1993) for evaluating the seismic rock-fall sus-
ceptibility

Keefer Harp and Noble
(1993) (1993)

Slope characteristics x
Vegetation x
Water x
Rock weathering x x
Rock strength x
Frequency of fractures x
Spacing of fractures x x
Aperture of fractures x x
Infilling material x
Roughness x

Comparing the results obtained from the two methodolo-
gies, it has to be noted that Keefer’s method appears to be
much more rapid, but it is based on a smaller amount of field
data and analysis. It allows one to perform in a relatively
short time a preliminary evaluation of the seismic suscepti-
bility, and has its most suitable application at regional rather
than local scale, and particularly in establishing priorities for
conducting site-specific slope stability evaluation and analy-
sis. Harp and Noble’s method, on the other hand, relies on
a more detailed and local geostructural survey of the rock
mass, which permits one to have very good information for
zonation of the slopes. However, some factors, such as slope
relief and vegetation, are not considered in the method (cf.
Table 2), and the role of water is underestimated; the lat-
ter, in particular, might result in an overestimation of slope
stability. Even with the above delineated differences, it has
to be stressed that distribution and seismic susceptibility to
rock falls along the Mt. Valva – Mt. Marzano ridge, obtained
from the two methods, is quite similar. Two sectors with very
high susceptibility were identified: the western slopes of Mt.
Valva, and the rock cliffs above the town of Valva. High
susceptibility also characterizes large sectors of the southern
area, in particular, the Mt. Marzano southern slope and the
rocky spur above the town of Colliano. Eventually, seismic
susceptibility to rock falls appears to be moderate to locally
low in the middle-lower portion of the rock cliffs.

4 Zonation

Following the definition by Varnes (1984), a zonation con-
cerning slope movements is intended as a division of the land
surface into areas, and the ranking of these areas according
to degrees of actual or potential hazard from landslides on
slopes. Zonation from scientific studies does not generally
imply legal restrictions, but can be useful to those people
who directly manage the territory, providing them with in-
dispensable information for planning purposes.
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Table 3. Main constraints used for zonation

Source area · occurrence of previous rock failures
· steep topography
· fractured rock mass
· high altitude
· high relief
· high to very high seismic rock-fall susceptibility

Talus slope · deposits related to past slope instability
· high slope gradient
· vegetation absent or scarce

Rock-fall shadow · presence of scattered or isolated boulders
· historical accounts and reports
· direct witnesses

Safe area · absence of boulders or rock debris
· medium to low slope gradient

The use of geological evidence to ascertain the past be-
haviour of a rock slope over a long period has been sug-
gested by several authors (e.g. Evans and Hungr, 1993); ex-
trapolation of this information could then be used to predict
the reach of future rock falls within a given return period.
Landslide hazard zonation of slopes has to rely on historical
and geological data. In the present case study, an attempt to
combine information derived from the two approaches was
made; due to high seismicity of the area, and to the impor-
tance of earthquakes as triggering factors, a particular stress
was given to the geostructural analysis of the slopes, aimed
at evaluating the seismic susceptibility to rock falls. A zona-
tion of the Mt. Valva – Mt. Marzano ridge was performed
(Fig. 8) by subdividing the slopes into four areas, based on
processes that take place in the different sectors, and follow-
ing the constraints summarized in Table 3. The four areas are
described as follows: 1) the source area; 2) the talus slope;
3) the rock-fall shadow; 4) the safe area.

The source areacorresponds to sites where recent activ-
ity attests to the occurrence of rock falls or toppling failures,
and future detachment of rocks is more likely. This area ex-
tends along the entire upper slopes, where steeply inclined
to vertical rock walls are present; it includes all of the known
detachment areas of previous rock falls. The main constraints
used for identification of the source area (Table 3) were, in
addition to those mentioned before, a high degree of fractur-
ing in the rock mass, high altitude (which favours freeze and
thawing process in joints and fractures), and the recognition
of high to very high seismic susceptibility to rock falls, eval-
uated through the methods described in the previous section.
Upper limits of the source area correspond to changes in to-
pography, with the passage to smooth erosional surfaces at
the top of the examined ridge. A further area which has been
zoned as a source area of rock falls is the rocky spur where
Collianello lies, and just below is the town of Colliano. From
this sector, rock falls were triggered during the 1980 earth-
quake (Budetta, 1983; Carrara et al., 1986); future rock falls
could occur at this site, which determines very high rock-fall

vulnerability, due to the location of the houses immediately
at the base of the rock cliff.

In the zonation of the rock-fall source area, the informa-
tion obtained through Keefer’s and Harp and Noble’s meth-
ods were incorporated: as shown in Table 3, high to very
high seismic rock-fall susceptibility is, in fact, regarded as
one of the constraints that has to be taken into account for
delimiting the rock-fall source areas. In particular, given that
(as discussed in the previous section) the method by Harp
and Noble had greater suitability for evaluating the seismic
rock-fall susceptibility at a local scale, the sites showing the
highest values of susceptibility according to this method are
also shown in Fig. 8. It has to be noted, however, that most of
these sites were also ranked as having very high or extremely
high rock-fall susceptibility in the Keefer’s method.

Once detached from a source area, the rocks could stop
at the immediate base of the rock walls, or, as is the com-
mon case, move by bouncing, rolling or a combination of the
two processes, on the second identified zone, which isthe
talus slope. This is of particular importance, since the slope
gradient controls the evolution of the movement; in other
words, it can work as a ramp for the fallen blocks, allow-
ing them to reach the down-valley sectors. Another feature
to be considered is the presence of vegetation, since trees
and bushes might have a protective action against falling
rocks, and cause them to slow down, or to stop. As men-
tioned before, vegetation is either very scarce or absent in
the Mt. Valva and Mt. Marzano slopes; this, combined with
the very limited presence of retaining walls and other pro-
tective structures, again determines high vulnerability for the
anthropogenic structures at the mountain foothills. A similar
conclusion derives from the absence of topographic ledges
on the talus slope, where fallen rocks could release their en-
ergy and stop.

The third sector of the zonation is probably the most diffi-
cult to ascertain, since it is related to the maximum travel dis-
tance of blocks detached from the rock cliffs. Many studies
in the last decades have been devoted to such a topic: as an
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Fig. 8. Zonation map of the Mt. Valva–
Mt. Marzano ridge. Explanation: 1)
rock-fall source area; 2) talus slope; 3)
rock-fall shadow; 4) safe area; 5) town.
The sites showing the highest values of
susceptibility according to the method
by Harp and Noble (1993) are shown as
black dots.

example, the runout distance of rock falls at the base of talus
slopes was estimated by Onofri and Candian (1979), who
analyzed about 100 rock falls triggered by the 1976 Friuli
earthquake in north eastern Italy. They suggested the use of a
rock-fall fahrböschung(β), that is the angle of inclination of
the course along which a rockfall raced (Hsü, 1975). Limit
values forβ were 28 and 41◦ (Onofri and Candian, 1979);
use of rock-fallfahrböschungrequires one, by necessity, to
measure starting and end points for any individual rock fall.
The minimum shadow angle (i.e. the angle between the lines
defined, respectively, by the highest point of the rock-fall
source area and the apex of the talus slope, and by the latter
and the distal point of the rock-fall shadow) was proposed, on
the other hand, by Evans and Hungr (1993): they suggested
that the use of an empirical minimum shadow angle of 27.5◦

would appear to be a useful method for the preliminary esti-
mation of the maximum rock-fall reach. Runout distance of
rock fall, and the effect on it of the involved volume of rocks,
has also been recently studied by means of outdoor rock-fall
experiments and simulations that have shown the existence of
a positive correlation between runout distance and rock-fall
volume (Okura et al., 2000).

In the zonation proposed here, the concept ofrock-fall
shadowhas been considered: it is defined as “that part of the
substrate surface covered discontinuously by scattered large
boulders that have rolled or bounced beyond the base of the
talus” (Hungr and Evans, 1988; Evans and Hungr, 1993).
Scattered boulders lying beyond the talus are also described
by other authors as “outliers” (Wieczorek et al., 1999). Defi-
nition of the rock-fall shadow is very important, because here
awareness of the hazard is much less obvious than in the pre-
vious zone; it might, therefore, represent the most dangerous

sector, also due to the presence of settlements and infrastruc-
tures. The main problem in zonation of the rock-fall shadow
is the knowledge of the maximum travel distance of fallen
blocks, information that is not very easy to obtain, especially
in areas (as the case shown here) where inhabited areas are
located close to the mountains. Clearing of fallen material
tends to cancel quickly any evidence of past slope move-
ments, and frequently, the only source of information is rep-
resented by the accounts (whose reliability is highly variable)
from local inhabitants. In the few cases when observations of
old fallen blocks at the foothills of the study area, and their
attribution to a specific rock-fall source area, were possible,
shadow angles in the range between 31 and 38◦ have been
determined.

It has to be stressed again that, due to high velocity of the
moving material, the types of landslide dealt with here can
be extremely dangerous even when involving small volumes
of rock material. Particular focus must, therefore, be made
on the maximum travel distance of fallen blocks; this could
be investigated, for example, through detailed measurements
of the morphometric characteristics of the rock cliffs and the
underlying slopes aimed at performing statistical analysis of
the more likely runout distance of rock falls, or at simulating
rock fall trajectories by means of mechanical methods and
associated computer codes (e.g. Descoeudres and Zimmer-
mann, 1987; Hoek, 1998).

Eventually,the safe areais the lowermost sector of the
zonation presented here (Fig. 8): it is that portion of the slope
that is beyond the reach of fallen blocks. The safe area gen-
erally corresponds to a decrease in the slope gradient, toward
medium to low values. It must be stressed that a different
level of certainty (in the sense of Wieczorek, 1984) is present
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in the limits of the various zones. The first two (source area
and talus slope) were defined with good to high certainty,
based mostly on detailed field work, and aerial photo inter-
pretation, supported by the available historical data. A much
lower degree of certainty is present in the limits of the rock-
fall shadow, and consequently of the safe area, since removal
of the rocky and debris material made it difficult to deter-
mine a precise understanding of the maximum travel distance
of the fallen blocks. Due to these difficulties, the boundary
between rock-fall shadow and the safe area had to be based
mostly on a historical investigation and interviews with local
inhabitants, even though susceptibility in the above source
areas was also taken into account; this makes it much less
certain than the other boundaries drawn on the basis of ge-
ological and geomorphological investigations. A better esti-
mate of the upper limit of the safe area could be performed
through implementation of some of the available computer-
based programs for forecasting the maximum reach of fallen
blocks. Even with the above limitations, however, the zona-
tion presented here is considered valid for a preliminary anal-
ysis of the rock-fall hazard in areas where there is either low
or no awareness of such hazard.

5 Discussion

After the last catastrophic landsliding and flooding events
which have occurred in the Italian territory in the few last
years (1996 flood in Versilia, Tuscany; 1998 mud and de-
bris flows at Mount Pizzo d’Alvano, Campania; 2000 flood
at Soverato, Calabria), a strong need toward better knowl-
edge of the areas potentially affected by landslides and floods
has been developing in the scientific, as well as in the ad-
ministrative communities. Nevertheless, there still exists too
many sites in Italy where a lack of awareness of the landslide
problem determines high vulnerability and risk for manmade
structures. Concerning rock falls, it has to be noted that due
to the increasing human activity in mountainous areas world-
wide, there is the need to recognize the zones that are po-
tentially affected by these slope movements and to exclude
them from planning resource development, or to design the
most suitable and feasible protection structures. To correctly
assess the hazard related to a certain type of slope move-
ment, and to calculate quantitative risk analysis (Peckover
and Kerr, 1977; Ast̀e et al., 1984; Fell, 1994), the magni-
tude and frequency of landslides have to be known (Gardner,
1983; Whitehouse and Griffiths, 1983). In the case of rock
falls, magnitude is represented by the volume of involved
rocks, while frequency is the number of events (regardless of
their size) occurring in a given time span. Some valuable ef-
forts have been recently aimed at dating past rock-fall events
by means of methods such as lichenometry (Bull et al., 1994;
Bull and Brandon, 1998). However, unavailability or incom-
pleteness of extensive historic records about rock falls is still
a serious problem in many mountain areas, especially those
where settling has occurred over the last few decades.

Fig. 9. View of the town of Collianello from the Mt. Marzano
southwestern slope. In the foreground, highly fractured limestones,
with open or loose joints in the rock mass.

Along transportation corridors running through mountain-
ous areas, rock-fall activity should be documented by in-
spections of maintenance personnel. Even when such docu-
mentation is available, however, it presents many limitations
(Bunce et al., 1997): small-sized rock falls are generally not
recorded, unless they cause damage to vehicles and people;
in addition, the source area of rock fall, which is a very im-
portant feature to be considered in the evaluation of the rock-
fall hazard, can hardly be recognized by untrained people.
A further significant limitation is the removal of fallen rock
from highways and roads, without any record being made.
All these limitations, and still others, cause incompleteness
in the documented rock-fall activity (Wieczorek and Jäger,
1996; Hungr et al., 1999), which, on the other hand, is in
most of the cases limited to a time span ranging from some
years to a few decades. A low number of recorded data rep-
resents the main drawback in statistical analysis of rock falls.

Mitigation of the risk related to rock falls and topple fail-
ures cannot be achieved without reaching an awareness of the
hazard by local authorities and a full perception of the prob-
lem by citizens (Brown and Kockelman, 1983; Alexander,
1992). Transferring scientific information to non-technicians
and administrators is not, on the other hand, a simple matter:
much effort has to be made in order to keep maps and accom-
panying reports as simple as possible, at the same time with-
out losing the scientific basis on which they are based. Sim-
plicity of the maps, and ready comprehension of their content
by those people charged with the management of the territory
(administrators, politicians, land use planners) are, therefore,
mandatory steps in the mitigation of the risk related to slope
movements, and one of the first actions in the strategy for
reducing the landslide hazard (Kockelman, 1986).

The zonation presented in this paper represents an attempt
in this direction: even kept simple for the reasons delineated
above, it could represent a useful tool toward: a) provid-
ing the preliminary information to anybody involved in land
management and control, particularly useful in areas (such as
the case study presented here) where no specific map about
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rock-fall activity is available and awareness of the rock-fall
hazard is very subtle; b) a better understanding of the rock-
fall hazard by people who are still unaware of it; c) a prelim-
inary division of the land surface into zones that might help
in identifying those areas most likely to be involved by the
arrival of fallen material. In addition, it could also help in as-
sessing vulnerability and risk of settlements (Fig. 9), roads,
and other infrastructures; this latter step should be correctly
performed through an interdisciplinary approach, with the
contribution, in addition to geologists and engineering ge-
ologists, of other professionals dealing with social and eco-
nomical sciences, and land use planning.

The different methods (field survey, aerial photo interpre-
tation, historical investigation, interviews with inhabitants,
etc.) that were used to obtain the zonation described in this
paper had variable relative importance in mapping the four
areas: direct geological and geomorphological surveys, inte-
grated by aerial photo interpretation, were more reliable, and
thus played a preeminent role in the definition of the zonation
boundaries.

Acknowledgements.I am grateful to P. Reichenbach (CNR-IRPI,
Perugia) and to the two anonymous referees for the valuable com-
ments and suggestions made on the first version of the manuscript.

References

Abele, G.: Kinematik und Morphologie spät und postglazialer
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Astè, J. P., Cambou, B., and Falcetta, J. L.: Comportement des
masses rocheuse instables. De la prevision a la prevention, Proc.
4th Int. Symp. on Landslides, Toronto (Canada), 1, 441–446,
1984.

Barrows, A. G.: Rockfalls and surface effects other than faulting
(Landers and Big Bear earthquakes), California Geology, Jan-
uary/February 1993, 17–22, 1993.

Barton, N., Lien, R., and Lunde, J.: Engineering classification of
rock masses for the design of tunnel support, Norw. Geotechn.
Inst., Oslo (Norway), 1974.

Boschi, E., Guidoboni, E., Ferrari, G., Mariotti, D., Valensise, G.,
and Gasperini, P., (Eds.): Catalogue of strong Italian earthquakes
from 461 B.C. to 1997, Annali di Geofisica, 43, 4, 609–868, with
CD-ROM, 2000.

Bovis, M. J. and Evans, S. G.: Rock slope movements along the
Mount Currie “fault scarp”, southern Coast Mountains, British
Columbia, Can. J. Earth Sc., 32, 2015–2020, 1995.

Brancaccio, L., Cinque, A., Romano, P., Rosskopf, C., Russo, F.,
Santangelo, N., and Santo, A.: Geomorphology and neotectonic
evolution of a sector of the Tyrrhenian flank of the southern
Apennines (Region of Naples, Italy), Zeit. für Geomorph. N. F.,
suppl. 82, 47–58, 1991.

Brown, R. D. jr. and Kockelman, W. J.: Geologic principles for
prudent land use, U.S. Geol. Surv. Prof. Paper 946, 97, 1983.

Broili, L.: Relations between scree slope morphometry and dynam-
ics of accumulation processes, in “Rockfall dynamics and protec-
tive works effectiveness”, ISMES, Bergamo (Italy), 90, 11–24,
1977.

Brune, J. N.: Precariously balanced rocks and ground-motion maps
for southern California, Bull. Seism. Soc. Am., 86, 43–54, 1996.

Budetta, P., Geologia e frane dell’alta valle del F. Sele (Appennino
Meridionale), Mem. Note Ist. Geol. Appl., Napoli (Italy), 16, 53,
1983.

Budetta, P. and Santo, A.: Morphostructural evolution and related
kinematics of rockfalls in Campania (southern Italy): a case
study, Eng. Geol., 36, 197–210, 1994.

Bull, W. B. and Brandon, M. T.: Lichen dating of earthquake-
generated regional rockfall events, Southern Alps, New Zealand,
Geol. Soc. Am. Bull., 110, 1, 60–84, 1998.

Bull, W. B., King, J., Kong, F., Moutoux, F., and Phillips, W. M.:
Lichen dating of coseismic landslide hazards in alpine moun-
tains, Geomorphology, 10, 253–264, 1994.

Bunce, C. M., Cruden, D. M., and Morgenstern, N. R.: Assessment
of the hazard from rock fall on a highway, Can. Geotech. J., 34,
344–356, 1997.

Caine, N.: Toppling failures from Alpine cliffs on Ben Lomond,
Tasmania, Earth Surf. Proc. and Landf., 7, 133–152, 1982.

Carrara, A., Agnesi, V., Macaluso, T., Monteleone, S., and Pipi-
tone, G.: Slope movements induced by the Southern Italy earth-
quake of November 1980, Geol. Appl. e Idrogeol., 21, 2, 237–
250, 1986.

Cinque, A., Patacca, E., Scandone, P., and Tozzi, M.: Quaternary
kinematic evolution of the Southern Apennines. Relationships
between surface geological features and deep lithospheric struc-
tures, Annali di Geofisica, 36, 2, 249–260, 1993.

Coppola, L., and Pescatore, T., Lineamenti di neotettonica dei
Monti Terminio-Tuoro, Cervialto e Marzano (Appennino Meri-
dionale), Boll. Soc. Geol. It., 108, 105–119, 1989.

Cruden, D. M. and Varnes, D. J.: Landslide types and processes, in
Turner, A. K. and Schuster, R. L., (Eds.), Landslides. Investiga-
tion and mitigation, Transp. Res. Board, Nat. Res. Council, Spec.
Rep. 247, Washington, D.C., 36–75, 1996.

Dade, W. B. and Huppert, H. E.: Long-runout rockfalls, Geology,
26, 9, 803–806, 1998.

Dearman, W. R.: Engineering properties of carbonate rocks, Bull.
Int. Ass. Eng. Geol., 24, 3–17, 1981.

de Freitas, M. H. and Watters, R. J.: Some field examples of top-
pling failure, Geotechnique, 23, 4, 495–514, 1973.

de Riso, R.: Sulla geologia e lo stato di dissesto idrogeologico
dell’alta valle del Fiume Sele (Campania), Mem. e Note Ist.
Geol. Appl., Napoli (Italy), 10, 43, 1967.

Dershowitz, W. S. and Einstein, H. H.: Characterizing rock joint
geometry with joint system models, Rock Mech. Rock Eng., 21,
1, 21–51, 1988.

Descoeudres, F. and Zimmermann, T.: Three-dimensional dynamic
calculation of rockfalls, Proc. 6th ISRM Congress, 1, 337–342,
1987.

Eisbacher, G. H.: Cliff collapse and rock avalanches (Sturzstroms)
in the Mackenzie Mountains, north western Canada, Can.
Geotech. J., 16, 309–334, 1979.

Eisbacher, G. H. and Clague, J. J.: Destructive mass movements
in high mountains: hazard and management, Geol. Surv. Canada
paper 84–16, 230, 1984.

Erismann, T. H. and Abele, G.: Dynamics of rockslides and rock-



48 M. Parise: Landslide hazard zonation of slopes

falls, Springer Verlag, 316, 2001.
Esposito, E., Porfido, S., Simonelli, A. L., Mastrolorenzo, G., and

Iaccarino, G.: Landslides and other surface effects induced by
the 1997 Umbria-Marche seismic sequence, Eng. Geol., 58, 353–
376, 2000.

Evans, S. G. and Hungr, O.: The assessment of rockfall hazard at
the base of talus slopes, Can. Geotech. J., 30, 620–636, 1993.

Fell, R.: Landslide risk assessment and acceptable risk, Can.
Geotech. J., 31, 261–272, 1994.

Flageollet, J. C. and Weber, D.: Fall, in Dikau, R., Brunsden, D.,
Schrott, L., and Ibsen, M. L. (Eds.), Landslide recognition, John
Wiley and Sons Ltd., 13–28, 1996.

Fookes, P. G. and Hawkins, A. B.: Limestone weathering: its engi-
neering significance and a proposed classification scheme, Quart.
J. Eng. Geol., 21, 7–31, 1988.

Gardner, J.: Rockfall frequency and distribution in the Highwood
Pass area, Canadian Rocky Mountains, Zeit. für Geomorph. N.F.,
27, 3, 311–324, 1983.

Geological Society Engineering Group Working Party, The descrip-
tion of rock masses for engineering purposes, Quart. J. Eng.
Geol., 10, 355–388, 1977.

Goguel J.: Scale-dependent rockslide mechanisms, in Voight, B.,
(Ed.), Rockslides and avalanches, 1. Natural phenomena, Devel.
in Geotech. Eng., 14A, Elsevier, 693–705, 1978.

Hadley, J. B.: Landslides and related phenomena accompanying the
Hebgen Lake earthquake of 17 August 1959, U.S. Geol. Surv.
Prof. Paper 435, 107–138, 1964.

Harp, E. L. and Jibson, R. W.: Landslides triggered by the 1994
Northridge, California earthquake, Bull. Seism. Soc. Am., 86, 1,
part B, S319–S332, 1996.

Harp, E. L. and Noble, M. A.: An engineering rock classification
to evaluate seismic rock-fall susceptibility and its application to
the Wasatch Front, Bull. Ass. Eng. Geologists, 30, 3, 293–319,
1993.

Harp, E. L. and Wilson, R. C.: Shaking intensity thresholds for rock
falls and slides: evidence from 1987 Whittier Narrows and Su-
perstition Hills earthquake strong-motion records, Bull. Seism.
Soc. Am., 85, 6, 1739–1757, 1995.

Harp, E. L., Wilson, R. C., and Wieczorek, G. F.: Landslides from
the 4 February 1976, Guatemala earthquake, U.S. Geol. Surv.
Prof. Paper 1204-A, 35, 1981.

Harp, E. L., Tanaka, K., Sarmiento, J., and Keefer, D. K.: Land-
slides from the 25–27 May 1980, Mammoth Lakes, California,
earthquake sequence, U.S. Geol. Surv. Misc. Invest. Map I-1612,
1:62,500 scale, 1984.
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le grand śeisme du Chili, Bull. Soc. Belge de Géol., 69, 3, 1–11,
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