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Abstract. This work proposes a methodology to compare

the forecasting effectiveness of different rainfall threshold

models for landslide forecasting. We tested our methodol-

ogy with two state-of-the-art models, one using intensity–

duration thresholds and the other based on cumulative rain-

fall thresholds.

The first model identifies rainfall intensity–duration

thresholds by means of a software program called

MaCumBA (MAssive CUMulative Brisk Analyzer) (Segoni

et al., 2014a) that analyzes rain gauge records, extracts inten-

sity (I ) and duration (D) of the rainstorms associated with

the initiation of landslides, plots these values on a diagram

and identifies the thresholds that define the lower bounds of

the I–D values. A back analysis using data from past events

is used to identify the threshold conditions associated with

the least number of false alarms.

The second model (SIGMA) (Sistema Integrato Gestione

Monitoraggio Allerta) (Martelloni et al., 2012) is based on

the hypothesis that anomalous or extreme values of accu-

mulated rainfall are responsible for landslide triggering: the

statistical distribution of the rainfall series is analyzed, and

multiples of the standard deviation (σ ) are used as thresholds

to discriminate between ordinary and extraordinary rainfall

events. The name of the model, SIGMA, reflects the central

role of the standard deviations.

To perform a quantitative and objective comparison, these

two models were applied in two different areas, each time

performing a site-specific calibration against available rain-

fall and landslide data. For each application, a validation

procedure was carried out on an independent data set and

a confusion matrix was built. The results of the confusion

matrixes were combined to define a series of indexes com-

monly used to evaluate model performances in natural haz-

ard assessment. The comparison of these indexes allowed to

identify the most effective model in each case study and, con-

sequently, which threshold should be used in the local early

warning system in order to obtain the best possible risk man-

agement.

In our application, none of the two models prevailed ab-

solutely over the other, since each model performed better

in a test site and worse in the other one, depending on the

characteristics of the area.

We conclude that, even if state-of-the-art threshold models

can be exported from a test site to another, their employment

in local early warning systems should be carefully evaluated:

the effectiveness of a threshold model depends on the test site

characteristics (including the quality and quantity of the in-

put data), and a validation procedure and a comparison with

alternative models should be performed before its implemen-

tation in operational early warning systems.

1 Introduction

One of the most common methodologies for the forecasting

of landslide occurrence is the definition of rainfall thresholds.

A rainfall threshold is an equation (based on two or more

rainfall parameters) that discriminates between the rainfall

conditions for which one or more landslides would or would

not be triggered.

Since the pioneering works of Endo (1970), Camp-

bell (1975), Lumb (1975), Guidicini and Iwasa (1977) and

Caine (1980), the rainfall threshold approach has achieved

great success, and many thresholds have been proposed

based on a large variety of rainfall parameters (an exhaustive

review can be found in Guzzetti et al., 2007). The thresh-
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olds based on intensity and duration are probably the most

common (Caine (1980), Guzzetti et al. (2008) and references

therein); another very used threshold typology makes use of

rainfall amount accumulated over given time periods (Wil-

son, 2000; Chleborad, 2003; Cardinali et al., 2006; Cannon

et al., 2008, 2011) or variable time windows (Lagomarsino

et al., 2013).

Independently from the rainfall parameters used to char-

acterize the triggering conditions, every study that made use

of both rainfall events that triggered and that did not trig-

gered landslides highlighted that it is impossible to perfectly

divide the diagram into a 100 % landslide field and a 100 %

non-landslide field (Berti et al., 2012; Staley et al., 2013).

This brings the necessity of taking a fundamental conceptual

decision when defining a threshold: a conservative threshold

that would encompass all future landslides should be defined

or the best trade-off between identified landslides and missed

alarms should be researched? It does not exist a universally

valid response, as the right answer depends on the objective

of the threshold. Indeed, it is important to highlight that in

the existing literature, some thresholds have been used to

identify the minimum rainfall conditions possibly leading to

landsliding, while others have been specifically designed to

be operated in warning systems for civil protection purposes.

The first kind of threshold (minimum thresholds hence-

forth) is commonly defined as the lower bound to a data set

of rainfall conditions that in the past were associated to land-

slide triggering (Caine, 1980; Larsen and Simon, 1993; Can-

non et al., 2008; Brunetti et al., 2010; Berti et al., 2012): it is

expected that any future landslide will fall above the thresh-

olds. Since minimum thresholds are very conservative, a high

number of false alarms is usually expected, because the lower

the threshold, the lower the possibility of missing a landslide

and the higher the possibility of committing false alarms.

The second kind of thresholds (early warning thresholds

henceforth) usually aims to obtain the best possible compro-

mise between effectiveness in recognizing triggering condi-

tions (for which a low threshold would be preferable) and

effectiveness in committing a low number of false alarms

(for which a high threshold would be preferable) (Martel-

loni et al., 2012; Staley et al., 2013; Segoni et al., 2014a,

2015a). In other words, the task of a warning system is to

avoid both missed alarms and false alarms as much as possi-

ble. Both kinds of errors are considered dangerous, as missed

alarms may expose society to unrecognized hazards, while

false alarms, especially when recurring, may lead to a mis-

perception of risk and to a distrust in the warning system

itself (Staley et al., 2013).

The errors committed by a threshold can be recognized

and evaluated only after a validation procedure is carried

out, but despite rainfall thresholds for the occurrence of land-

slides being a long-debated research topic, only a small num-

ber of works completes the presentation of a new threshold

with a quantitative validation of its performances (Martelloni

et al., 2012; Staley et al., 2013; Lagomarsino et al., 2013;

Segoni et al., 2014a, b; Gariano et al., 2015) or with a com-

parison with an independent data set of landslide and rainfall

data (Giannecchini et al., 2012). This leads to an additional

limitation when a comparison between different thresholds

is needed. In fact, while many studies on rainfall thresholds

contain a comparison between different literature thresholds

(Guzzetti et al., 2007, 2008; Rosi et al., 2012; Chen and

Wang, 2014), in most cases this is just a visual compari-

son of the threshold equations. This comparison is interest-

ing from many scientific points of view (e.g., the influence of

meteorological regime, landslide typology or other physical

features on the threshold equations), but thresholds are very

site-specific (Segoni et al., 2014b) and when a comparison is

needed to decide which threshold should be used in a warn-

ing system, it is of limited usefulness to compare a threshold

obtained using a given methodology in a test site with the

threshold obtained using a different methodology in another

test site. Moreover, a comparison would be more useful if

it were based on quantitative indexes describing the perfor-

mances of the thresholds.

This paper explores the aforementioned issues and pro-

poses a quantitative approach for comparing different

methodologies for rainfall threshold definition, in order to

assess which of them is the most effective for operational use

in civil protection warning systems.

Two state-of-the-art models based on rainfall thresholds,

namely SIGMA (Martelloni et al., 2012; Lagomarsino et al.,

2013) and MaCumBA (Segoni et al., 2014a, b), are taken

into account and are applied in two test sites. In each test

site, each model undergoes a site-specific calibration to op-

timize its performance. A validation procedure is carried out

on an independent data set and a confusion matrix is built.

The results of the four confusion matrixes (true positives,

true negatives, false positives and false negatives) are com-

bined to define some indexes commonly used to evaluate

model performances in hazard assessment (Begueria, 2005)

and in rainfall thresholds (Martelloni et al., 2012; Gariano et

al., 2015; Rosi et al., 2015). The comparison of these indexes

assessed which model provides the best performance in each

case study and, consequently, which threshold should be used

in the local early warning system in order to obtain the best

possible risk management.

2 Material and methods

2.1 SIGMA

SIGMA is the model used to define the thresholds for the

Emilia Romagna regional landslide early warning system.

It is explained in detail in Martelloni et al. (2012) and it is

based on the concept that landslides occur in case of rain-

fall events that can be considered exceptional for either the

duration or the rainfall amount. Its main feature is a statis-

tical analysis of historical rainfall series considering differ-

Nat. Hazards Earth Syst. Sci., 15, 2413–2423, 2015 www.nat-hazards-earth-syst-sci.net/15/2413/2015/



D. Lagomarsino et al.: Two different methodologies to define rainfall thresholds for landslide forecasting 2415

Figure 1. SIGMA algorithm (modified after Martelloni et al., 2012).C1−3 stands for the cumulate rainfall of the last 1, 2 or 3 days.C4−63/245

stands for the rainfall values cumulated in the last 4 days, last 5 days and so on, up to the last 63 days during the dry season or 245 days

during the wet season.

ent periods of accumulation: from 24 h up to 245 days, with

daily step (Martelloni et al., 2012). These analyses allow the

recognition of anomalous rain values, quantifying the value

of the standard deviation of the distribution for each accumu-

lation period. Considering different multiples of standard de-

viation, different thresholds are then defined (σ curves). An

optimization algorithm compares the σ curves with the land-

slides contained in a calibration data set and identifies the σ

curves that minimize the occurrence of false alarms (Martel-

loni et al., 2012). The selected σ curves are implemented in a

warning system (named SIGMA, as the model) in which the

measured and the forecasted rainfall is compared with these

thresholds, according to the algorithm depicted in Fig. 1, to

define the daily criticality level.

The entire territory of Emilia Romagna is subdivided into

eight alert zones (AZ). For each of these, different rain

gauges are selected, for a total of 25. Each rain gauge is

representative of an area called the territorial unit (TU). The

alerts calculated for each TU belonging to the same AZ are

then combined to give a single alert for each AZ (Lago-

marsino et al., 2013).

The Emilia Romagna regional early warning system is

completed by a module that accounts for the effects of

snowmelt and snow accumulation (Martelloni et al., 2012)

and by a combination with purposely developed landslide

susceptibility zonation that improves the spatial accuracy of

the SIGMA model (Segoni et al., 2015b). However, these ad-

ditional features are not considered in this work.

2.2 MaCumBA

MaCumBA is the model used to define the thresholds for the

Tuscany regional landslide early warning system, which is

based on intensity–duration thresholds expressed in the form

(Caine, 1980):

I = αDβ ,

where I is the rainfall intensity (mm h−1), D is the rain-

fall duration (h), α (> 0) and β (< 0) are empirical parame-
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Figure 2. The test site in the Emilia Romagna region, with the location of rain gauges and landslides used in this study.

ters. One of the peculiarities of the MaCumBA model is that

thresholds are characterized by a third parameter, called “no

rain gap” (NRG). NRG is the number of consecutive hours

without rain necessary to separate two rainfall events (Segoni

et al., 2014a); this parameter is of fundamental importance

to ensure the replicability of the analysis and to consistently

employ the thresholds into an operational early warning sys-

tem (Segoni et al., 2015a).

The procedure for parameters calculation is automated

(Segoni et al., 2014a) and allows a large amount of data to be

processed: starting from a landslide and a rainfall database, a

software program analyzes each cumulated rainfall recorded

in the vicinity of a landslide and the most critical rainfall con-

ditions are identified and characterized in terms of I and D.

Once the I and D parameters of every landslide are calcu-

lated, they are plotted in a I–D diagram and the lower bound

threshold is automatically identified. The procedure is com-

pleted by a back analysis that identifies the NRG value that

minimizes the occurrence of errors during a calibration pe-

riod.

The model MaCumBA is explained in detail in Segoni et

al. (2014a), while Segoni et al. (2014b) discusses its appli-

cation to Tuscany, which was subdivided into 25 alert zones,

each of them characterized by a specific threshold. Segoni et

al. (2015a) described the integration of the thresholds into the

Tuscany regional warning system, which compares the mo-

saic of thresholds defined by MaCumBA with rainfall fore-

casts and rainfall measurements from an automated network

composed of about 300 rain gauges.

2.3 Similitudes and differences between SIGMA and

MaCumBA

Both methods are presently used by regional civil protection

agencies for landslide early warning systems at regional scale

(over 20 000 km2). SIGMA and MaCumBA operate in the

Italian regions of Emilia Romagna and Tuscany, respectively.

They provide automatic outputs, based on the comparison of

rainfall thresholds with rainfall forecasts and real-time mea-

surements from automated rain gauge networks. Both early

warning systems are based on a mosaic of local-scale thresh-

olds: the region is subdivided into smaller areas that are char-

acterized by a site-specific threshold and that are monitored

independently. This approach allows landslides of mixed ty-

pology to be accounted for and increases the spatial accuracy.

The main difference between the models lies in the cal-

culation of the thresholds and in the input data required.

While SIGMA thresholds are based on cumulative rain-

fall and consider variable time spans ranging from 1 to

245 days, MaCumBA is based on intensity–duration thresh-

olds. SIGMA requires long rainfall recordings (50–60 years

time series) but, on its basic implementation, thresholds can

be defined even without landslide data. In turn, MaCumBA

needs a complete landslide database to evaluate intensity–

duration thresholds, but a shorter period of rainfall data (5–

10 years) is required.

To quantitatively compare these two models, we applied

MaCumBA in an Emilia Romagna alert zone (Fig. 2) and

SIGMA in a Tuscany alert zone (Fig. 4).

The application to real case studies carries additional dif-

ferences, as in the two test sites the rainfall and the land-
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slide data sets present peculiar characteristics, which will be

described in the next sections. For instance, the landslide

data set in Tuscany extends from 2000 to 2009, while in

Emilia Romagna from 2004 to 2010. However, a straight

comparison between the models is guaranteed by adopting

identical decisions during the validation and calibration of

both models within the same test site. The application in

Emilia Romagna follows the characteristics of Lagomarsino

et al. (2013), while application in Tuscany is coherent with

Segoni et al. (2014a, b). As a consequence, in Emilia Ro-

magna, the data set was split into two independent subsets:

2004–2007 for calibration, and 2008–2010 for validation. In

Tuscany, the data set from 2000 to 2007 is used for the cali-

bration, and the data set from January 2008 to January 2009

is used for the validation.

3 Application to the Emilia Romagna test site

The region of Emilia Romagna (northern Italy) is dominated

in the south by the Apennines. The hilly and mountainous

sector extends from the Apennine ridge, in the SW of the

region, to the Pede-Apennine margin, in the NE. The chosen

alert zone, denoted H, lies in the northwestern part of the

region (Fig. 2), and consists of a hilly and mountainous zone,

with a maximum elevation of about 1300 m.

The application of SIGMA in the test site is already pub-

lished (Martelloni et al., 2012; Lagomarsino et al., 2013) and

considered the time span 2004–2007 as the calibration pe-

riod, and the time span 2008–2010 as the validation period.

The calibration data set consists of data of 71 landslides, trig-

gered during 17 distinct rainfall events, while for the valida-

tion, the data of 39 landslides triggered during 18 rainfall

events were available (Fig. 2).

Flysch is the lithology most frequently associated to land-

slides (about 70 %), while 26 % occurred on hillslopes made

up of soft or incoherent rocks (pelagic limestone, claystone

and chaotic complex), which are usually covered with cohe-

sive terrains.

The landslide database does not include complete infor-

mation on the landslide typology, as in most cases (54 %)

it is not specified. A total of 11 and 15 % of the occur-

rences can be comprehended in the “shallow landslide” and

“deep-seated” category, respectively, while for 19 % of the

landslides, flow is the prevailing mechanism. This informa-

tion seems to be in accordance with the landslide character-

istics commonly reported by the existing literature, which

states that the most frequent phenomena are deep-seated

landslides (mainly rotational–translational slides, slow earth

flows and complex movements) (Bertolini and Pellegrini,

2001; Bianchi and Catani, 2002; Trigila et al., 2010) and

that rapid shallow landslides, although less recurrent, have

increased their frequency in the last few years (Martina et

al., 2010; Montrasio et al., 2011).

Figure 3. Intensity–duration threshold calculated by MaCumBA for

the Emilia Romagna test site. Since some of the landslides occurred

on the same day and at nearby locations, a single I–D point in the

graph can be representative of more than one landslide.

While the SIGMA model makes use of only two reference

rain gauges (one for the western sector and one for the east-

ern sector of the alert zone), to apply MaCumBA at its full

potential, all nine automated rain gauges installed in the alert

zone were used (Fig. 2). For all of them, we extracted hourly

rainfall measurements pertaining to the calibration and val-

idation period and we applied the procedure described in

Segoni et al. (2014a) and summarized in Sect. 2.2.

The application of MaCumBA to this case study resulted

in a threshold represented by the equation:

I = 22.46D−0.64.

This threshold is reported in Fig. 3, where the events used for

its calibration are also represented. Since some of the land-

slides occurred on the same day and at nearby locations, a

single I–D point in the graph can be representative of more

than one landslide. In particular, the three points below the

thresholds are each representative of a single landslide. Con-

sequently, the threshold encompasses 68 out of 71 landslides

of the calibration data set, which is within the 95 % confi-

dence level selected for the threshold analysis (as in Segoni

et al., 2014a).

4 Application to the Tuscany test site

Tuscany is located in central Italy and is characterized by a

mainly hilly and mountainous territory. The alert zone (AZ)

chosen as test site corresponds with the Serchio Basin

(Fig. 4) and includes part of the Northern Apennines, a fold-

and-thrust post-collisional belt. This area is mainly moun-

tainous and shows two different geological settings (Rossi et

al., 2013): in the western sector, mountain tops are mainly

made up of carbonaceous rocks and have very steep flanks.

The summits are typically connected to the lower parts of
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Figure 4. The test site in the Tuscany region, with the location of rain gauges and landslides used in this study.

the slopes, composed of metamorphic sandstone and phyl-

litic schist and covered by talus and scree deposits. The east-

ern sector shows a more uniform geological condition with

the prevalence of flysch rocks.

The application of MaCumBA in Tuscany and in the Ser-

chio alert zone is already published (Segoni et al., 2014a, b)

and considered the time span 2000–2007 as the calibration

period and the time span from 1 January 2008 to 31 Jan-

uary 2009 as the validation period. The calibration data set

counts 719 landslides, related to 79 distinct rainfall events,

while the validation data set counts 272 landslides, related to

seven distinct rainfall events (Segoni et al., 2014a, b). Among

these, debris flows and shallow landslides are the largely pre-

vailing typologies (89 % of the landslides with known ty-

pology). The lithologies most affected by landslides are fly-

sch (60 % of the occurrences), limestone and marble (22 %),

clayey rocks (8 %) and granular terrain (7 %).

Using the calibration data set, the SIGMA model has been

applied to the Serchio AZ (Fig. 4). Concerning rainfall data,

the 37 automated rain gauges used for MaCumBA were an-

alyzed; however, most of these instruments were installed in

recent times, and only three of them have the characteristics

(time series between 60 and 70 years) to be used for the sta-

tistical analyses needed in SIGMA (Fig. 4). One of the three

rain gauges is located in the center of the alert zone, while the

other two are close to the eastern and southwestern borders

(Fig. 4).

As demonstrated by Lagomarsino et al. (2013), it is not

straightforward to decide how many and which rain gauges

have to be used in SIGMA to obtain the best possible land-

slide prediction. According to Lagomarsino et al., (2013), the

application of SIGMA comprehended some tests to identify

the optimal configuration of the model. We tested all possi-

ble configurations: the alert zone subdivided into three ter-

ritorial units, each with one of the three instruments as the

reference rain gauge; three different configurations in which

the alert zone was not partitioned and the three rain gauges

were selected each time as the only reference rain gauge for

the whole of the alert zone and three possible combinations

using two rain gauges as reference for an alert zone split

into two distinct territorial units. We verified that the best

outcomes were obtained using the central rain gauge as the

unique reference rain gauge for the entire alert zone. This

result is only partially surprising, as when Lagomarsino et

al. (2013) tuned SIGMA to optimize the results, an identical

circumstance was found in one of the eight Emilia Romagna

alert zones.

Using the calibration procedure reported in Martelloni et

al. (2012) and summarized in Sect. 2.1, the thresholds shown

in Fig. 5 were selected as the optimal ones for the Serchio

alert zone.

5 Results

The first step to evaluate the performances of the models con-

sisted of simulating their response to past events that are in-

dependent from those used in the threshold calibration pro-

cess. For the Emilia Romagna test site, the independent val-

idation data set spans from 1 January 2008 to 31 Decem-

ber 2010, while for the Tuscany test site, it spans from 1 Jan-

uary 2008 to 31 January 2009. The models were run using
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Figure 5. Rainfall thresholds obtained with the SIGMA model in

the Serchio AZ; please note that the thresholds are defined for a

maximum accumulation period of 245 days, since longer periods of

accumulation are not used in the decisional algorithm of the model

(Fig. 1).

rainfall data from the validation data set. The simulated daily

outputs of each model were compared to the landslides which

occurred during the validation period, so as to count

– true positives (TP), which are days with landslides cor-

rectly detected by the model (the model raised an alarm

and it was verified that a landslide occurred);

– true negatives (TN), which are days without landslides

in which the model did not raise an alarm;

– false positives (FP), which are days in which the model

raised an alarm but no landslides occurred (false alarms

or “errors of commission”);

– false negatives (FN), which are days in which at least

one landslide occurred, but the model did not raise an

alarm (missed alarms or “errors of omission”).

In each case study, these occurrences were combined to de-

fine some indexes commonly used to evaluate model perfor-

mances in hazard assessment (Begueria, 2005) and in rainfall

thresholds (Martelloni et al., 2012). The following indexes

quantify the forecasting effectiveness of the models in the

different test sites and allow for a rigorous comparison of the

performances.

– Positive predictive power (PPP) is the propor-

tion of positive results that are true positives:

PPP= (TP)/(FP+T P).

– Negative predictive power (NPP) is the propor-

tion of negative results that are true negatives:

NPP= (TN)/(FN+TN).

– Sensitivity (Se, also called the true positive rate)

measures the proportion of positive occurrences

(landslides) which are correctly identified as such:

Se=TP/(TP+FN).

Table 1. Contingency matrix displaying the results of the validation

of MaCumBA in the Emilia Romagna test site. In this test site, the

validation data set spans from 2004 to 2007. TP denotes true posi-

tives, FP false positive errors, FN false negative errors and TN true

negatives.

Emilia Romagna Observed truth

test site

MaCumBA model Landslide No landslide

Prediction

Landslide 6 (TP) 7 (FP)

No
12 (FN) 1071 (TN)

landslide

– Specificity (Sp, also called the true negative rate) mea-

sures the proportion of negative occurrences (days with-

out landslides) which are correctly identified as such:

Sp=TN/(TN+FP).

– Likelihood ratio (LR) evaluates both the sensitivity

and the specificity of a model in a single parameter:

LR=Se/(1−Sp)= [TP/(TP+FN)]/[1−TN/(TN+FP)].

– Efficiency (Ef) is an index that evaluates the over-

all performance of a model, measuring the propor-

tion of correct predictions with respect to the total:

Ef= (TP+TN)/(FP+FN+TP+TN).

A perfect predictor would be 100 % sensitive and 100 % spe-

cific and would have a PPP and NPP equal to 1. In a warning

system, the best possible trade-off between sensitivity and

specificity is usually researched. Two indexes that help to

evaluate this trade-off and thus the overall performance of

the model are the efficiency and likelihood ratios. However,

when used in circumstances where TN are 1 or 2 orders of

magnitude higher than all other occurrences, as in landslide

early warning systems, efficiency values can be very close

to 1 (optimal value): this strongly reduces the weight of TN

occurrences in assessing the final value and prevents a proper

comparison between efficiency values, which are very close

to each other. This drawback does not affect the likelihood ra-

tio, which evaluates both the sensitivity and the specificity in

a single parameter: the higher its value, the better the model.

For the Emilia Romagna test site, the validation results are

summarized in contingency matrixes (Tables 1 and 2) and

can be quantitatively compared in Table 3.

For the Tuscany test site, the validation results are summa-

rized in Tables 4 and 5 and can be quantitatively compared

in Table 6.

6 Discussion

The performance of the models can be quantitatively eval-

uated by comparing the validation indexes and the contin-

gency tables presented in the previous section. A comparison
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Table 2. Contingency matrix displaying the results of the valida-

tion of SIGMA in the Emilia Romagna test site. In this test site, the

validation data set spans from 2004 to 2007. TP denotes true posi-

tives, FP false positive errors, FN false negative errors and TN true

negatives.

Emilia Romagna Observed truth

test site

SIGMA model Landslide No landslide

Prediction

Landslide 18 (TP) 12 (FP)

No
0 (FN) 1066 (TN)

landslide

was performed separately for each test site, to assess which

model would perform better in a landslide warning system.

In the Emilia Romagna test site, MaCumBA identified

only six out of 18 landslide events, while SIGMA correctly

identified all of them (Tables 1 and 2). However, SIGMA

committed a higher number of false positives (12 against

seven committed by MaCumBA). Looking at validation

statistics (Table 3), it can be seen that SIGMA indexes are

higher than MaCumBA ones, especially in the case of the

positive predictive power and sensitivity. Considering both

efficiency (that balances positive and negative predictive

power) and likelihood ratio (that balances sensitivity and

specificity), SIGMA performs better than MaCumBA (Ta-

ble 3).

In the Tuscany test site, MaCumBA and SIGMA identified

a similar number of landslide events (18 and 19 out of 21, re-

spectively), while a relevant difference exists in the number

of false alarms: 12 for SIGMA and only one for MaCumBA

(Tables 4 and 5). Consequently, MaCumBA has higher posi-

tive predictive power and specificity, but lower negative pre-

dictive power and sensitivity than SIGMA (Table 6). To as-

sess which model has the best overall performance, we com-

pared efficiency and likelihood ratio: both indexes are higher

for MaCumBA (0.98 against 0.93, and 158.6 against 13.9,

respectively).

This comparison revealed that none of the two models can

be considered better than the other: SIGMA performed bet-

ter than MaCumBA in the Emilia Romagna test site, while

MaCumBA prevailed in the Tuscan test site. Indeed, the per-

formances of a model can vary substantially from one ap-

plication to another. It is evident that in each test site, the

best results were obtained with the model specifically con-

ceived for the characteristics of the case study. Among these

characteristics, the different landslide typologies could be put

in relation with the performance of the models: MaCumBA,

which is based on intensity–duration thresholds, prevails in

the Serchio Valley that is affected mainly by shallow land-

slides; SIGMA is based on a more complex decisional algo-

rithm conceived to account for both shallow and deep-seated

landslides, and it prevails in the Emilia Romagna test site,

which is affected by both typologies of landslides.

Another feature that can greatly influence the performance

of a model from one application to another is the quantity

and quality of the rainfall data available. For instance, it

is well established (Staley et al., 2013; Vessia et al., 2014)

that the I–D threshold provides the best results when rain-

fall is measured at hourly or even smaller time steps, while

the SIGMA model is specifically conceived to be applied on

rainfall data with a daily time step. However, in this work,

rain gauges provide hourly rainfall data, and the larger flex-

ibility of SIGMA is not fully exploited. A feature that could

have had a relevant impact in the results is the spatial den-

sity of the rainfall measurements. In the Emilia Romagna

test site, fewer rain gauges are available, but they all have

long rainfall series. This is an optimal condition to apply

SIGMA, which needs only a limited number of rain gauges,

since each territorial unit is analyzed and monitored by a

single reference rain gauge. Conversely, this condition is a

strong limitation for the employment of an I–D threshold

model like MaCumBA: the very longer time series do not

provide an additional value, and the lower number of points

of measurements constrains the accurate characterization of

the landslides in terms of intensity and duration of the trig-

gering rainfall. The Tuscany test site has opposite conditions:

the rain gauge network is very dense, but only very few in-

struments (namely, three) have long enough time series to

implement SIGMA. Taking into consideration the three rain

gauges that could serve as reference, the calibration proce-

dure of SIGMA allows the best possible model configura-

tion to be defined, but it is the best option among a few

options available. Moreover, the calibration results (a single

rain gauge used as a reference for the whole of the area)

highlight that large sectors of the area could not be fully

represented by the rain gauges available. On the contrary,

MaCumBA can be successfully applied in these conditions,

as the short time series are not a handicap (provided they

cover the same time period of the landslide inventory) and

the high network density allows the triggering rainfall inten-

sity to be identified with sufficient approximation.

It should be noted that in this study we decided to give the

same weight to errors of omission (FN) and errors of com-

mission (FP). In other applications, it could be decided to

give different weights to one (or more than one) of the oc-

currences of the contingency table and to recalculate a mod-

ified contingency table and a series of modified performance

indexes. The weights should be decided in advance, depend-

ing on the objectives of the research or the local civil pro-

tection procedures. For instance, in case of a comparison

between two or more “minimum thresholds”, false alarms

could be tolerated, while missed alarms should receive a rel-

evant weight, because the aim of these thresholds is to point

out the minimum rainfall conditions potentially responsible

for landslides. Concerning the evaluation of warning sys-

tems, the balance between false alarms and missed alarms
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Table 3. Validation statistics and comparison of the performances of the two models in the Emilia Romagna test site.

Emilia Efficiency Positive Negative Sensitivity Specificity Likelihood

Romagna predictive predictive ratio

test site power power

MaCumBA 0.98 0.46 0.99 0.33 0.99 51.3

SIGMA 0.99 0.60 1 1 0.99 89.8

Table 4. Contingency matrix displaying the results of the valida-

tion of SIGMA in the Tuscany test site. In the Tuscany test site, the

validation data set spans from 1 January 2008 to 31 January 2009.

TP denotes true positives, FP false positive errors, FN false negative

errors and TN true negatives.

Tuscany Observed truth

test site

MaCumBA model Landslide No landslide

Prediction

Landslide 18 (TP) 1 (FP)

No
3 (FN) 184 (TN)

landslide

is usually desirable and the weights could be assigned with a

political decision. The impact of the countermeasures to be

taken in response to alarms may lead to different levels of ac-

ceptance of false alarms, which in turn could lead to different

weights.

7 Conclusions

Rainfall thresholds are widely used in landslide forecasting

and they often constitute the core of civil protection warn-

ing systems. However, most of the rainfall thresholds pre-

sented in the literature were not subject to a rigorous vali-

dation procedure. Moreover, no publication exists that quan-

titatively compares two or more different rainfall threshold

models with the aim of choosing the one with the best fore-

casting effectiveness.

This paper proposes a methodology to compare different

rainfall threshold models and to assess which of them would

constitute the most effective warning system.

The proposed methodology goes beyond the commonly

adopted visual comparison of literature thresholds and con-

sists of the application of the models to a common case

study to define site-specific thresholds, performing a calibra-

tion and a validation procedure against independent data sets,

building a confusion matrix and using it to derive a series of

statistical indexes. These indexes can be considered as indi-

cators of the performance of the thresholds and can provide

an objective basis for the quantitative comparison of the ef-

fectiveness of the threshold models. We propose, in partic-

ular, taking the likelihood ratio and efficiency into consid-

Table 5. Contingency matrix displaying the results of the valida-

tion of SIGMA in the Tuscany test site. In the Tuscany test site, the

validation data set spans from 1 January 2008 to 31 January 2009.

TP denotes true positives, FP false positive errors, FN false negative

errors and TN true negatives.

Tuscany Observed truth

test site

SIGMA model Landslide No landslide

Prediction

Landslide 19 12

No
2 173

landslide

eration, as they can estimate the overall performance of the

models with a single value.

We tested two different models, namely SIGMA (Martel-

loni et al., 2012) and MaCumBA (Segoni et al., 2014a),

which have already been used for the regional landslide early

warning systems operated in Emilia Romagna and Tuscany,

respectively. To compare these two models, each of them was

applied in a part of the region in which the other is already

active. This work demonstrated the technical feasibility of

exporting each model in test sites different from those where

they have been conceived, however the performance of the

models varied substantially, depending on the characteris-

tics of the test site and on the quality and quantity of the

rainfall measurements. In the test site affected by shallow

landslides and equipped with a dense rain gauge network,

the intensity–duration thresholds of MaCumBA provided the

best outcomes. In the test site affected by both shallow and

deep-seated landslides and equipped with a limited number

of rain gauges with long time series, the best results were

obtained using SIGMA, which is based on a more complex

decisional algorithm based on rainfall time series aggregated

over variable time windows.

We conclude that even if state-of-the-art threshold models

can be exported from a test site to another, their employment

in local early warning systems should be carefully evaluated:

the effectiveness of a threshold model depends on the test site

characteristics (including the quality and quantity of the in-

put data), and a validation procedure and a comparison with

alternative models should be performed before its implemen-

tation in operational early warning systems.
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Table 6. Validation statistics and comparison of the performances of the two models in the Tuscany test site.

Tuscany Efficiency Positive Negative Sensitivity Specificity Likelihood

test site predictive predictive

power power

MaCumBA 0.98 0.95 0.98 0.86 0.99 158.6

SIGMA 0.93 0.61 0.99 0.90 0.94 13.9
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