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Abstract. From theory to experience, earthquake probability

associated with an active fault should be gradually increas-

ing with time since the last event. In this paper, a new non-

stationary earthquake assessment motivated/derived from

the Mohr–Coulomb failure criterion is introduced. Differ-

ent from other non-stationary earthquake analyses, the new

model can more clearly define and calculate the stress

states between two characteristic earthquakes. In addition to

the model development and the algorithms, this paper also

presents an example calculation to help explain and validate

the new model. On the condition of best-estimate model pa-

rameters, the example calculation shows a 7.6 % probability

for the Meishan fault in central Taiwan to induce a major

earthquake in years 2015–2025, and if the earthquake does

not occur by 2025, the earthquake probability will increase

to 8 % in 2025–2035, which validates the new model that can

calculate non-stationary earthquake probability as it should

vary with time.

1 Introduction

Owing to our imperfect understanding and the natural ran-

domness of earthquake, several models have been proposed

for estimating earthquake probability in a given period of

time. Among them, the Poisson model might be the one that

is mostly used in many applications (e.g., Weichert, 1980;

Ang and Tang, 2007; Ashtari Jafari, 2010). However, it must

be noted that the Poisson model is “memoryless” (Devore,

2008), meaning that the calculation (or the probability) is

only a function of the length of time, but irrelevant to when

the last earthquake occurred. However, it seems that the re-

currence of a characteristic earthquake associated with the

same fault should not be memoryless. That is, the earthquake

probability should gradually increase with time after a major

earthquake has occurred, which is a non-stationary process.

The scope of this study is to develop a new non-stationary

model for earthquake probability assessment, mainly mo-

tivated/derived from the Mohr–Coulomb failure criterion.

Meanwhile, a comprehensive review of other non-stationary

earthquake models is also given in the paper (Sect. 2), fol-

lowed by the derivations of our new non-stationary analy-

sis (Sect. 3). Moreover, an example calculation is also pre-

sented to help demonstrate the new model, and to validate

the model’s robustness (Sect. 4).

2 An overview of non-stationary earthquake models

In this section, we would like to provide a comprehensive

review of non-stationary earthquake analyses and models.

Specifically, we referred to the analyses as “statistical mod-

els” and “physical models”.

2.1 Statistical models

Basically, those statistical models developed are more or less

a derivative of the Poissonian calculation. For example, Vere-

Jones and Ozaki (1982) proposed the use of a time-variant

model parameter for the Poissonian calculation, making their

model become non-stationary although the calculation is still

Poissonian in essence. Similarly, another work suggested the

use of adjusted return period (related to current time and

original return period) in a Poissonian calculation, in order

to modify the Poisson model from being stationary to non-

stationary (Wang et al., 2013).
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Figure 1. Schematic diagram for the time-predictable model:

(a) best-estimate relationship between cumulative coseismic slips

and time, and (b) the earthquake-time prediction facilitated with a

failure state and a constant stress increment.

Another type of the modification is to use different models

than the exponential distribution to model the earthquake’s

inter-occurrence interval as a random variable. (Note that for

an event modeled by a Poisson process, the number of events

in a given period of time is a discrete random variable follow-

ing the Poisson distribution; meanwhile the time when the

next event would recur is a continuous variable following the

exponential distribution.) For example, the log-normal distri-

bution (Ferráes, 2005), Weibull distribution (Yakovlev et al.,

2006), and Gamma distribution (Gómez and Pacheco, 2004)

all have been suggested for the replacement of the exponen-

tial distribution, with them all featuring a non-stationary cal-

culation after such modifications.

Based on given earthquake data, it must be noted that the

statistical models are all empirical in a sense. In other words,

the models do not consider earthquake mechanisms, such

as tectonic stress accumulation and the resistance of fault

planes.

2.2 Physical models

In consideration of earthquake mechanics, several non-

stationary earthquake analyses have also been proposed from

a different perspective. It must be noted that the models are

not entirely a “product” of physics, but are somehow based

on the concepts/theories working together with empirical re-

lationships. Specifically, we would like to introduce three

of them in the following that are more related to our non-

stationary earthquake model.
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Figure 2. Schematic diagram showing the essentials of the Brow-

nian model; within the two imaginary stress states, the model con-

siders the stress–time series should be random and can be mod-

eled by a long-term stress increment and a Brownian motion as

X(t)= λt + σW(t), whereX(t) is the stress at time t , λ is the long-

term stress increment rate, and σ is the magnitude of a Brownian

motion W(t).

The first one we would like to introduce is the time-

predictable model (Shimazaki and Nakata, 1980). Figure 1

is a schematic diagram illustrating the basics of the model.

Essentially, the model relies on a best-estimate relationship

between coseismic fault slip (or displacement) and time. For

instance, given the last event with fault slips as shown in

Points A and B of Fig. 1, the next event should recur at the

time of Points C and D. As a result, the concept of the method

is that the recent event with a smaller fault slip should accom-

pany a smaller stress drop, and with a constant stress incre-

ment with time, it should lead to a shorter time for the stress

to re-reach a stress level (or failure stress state) that could in-

duce earthquakes. In other words, if there is a larger slip rate

from the recent earthquake, a longer time should be needed

for the next event to recur.

The next of this “physical-model” group is the Brownian

model (Ellsworth et al., 1999; Matthews et al., 2002). In con-

trast to the previous model, the Brownian model is not based

on a constant stress increment, while considering the stress

increments between two consecutive events a stochastic pro-

cess. As shown in Fig. 2, the model considers the stress–time

series to be a combination of a long-term stress increment

and a Brownian motion that simulates transient stress ran-

domness, and with such a function we can estimate the date

of the next earthquake by examining if the stress reaches the

failure state within a given time. However, it must be noted

that the so-called failure state of the model is a concept or a

hypothesis, which cannot be formulated or calculated with a

pressure or force even though the strength properties of fault

planes are given.

The third model we would like to introduce is the negative

binomial model (Tejedor et al., 2015). As with the previous

analyses, the model is also based on two imaginary stress

states. As shown in Fig. 3, the essence of the model is that

the stress change in unit time could be modeled by two sce-

narios: “stress increases” and “stress does not increase”. As
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a result, there are many possible “stress routes” (as shown in

Fig. 3) between two consecutive events, and the time needed

for each route and its probability can be calculated with a

given earthquake return period. Finally, the inter-occurrence

interval calculated can be proved as a negative binomial dis-

tribution for such a non-stationary probability assessment.

To sum up, the three physical models are all facilitated

with stress states, although they cannot be calculated with

a force/pressure from earthquake theories/hypotheses. Al-

though we do share this perspective for our model develop-

ment, the biggest difference is that our model defines and

calculates the two stress states more clearly, on the basis of

the Mohr–Coulomb failure criterion that are well established,

and used in rock mechanics, structural geology, etc.

3 The new non-stationary earthquake probability

assessment

3.1 Overviews of Mohr–Coulomb failure criterion and

elastic rebound theory

The Mohr–Coulomb failure criterion is a model describ-

ing the response of materials subject to external stresses

(Pariseau, 2007), and it is commonly applied to rock me-

chanics as well as other applications. Figure 4 is a schematic

diagram illustrating the essentials of the model. Basically, as

the Mohr circle is below the failure envelope, a shear failure

is not expected. By contrast, as long as the Mohr circle is in

contact with the failure envelope, a shear failure could occur

in rock.

In this paragraph, we would like to elaborate on the Mohr–

Coulomb failure criterion. Using Fig. 4 as an example, Mohr

circle A presents the major principal stress σ1 (the bigger

one) from the vertical direction, and the minor principal

stress σ3 (the smaller one) from the horizontal direction. But

with the external compressional stress increasing in the hor-

izontal direction, later on the horizontal stress will be larger

than the vertical stress, making the horizontal and vertical

stresses become σ1 and σ3 instead at the time. Specifically,

this is the case for the thrust-fault earthquake owing to tec-

tonic compression in the horizontal direction. More explana-

tion will be given in the following.

On the other hand, it is generally accepted that tectonic

activities are the main reason causing rock failures un-

der the ground, resulting in an earthquake with the release

of accumulated strain energy. Afterwards, the energy re-

accumulates and re-releases until the next earthquake, be-

coming the foundation of the so-called elastic rebound the-

ory (Keller, 1996) that was proposed by Reid in the early

twentieth century (Reid, 1910). More importantly, those non-

stationary earthquake models mentioned earlier were some-

how motivated by the elastic rebound theory.
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Figure 3. Schematic diagram illustrating the negative binomial

model; between the two stress states, many “stress routes” can be

present, and the probability of each route can be estimated with the

model, then the probability distribution for the interval between two

consecutive events can be developed.

3.2 The basics and algorithms of the new

non-stationary model

The two earthquake theories above were the main motiva-

tion and the foundation of the new non-stationary model:

(1) based on the Mohr–Coulomb failure criterion, the rock

subject to the stress state as Mohr circle C (see Fig. 4) should

fail and cause an earthquake, at which we refer to it as fail-

ure state; (2) from the elastic rebound theory, the stress state

right after a characteristic earthquake should be restored to

Mohr circle A, which is called the initial state at time t0, in

the process towards the next (characteristic) earthquake.

As a result, the problem of evaluating the earthquake prob-

ability within a given time t∗ after the last event (or after t0) is

becoming a problem as follows: what is the chance of the ma-

jor principal stress at time t∗ (denoted as σ1_t∗ ) being greater

than the stress at the failure state (denoted as σ1_failure)? In

that sense, the question can be formulated as follows:

Pr
(
earthquke within t∗ after t0

)
= Pr

(
σ1_t∗ > σ1_failure

)
. (1)

Clearly, the problem is governed by two variables, σ1_t∗ and

σ1_failure, and their relationships with other parameters will

be detailed later. Note that the notations used in the follow-

ing derivations are summarized at the end of the paper (Ta-

ble A1).

– The major principal stress at failure state, σ1_failure:

based on the Mohr–Coulomb failure criterion, the major

principal stress σ1 at failure state (Point C in Fig. 4) can

be expressed as a function of the minor principal stress

σ3, and two strength parameters of the shearing plane,

i.e., cohesion c and friction angle ϕ (Pariseau, 2007):

σ1_failure = σ3_failure

(
1+ sinϕ

1− sinϕ

)
+

2c× cosϕ

1− sinϕ
. (2)

– The minor principal stress at failure state, σ3_failure: the

minor principal stress at failure is attributed to the over-

burden earth pressure (in vertical direction) above the

www.nat-hazards-earth-syst-sci.net/15/2401/2015/ Nat. Hazards Earth Syst. Sci., 15, 2401–2412, 2015
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Figure 4. Schematic diagram illustrating the Mohr–Coulomb failure criterion; circle A represents the initial state after a thrust-fault earth-

quake or at t0, circle B denotes stress states at t∗ after t0, and circle C is the stress state corresponding to the failure state that causes rock

failure and earthquakes.
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Figure 5. The Mohr circles for the non-stationary earthquake analysis for strike–slip earthquakes.

seismogenic depth d , which can be estimated with the

following formula based on rock mechanics:

σ3_failure = σv = γ × d, (3)

where γ is rock unit weight, and σv denotes the stress

in the vertical direction. It must be noted that the case

shown in Fig. 4 and Eq. (3) is for a thrust-fault earth-

quake specifically; that is, at the initial state at t0, the

vertical stress is larger than the horizontal stress because

the rock’s lateral earth coefficient is smaller than 1.0

(Pariseau, 2007). However, near the failure state, the

vertical stress will be smaller than the horizontal stress

because of the increasing external force in the horizon-

tal direction from tectonic compression.

On the other hand, the Mohr circles of the initial and

failure states for the case of strike–slip faults are shown

in Fig. 5, indicating σ3_failure is equal to γ × d ×K for

this case, where K is the rock’s lateral earth coefficient.

As to the case of normal-fault earthquakes subject to

tension, the Mohr circles of the initial and failure states

are shown in Fig. 6.

With the three cases shown in Figs. 4–6, it should be un-

derstood that the directions of major and minor principal

stresses can vary with time; that is, the major (bigger)

and minor (smaller) principal stresses can be from ver-

tical and horizontal directions at the initial state, while

they change to horizontal and vertical directions near

the state of failure, which is exactly the case of thrust-

fault earthquakes as shown in Fig. 4. By contrast, for the

normal-fault case subject to horizontal tension as shown

in Fig. 6, the stresses in the vertical and horizontal di-
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Figure 6. The Mohr circles for the non-stationary earthquake analysis for normal-fault earthquakes.

rections will always be the major and minor principal

stresses, either at the initial state or at failure state, given

the stress in the horizontal direction is always smaller

than that in the vertical direction.

– The major principal stress at time t∗, or σ1_t∗ : for the

thrust-fault earthquake due to tectonic compression in

the horizontal direction, the key task of the new analysis

is to estimate the major principal stress at time t∗ after

the last event. For this case, the major principal stress at

time t∗ can be formulated as follows:

σ1_t∗ = σ3_initial+ t
∗
×ASI, (4)

where ASI represents the annual stress increment. Note

that both σ1_t∗ and σ3_initial of this thrust-fault case are

the forces in the horizontal direction. As explained pre-

viously, this is because at the initial state the horizontal

force is smaller than the vertical force due to the rock’s

lateral earth coefficient less than 1.0. But with the incre-

ment of external stress in the horizontal direction, the

horizontal stress at time t∗ will exceed the force in the

vertical direction, making the horizontal force become

the major principal stress at the time, thus denoted as

σ1_t∗ .

Moreover, given the rock’s lateral earth coefficient

K = σh/σv, σ3_initial in the horizontal direction is cal-

culated as σv×K , which is equal to γ × d ×K .

3.3 The return period t˜ and its relationship with σ1_t∗

In addition to γ , d,K , etc., the return period t̃ of characteris-

tic earthquakes is another input of the non-stationary analy-

sis. Moreover, the mean value and standard deviation of σ1_t∗

can be expressed as a function of t̃ , and is used for developing

its probability density function for the non-stationary proba-

bility assessment.

From the meaning of return period, it is understood that

the event will recur when return period t̃ is due. As a result,

the major principal stress at return period t̃ (denoted as σ1_̃t )

should be equal to σ1_failure. Note that for the thrust-fault case

as explained previously, σ1_̃t , σ3_initial, and σ1_failure in the

following equation all denote the forces in the horizontal di-

rection:

σ1_̃t = σ3_initial+ t̃ ×ASI= σ1_failure. (5)

Therefore, the mean value of ASI (denoted as µASI) can be

derived as follows:

E
[
σ1_failure

]
= E

[
σ3_initial+ t̃ ×ASI

]
→ E[ASI] =

σ1_failure− σ3_initial

t̃
= µASI, (6)

whereE[ ] denotes the mean value of a variable in probability

and statistics.

On the other hand, as the variability of annual stress in-

crement is equal to n in terms of coefficient of variation or

COV (i.e., standard deviation/mean value), its standard de-

viation (denoted as sASI) can be derived as follows with its

mean value from Eq. (6):

n=
sASI

µASI

→ sASI = n×µASI =
n×

(
σ1_failure− σ3_initial

)
t̃

. (7)

With the mean (Eq. 6) of ASI, we can continue deriving the

mean value of the major principal stress at time t∗:

www.nat-hazards-earth-syst-sci.net/15/2401/2015/ Nat. Hazards Earth Syst. Sci., 15, 2401–2412, 2015
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σ1_t∗ = σ3_initial+ t
∗
×ASI

→ E
[
σ1_t∗

]
= E

[
σ3_initial+ t

∗
×ASI

]
= σ3_initial+ t

∗
×E[ASI]

= σ3_initial+
t∗×

(
σ1_failure− σ3_initial

)
t̃

. (8)

Similarly, the standard deviation of the major principal stress

at time t* (denoted as sσ1_t∗ ) can be derived as follows with

sASI in Eq. (7):

σ1_t∗ = σ3_initial+ t
∗
×ASI

→ V
[
σ1_t∗

]
= V

[
σ3_initial+ t

∗
×ASI

]
= t∗,2×V [ASI] = t∗,2× s2

ASI

→ sσ1_t∗ =

√
V
[
σ1_t∗

]
= t∗× sASI

=
t∗× n×

(
σ1_failure− σ3_initial

)
t̃

. (9)

V [ ] denotes variance in probability and statistics, which is

the square of standard deviation.

In order to establish the probability density function of

σ1_t∗ , the information about what type of probability distribu-

tion the variable is following is as essential as its mean value

and standard deviation. But to the best of our knowledge,

there is no study providing tangible evidence to the distribu-

tion model of σ1_t∗ , so we suggest the use of the normal dis-

tribution for this random variable, as the normal distribution

is usually recommended for a probability analysis when the

variables’ distribution is unknown (Abramson et al., 2002).

3.4 Summary

Figure 7 is a schematic diagram illustrating the essentials of

the non-stationary assessments. The fundamental idea of the

analysis is to estimate the probability distribution of the ma-

jor principal stress at time t∗ after the last event (or after t0),

and compare it to the stress that could cause earthquakes.

Simply speaking, the governing equation of the analysis can

be formulated as Eq. (1), and the mean value and standard

deviation of the major principal stress at time t∗ can be de-

rived as Eqs. (8) and (9), respectively.

Most importantly, different from other non-stationary

models using the initial and failure states conceptually, the

new model can formulate and calculate the forces of the two

stress states with the well-established Mohr–Coulomb failure

criterion.

To sum up, the new non-stationary model is governed by a

total of six parameters as follows: return period (̃t), two fault-

plane strength parameters (c and ϕ), rock unit weight (γ ),

earthquake seismogenic depth (d), and COV of annual stress

increment (n).
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Fig. 7. The essentials of the new non-stationary model: Developing the probability 
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Figure 7. The essentials of the new non-stationary model: develop-

ing the probability distribution of the major principal stress at time

t∗ (i.e., σ1_t∗ ) after the last event or after t0.

3.5 Presumption and limitations

The elastic rebound theory is a plausible explanation for

earthquakes, but specifically speaking, it is more of a theory

for main shocks. As a result, the new non-stationary analysis

of the study motivated by such a theory is more applicable to

main shocks, a situation similar to other non-stationary mod-

els which are also more applicable to main shocks rather than

dependent shocks (Shimazaki and Nakata, 1980; Ellsworth et

al., 1999; Matthews et al., 2002; Tejedor et al., 2015).

On the other hand, like any other temporal earthquake

probability analyses, our model cannot predict the magnitude

of the recurring event, either. In other words, the (earthquake)

temporal model usually governed by a given return period to

predict earthquake probability in a given time cannot pre-

dict earthquake magnitudes or energy release. Again, such a

framework is similar to other earthquake temporal analyses

only focusing on the earthquake probability in a given pe-

riod of time, but not focusing on the probability distribution

of earthquake magnitude or energy release when the event

recurs.

4 Model demonstration

4.1 The purpose of the model demonstration

In this section, we would like to present an example calcula-

tion using the new non-stationary model, even though the six

model parameters (such as COV of annual stress increment)

cannot be obtained without a much more extensive investiga-

tion. This situation is similar to other non-stationary models.

For example, although the Brownian model introduced ear-

lier is acceptable with its concept/methodology, it is difficult

to use it in some case studies because the model parameters,

such as the long-term stress increment rate and the magni-

Nat. Hazards Earth Syst. Sci., 15, 2401–2412, 2015 www.nat-hazards-earth-syst-sci.net/15/2401/2015/
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Table 1. Summary of the model parameters used in the analyses.

Parameters Depth Unit weight Cohesion Friction angle Return period (years) K∗ n∗∗

(km) (kN m−3) (MN m−2) (degrees)

Range 4–8 25–30 3.6–22.7 22–46 12 cases; 0.2–0.5 0.25–1.0

from 152–172 (162± 50)

to 42–282 (162± 120)

Average 6 27.5 13.2 34 162 0.35 0.63

∗ K is the rock’s lateral earth coefficient; ∗∗ n is COV of annual stress increment.

tude of a Brownian motion, are hard to determine in a totally

objective manner. This might be the reason that no real case

study using the Brownian model has been reported yet so

far, although the model is generally acceptable in terms of

methodology.

Nevertheless, we still consider it is beneficial to provide

a model demonstration to accompany the methodology for

a better presentation/understanding of the new model pro-

posed. Moreover, given the earthquake probabilities did vary

with time from the example calculation, the demonstration

helps validate the non-stationary analysis, the main purpose

of providing the example calculation in the study.

4.2 The Meishan fault in central Taiwan

Specifically, we used the Meishan fault in central Taiwan as

the example calculation. One of the reasons is that the re-

turn period of the characteristic earthquake induced by the

active fault has been proposed as 162 years (Lin et al., 2008),

and it has been used in a couple of applications (Wang et

al., 2012, 2013). For example, Wang et al. (2013) used the

data in their seismic hazard assessment with a focus on the

characteristic Meishan earthquake, evaluating the annual rate

of PGA> 0.23 g in nearly cities of the active fault in central

Taiwan.

Figure 8 shows the location of the Meishan fault in cen-

tral Taiwan. In 1906, this strike–slip fault caused the so-

called Meishan earthquake atMw= 6.4. At that time, around

1200 people were killed because of the earthquake.

However, to the best of our knowledge, there is no consen-

sus before the 1906 earthquake on how many characteristic

earthquakes, and when, had been induced by the active fault.

As a result, it is impossible to estimate the standard deviation

of the earthquake return period from conventional statistical

approaches with only one “confirmed” data point available.

Similarly, without extensive investigations and studies in

the future, we believe no research team can provide a totally

transparent estimate on COV of annual stress increment near

the Meishan fault in central Taiwan, which is another key

model parameter for the new non-stationary analysis. As a

result, the set of the best-estimate model parameters used in

the following example calculation is inevitably related to our

judgment.
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Fig. 8. The location of the Meishan fault in central Taiwan 
 

Figure 8. The location of the Meishan fault in central Taiwan.

Nevertheless, we would like to emphasize that the purpose

of providing the example calculation is to help understand

and validate the new non-stationary analysis. Admittedly, the

model parameters used will not be perfectly agreeable, but at

the same time we believe the problem cannot be addressed

by any research team at this point without extensive investi-

gations and studies on annual stress increment variability (n),

the rock’s lateral earth coefficient (K), the fault plane’s co-

hesion (c) and friction angle (ϕ), and the earthquake return

period (̃t) and its range or standard deviation.

4.3 The best-estimate data for this model

demonstration

Table 1 summarizes our best-estimate model parameters for

the example calculation. First, we used a typical range (see

Table 1) from rock mechanics as our best-estimate friction

angle and cohesion (Pariseau, 2007), given the strength pa-

rameters of the fault plane few miles under the ground are

not clear. Similarly, a probable range of 0.2–0.5 was used as

our best estimate for the rock’s lateral earth coefficient (K),

given no site-specific studies and data have been reported.

As for the earthquake focal seismogenic depth, we consid-

ered the depth should be close to 6 km, like the last Meishan

earthquake (Ng et al., 2009). However, in order to account
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Fig. 9. The earthquake probability in three 10-year periods for the example calculation, 
with the earthquake return period of 162 ± 50 years and other input data in Table 1  
 

Figure 9. The earthquake probability in three 10-year periods

for the example calculation, with the earthquake return period of

162± 50 years and other input data in Table 1.

for this uncertainty, we used a best-estimate range as 4–8 km

in the analysis.

A similar situation was encountered in the determination

of the best-estimate return period as mentioned previously.

As a result, on the basis of 162 years as the mean value

from the literature (e.g., Wang et al., 2013), 12 best-estimate

ranges from 162± 10 years and 162± 120 years were used

in the model demonstration. Another purpose of carrying out

the 12 analyses is to examine how sensitively this model pa-

rameter could affect the non-stationary analysis.

As for COV of annual stress increment (n), to the best of

our knowledge, there is no research so far that can really

answer the question. As a result, the range of 0.25–1 was

used as our best estimate characterizing the variability of an-

nual stress increment near the Meishan fault in central Tai-

wan. More discussion about the input-data characterizations

is given in Sect. 5.1.

4.4 Monte Carlo simulation

Because our input data were characterized by a range rather

than a single value, it is difficult to solve the non-stationary

probability (i.e., Eqs. 1, 8, and 9) with analytical approaches.

Therefore, we used Monte Carlo simulation (MCS) to solve

the problem as it has been used in many different applica-

tions. For more details about Monte Carlo simulation, readers

can refer to the textbooks of Ang and Tang (2007), Abramson

et al. (2002), among many others.

4.5 The result

With our best-estimate model parameters summarized in Ta-

ble 1, Fig. 9 shows the average probabilities for three 10-

year periods from Monte Carlo Simulation with a sample

size of 5000. For example, the non-stationary model shows

a 7.6 % probability for the Meishan fault to induce a major

earthquake in years 2015–2025, under the return period of
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Fig. 10. The earthquake probability in three 10-year periods for the example 
calculation, with the earthquake return period of 162 ± 100 years and other input data 
in Table 1   

 

Figure 10. The earthquake probability in three 10-year periods

for the example calculation, with the earthquake return period of

162± 100 years and other input data in Table 1.

162± 50 years, along with other model parameters given in

Table 1. Then, if the event does not occur by 2025, the earth-

quake probability in 2025–2035 will increase to 8 %; simi-

larly, if the event does not occur by 2035, the probability will

further increase to 8.4 %.

Figure 10 shows the result for another scenario under a

return period of 162± 100 years. Similar to the previous cal-

culation shown in Fig. 9, the earthquake probabilities in the

three 10-year periods with different starting dates increase

with time. Therefore, from the two example calculations, the

new analysis indeed calculated a non-stationary probability,

which provided some validation to the new non-stationery

model derived from the Mohr–Coulomb failure criterion.

But interestingly, although the two calculations (Figs. 9

and 10) show the average probabilities (the average value of

5000 randomizations from Monte Carlo simulation) are very

close to each other, they also demonstrate that the average

probabilities are smaller with a larger range in earthquake re-

turn period (i.e., 162± 100 years) as input. Although such a

result seems counterintuitive, the cause and explanation are

given in the following section with the support of more cal-

culations.

Figure 11a shows the results of the 12 calculations with

return periods from 162± 10 to 162± 120 years. We can see

that the output probability range indeed increases with the

input range of earthquake return periods. However, the av-

erage probability (output) is almost identical, or the average

probability is insensitive to the input data from 162± 10 to

162± 120 years.

Our speculation of the results shown in Fig. 11a is

as follows: although the input-data range is symmetrical

(e.g., 162± 50 years), the range of the output can be highly

asymmetrical owing to the non-linear analysis. To prove this,

we processed the 5000 data from our MCS calculation as

Fig. 11b, and we can see that the output distribution is not

symmetrical as input, causing the average value and the mid-

dle value (i.e., (maximum+minimum)/2) to be quite differ-
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Fig. 11. The result of the 12 calculations using return periods from 162 ± 10 to 162 ± 
120 years: a) the average probability and the range from the 12 MCS calculations, and 
b) the asymmetrical distribution in the output data because of the non-linear 
relationship between input and output in this analysis   

10 20 30 40 50 60 70 80 90 100 110 120

0.0

0.1

0.2

0.3

0.4

C
o

rr
es

p
on

d
in

g
 p

ro
ba

b
ili

ty
 r

a
ng

e

: Avergae probability

E
a

rt
h

q
ua

ke
 p

ro
b

a
bi

lit
y

Input return period range

(a)

 

0.00 0.05 0.10 0.15 0.20 0.25
0

50

100

150

200

250

300
(b)

F
re

q
u

e
n

cy

Earthquake probability

Average value
Middle value

Figure 11. The result of the 12 calculations using return periods

from 162± 10 to 162± 120 years: (a) the average probability and

the range from the 12 MCS calculations, and (b) the asymmetrical

distribution in the output data because of the non-linear relationship

between input and output in this analysis.

ent. Therefore, the cause of a slightly larger average probabil-

ity (output) with a smaller range of earthquake return period

(input) is due to the non-linear relationship of the calculation,

making the output range become asymmetrical although the

input distribution is symmetrical.

An additional assessment of the new model is to com-

pare the example calculation with the commonly-used Pois-

son model (although such a stationary model is not realistic).

Surprisingly, as seen in Figs. 9 and 10, the two models are

in good agreement, calculating the earthquake probabilities

in 6 % (Poisson) and 8 % (new model) for the next Meis-

han earthquake to occur within 2015–2025 in central Taiwan.

This additional information may somehow add extra support

to the model’s robustness.

5 Discussions

5.1 Input-data characterizations

As many analyses, input-data characterizations are equally

or even more challenging than developing the model itself.
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Fig. 12. Schematic diagram illustrating the stationary process after combining many 
non-stationary processes; taking T = t0 and T = t1 for example, the sum of that many 
non-stationary probabilities will be close to each other, although the probability is 
very low for Fault D at T = t0, and it is very low for Fault A at T = t1 
 

Figure 12. Schematic diagram illustrating the stationary process

after combining many non-stationary processes; taking T = t0 and

T = t1 for example, the sum of that many non-stationary probabili-

ties will be close to each other, although the probability is very low

for fault D at T = t0, and it is very low for fault A at T = t1.

As to this new model, we hope to see more studies focusing

on the model-parameter calibrations, such as COV of annual

stress increment (n), the rock’s lateral earth coefficient (K)

and the fault plane’s strength parameters (c and ϕ) close to

the focal point of the earthquake. However, this is a task be-

yond the scope of this study, and it cannot be completed with-

out extensive investigations and studies.

On the other hand, one could argue why a geologically

well-investigated fault (e.g., the Chelungpu fault) in Taiwan

is not chosen as the model application to reduce uncertainty,

and here is our response: the engineering parameters of the

model (i.e., lateral pressure coefficient K , strength param-

eters c and ϕ, etc.) are not clear either for those so-called

well-investigated faults. As a result, no matter which fault

is selected as the model application, engineering judgment

must be involved in the determinations of those model pa-

rameters, more or less creating the same level of uncertainty

when it comes to site characterizations on the model param-

eters K , n, c, ϕ, etc.

www.nat-hazards-earth-syst-sci.net/15/2401/2015/ Nat. Hazards Earth Syst. Sci., 15, 2401–2412, 2015



2410 J. P. Wang and Y. Xu: Earthquake probability assessment with the Mohr–Coulomb failure criterion

5.2 Should earthquake occurrence follow a stationary

or non-stationary process?

Although characteristic earthquakes related to a given active

fault should be non-stationary, in the 1970s a study has pro-

vided statistical evidence to the opposite: earthquake is sta-

tionary (Gardner and Knopoff, 1974). However, it must be

noted that the study was not focusing on characteristic earth-

quakes, but it was based on the regional seismicity in Cali-

fornia.

Figure 12 is a schematic diagram that helps explain the dif-

ference between the two problems. For each fault, the recur-

ring earthquake should be a non-stationary process, and the

non-stationary earthquake probability would be reset at the

last event and gradually increase with time. By contrast, the

seismicity in a region would become stationary with so many

non-stationary processes present. For example, at T = t0 (see

Fig. 12), the sum of that many stationary probabilities should

be close to that at T = t1 (or at any moment), although the

earthquake probability induced by fault D should be very low

at T = t0, while others are higher.

The relationship can be simply explained with the “patron-

and-bank” analogy. Each patron (analogy to each fault) going

to the bank is obviously a non-stationary process, with the

probability increasing with time since the very last visit. But

for the banks (analogy to the seismicity), it is a stationary

process irrelevant to time, as so many patrons or so many

non-stationary processes are being dealt with at one time.

6 Summary and conclusion

Given that the characteristic earthquake associated with an

active fault should be a non-stationary process, this paper

introduces a new non-stationary analysis to evaluate earth-

quake probability within a given period of time. Different

from previous models, the new analysis more clearly defines

and calculates two earthquake stress states, on the basis of

the well-established Mohr–Coulomb failure criterion.

In addition, this paper also presents a model demonstra-

tion accompanying the new non-stationary model. On the

condition of the best-estimate model parameters, the active

fault has a 7.6 % probability of inducing the next Meishan

earthquake in 2015–2025, and if the earthquake does not oc-

cur by 2025, the non-stationary probability will increase to

8 % in 2025–2035, which validates the new non-stationary

model that can calculate non-stationary earthquake probabil-

ity varying with time.
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Appendix A

Table A1. Notations.

t0 The time when the last event occured

t∗ The time interval after the last event

σ1_t∗ Major principal stress at time t∗

σ1_failure Major principal stress at failure state

σ3_failure Minor principal stress at failure state

σv Stress on the vertical direction

σh Stress on the horizontal direction

c Cohesion of the fault plane

ϕ Friction angle of the fault plane

d Earthquake seismogenic depth

γ Rock unit weight

K Coefficient of lateral earth pressure in rock

ASI Annual stress increment

t̃ Earthquake return period

σ1_̃t Major principal stress at return period

E Expected value or mean value

V Variance

µASI Mean value of ASI

n Coefficient of variation for ASI

sASI Standard deviation of ASI

sσ1_t∗ Standard deviation of σ1_t∗

σ1_initial Major principal stress at initial state

σ3_initial Minor principal stress at initial state

σ3_t∗ Minor principal stress at t∗
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