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Abstract. Landslides pose a serious threat to life and prop-

erty in Central America and the Caribbean Islands. In or-

der to allow regionally coordinated situational awareness and

disaster response, an online decision support system was cre-

ated. At its core is a new flexible framework for evaluating

potential landslide activity in near real time: Landslide Haz-

ard Assessment for Situational Awareness. This framework

was implemented in Central America and the Caribbean by

integrating a regional susceptibility map and satellite-based

rainfall estimates into a binary decision tree, considering

both daily and antecedent rainfall. Using a regionally dis-

tributed, percentile-based threshold approach, the model out-

puts a pixel-by-pixel nowcast in near real time at a reso-

lution of 30 arcsec to identify areas of moderate and high

landslide hazard. The daily and antecedent rainfall thresh-

olds in the model are calibrated using a subset of the Global

Landslide Catalog in Central America available for 2007–

2013. The model was then evaluated with data for 2014.

Results suggest reasonable model skill over Central Amer-

ica and poorer performance over Hispaniola due primarily

to the limited availability of calibration and validation data.

The landslide model framework presented here demonstrates

the capability to utilize globally available satellite products

for regional landslide hazard assessment. It also provides a

flexible framework to interchange the individual model com-

ponents and adjust or calibrate thresholds based on access

to new data and calibration sources. The availability of free

satellite-based near real-time rainfall data allows the creation

of similar models for any study area with a spatiotemporal

record of landslide events. This method may also incorpo-

rate other hydrological or atmospheric variables such as nu-

merical weather forecasts or satellite-based soil moisture es-

timates within this decision tree approach for improved haz-

ard analysis.

1 Introduction

The ability to estimate or forecast landslide activity is largely

dependent on the scale at which the analysis is undertaken as

well as the availability of geomorphologic, atmospheric and

landslide data for the study region. Physically based models

focusing on the local hillslope scale require a broad range of

geotechnical and hydromechanical in situ variables for accu-

rate modeling of individual slope failures (Baum et al., 2010;

Liao et al., 2012; Montgomery and Dietrich, 1994; Montrasio

et al., 2011). Empirical studies can focus on local to regional

scales but are constrained by the availability of landslide in-

formation and surface products that can be used to create a

homogenous picture of landslide hazard over the region. The

timing of rainfall-triggered landslides is challenging to pre-

dict due to the scarcity of real-time precipitation measure-

ments, in situ landslide inventories and information about

local ground conditions. Satellite rainfall products provide

the opportunity to approximate the conditions that lead to

rainfall-triggered landslides over regional scales, especially

where rain gauge networks are sparse. The Tropical Rainfall

Measuring Mission (TRMM) and its successor, the Global

Precipitation Measurement (GPM) mission, provide a multi-

decadal record of precipitation estimates that can be used to

systematically evaluate rainfall and estimate landslide trig-

gering relationships over multiple spatial and temporal scales
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(Kirschbaum et al., 2012a; Ray and Jacobs, 2007; Rossi et

al., 2012).

Previous work has used rainfall intensity–duration (I–D)

thresholds to estimate the landslide hazard over time at a va-

riety of spatial scales (Berti et al., 2012; Caine, 1980; Godt

et al., 2006; Guzzetti et al., 2008; Li et al., 2011; Mathew

et al., 2014; Saito et al., 2010; Terlien, 1998). Landslide

susceptibility zonation studies have examined the compo-

nents of landslide hazard using a range of heuristic (Farah-

mand and AghaKouchak, 2013; Hong et al., 2007; Mora and

Vahrson, 1994; Nadim et al., 2006) and statistical (Van Den

Eeckhaut et al., 2009; Lee and Pradhan, 2007; Pradhan and

Lee, 2010) models at diverse spatial scales. Recent work

has also combined both rainfall accumulation thresholds

and susceptibility information to provide early warning for

landslides at a subnational level (Lagomarsino et al., 2013;

Martelloni et al., 2012; Segoni et al., 2014). Kirschbaum et

al. (2012b) adapted a prototype global system developed by

Hong et al. (2006) into a dynamic landslide model at the

regional scale for four countries in Central America: Hon-

duras, Nicaragua, El Salvador and Guatemala. The model

applied a single I-D threshold to TRMM Multi-satellite Pre-

cipitation Analysis (TMPA; Huffman, et al., 2007, 2010)

precipitation data and a susceptibility map to produce land-

slide nowcasts. The Landslide Hazard Assessment for Sit-

uational Awareness (LHASA) model presented here builds

upon this previous work to develop a dynamic regional

framework that provides estimations of landslide hazard in

near real time across multiple countries in Central Amer-

ica. The model incorporates a new landslide susceptibility

map developed for Central America and the Caribbean re-

gion (Kirschbaum et al., 2015a) with local percentile-based

rainfall and antecedent rainfall thresholds. LHASA has been

incorporated into a prototype regional natural hazard web-

site: http://ojo-streamer.herokuapp.com/meso. The public is

now able to view a daily map identifying moderate and high

landslide hazard areas, static landslide susceptibility, precip-

itation and antecedent rainfall over the study domain and

download the model’s major data inputs.

This study proposes one method for estimating potential

landslide activity across broad regions with sparse landslide

inventories and other in situ information. Ideally, an empir-

ical relationship between precipitation and landslide occur-

rence would be based on a long historical landslide record

with many events and corresponding gauge-based rainfall at

the local scale (Frattini et al., 2009; Guzzetti et al., 2007).

However, due to the dearth of both landslide information

and rainfall gauges over this region, extracting local I–D

thresholds was not possible. The approach presented here

leverages the long-term TMPA precipitation record to relate

landslide events from the Global Landslide Catalog (GLC;

Kirschbaum et al., 2010) to a statistical distribution of rain-

fall from 2001 to 2013. While intense rainstorms are the

most important trigger of landslides in the Caribbean region

(Larsen and Simon, 1993), landslides are often exacerbated

by prior soil moisture conditions (Nadim et al., 2009). Using

antecedent daily rainfall has been shown to help predict land-

slides, especially those cases where the triggering precipita-

tion event is small (Cepeda et al., 2009). The LHASA model

incorporates an antecedent rainfall index (ARI) to represent

the conditions prior to the day of the triggering event. Since

the relationship between rainfall, antecedent rainfall, suscep-

tibility and landslide triggering is not linear, we employ a bi-

nary decision tree approach to test the feasibility of the model

to accurately resolve landslide nowcasts while minimizing

the overall number of alerts issued. This paper first presents

an overview of the regional application of the model and

data used for this study. Next, the LHASA threshold-based

decision tree model framework is presented and calibration

and validation procedures for parameterizing the model over

Central America and the Caribbean are outlined. Lastly, the

paper concludes with a discussion outlining the applicabil-

ity of this model framework across a range of spatiotemporal

scales and the possibility of using different hydrometeoro-

logical and in situ data products.

2 Data

2.1 Regional setting

The LHASA model provides a flexible architecture that can

be applied over a variety of spatiotemporal scales by leverag-

ing regional environmental, climatic and landslide data. The

model was initially developed to serve two regions: Cen-

tral America and Hispaniola. The Central American study

area ranges from 93 to 76◦W longitude and from 6 to

19◦ N latitude. In addition to the nations of Central Amer-

ica, the analysis includes Jamaica and small portions of Mex-

ico and Colombia. Central America has a tropical climate

and a wide range of terrain dominated by the Central Amer-

ican volcanic arc along the western coast and active geo-

logic faults throughout the region. The region experiences

intermittent spring rains and a long rainy season from July

through November, marked by landfalling tropical cyclones

from the Caribbean Sea and eastern Pacific Ocean. These

heavy rains combine with tectonic activity to make Central

America a hotspot for landslide activity (Nadim et al., 2006).

The Hispaniolan study area encompasses Haiti, the Domini-

can Republic and Puerto Rico. The timing and intensity of

the rainy season varies across Hispaniola due to five ma-

jor mountain ranges across the island, with elevations vary-

ing from 3000 m to below sea level. Due to the associated

rain shadow, annual precipitation varies from over 2500 mm

in the elevated northern regions to as little as 500 mm in

the semi-arid southern regions (Alpert, 1941). In Haiti, the

impact of earthquakes and tropical cyclones on deforested

slopes with poorly constructed dwellings makes this area ex-

ceptionally vulnerable to landslides (Mora, 1995). All of the

countries in this region have experienced significant losses
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from landslides as a result of previous disasters such as Hur-

ricane Mitch in 1998 and the 2010 Haiti earthquake, among

others (Guha-Sapir et al., 2014). This region is also very

likely to suffer significant losses from landslides as a result

of changing precipitation and tropical cyclone patterns in a

changing climate (IPCC, 2007).

2.2 Landslide catalogs

There are several different landslide inventories available

within Central America that have varying geographic ex-

tents, compilation methodologies, temporal information and

accuracies. We used four landslide inventories to develop

and test the regional landslide susceptibility map, which are

outlined in Kirschbaum et al. (2015a). These inventories in-

clude (1) landslides triggered by Hurricane Mitch in 1998,

compiled by United States Geological Survey (USGS) and

others (Bucknam et al., 2001; Cannon et al., 2001; Crone

et al., 2001; Harp et al., 2004); (2) a historical Nicaragua

database compiled by Devoli et al. (2006, 2007); (3) a his-

torical landslide database from El Salvador (Gerencia de Ge-

ología, 2012); and (4) the Global Landslide Catalog. While

each of these inventories were useful to compute the regional

static susceptibility map, the GLC had the most relevant spa-

tial and temporal information for calibrating and evaluating

the LHASA model. As a result, a record of historical land-

slides was selected from the GLC (Kirschbaum et al., 2010).

We also selected 24 landslides from the El Salvador inven-

tory compiled by the Ministry of the Environment and Nat-

ural Resources (MARN) (Gerencia de Geología, 2012). No

times of occurrence were available for these points and no

spatial accuracies were defined. The combined landslide data

covered the years 2007–2013.

Despite its limitations, the GLC is a key resource in eval-

uating landslide patterns and represents the only event-based

landslide database available across all countries in Central

America and the Caribbean region. The GLC is populated

primarily from media reports but also incorporates online

disaster databases and personal communication in some in-

stances. Due to the compilation methodology of the GLC,

there are several types of error that impact the accuracy of

the catalog, including regional reporting biases, variations in

cataloging methodology and report accuracy. Kirschbaum et

al. (2015b) outline these biases in more detail. Another un-

certainty stems from the landslide types presented in this cat-

alog. The GLC includes mass movements that are reported

to have been triggered directly by rainfall (including debris

flows, mudslides, rock falls, etc.), all of which we herein

refer to as landslides. While it is often impossible to dif-

ferentiate between landslide types from a media report un-

less detailed descriptions or a photo is included, we believe

that the majority of landslides that are used to calibrate and

evaluate the LHASA model are rapid, shallow movements of

soil, rock and other debris. The size of each landslide is typ-

ically even more difficult to determine in most cases, but the

reported landslides often occur above roads and tend to be

long, narrow runout debris flows. These assertions are based

on review of GLC event entries as well as previous work

in this region (Bucknam et al., 2001; Cepeda et al., 2010a;

Devoli et al., 2006, 2008). In many cases, there is uncer-

tainty about exactly where and when the landslide took place

due to limited information. To limit the effects of this prob-

lem, only rain-triggered landslides with a spatial accuracy of

25 km or better and a known date of occurrence were cho-

sen. From this selection, 99 landslides from Central America

and 24 landslide events from Hispaniola were used for this

study (Fig. 1). The exact time of occurrence was only known

for 17 of these reports. Because the landslides occurred in

multiple time zones, it was necessary to correct a few dates.

However, no time zone correction could be made for the vast

majority of events; thus, in addition to any errors present in

the original report, it is likely that some landslides may have

actually occurred on a different UTC date than the date of

record.

In 2014, 877 new landslides were added to the GLC. These

were not available during the development of the dynamic

landslide model and represent an independent data set of

the same type as the 2007–2013 catalog. Seventy-nine land-

slides were located within the study areas described above,

accounting for 49 deaths and 30 injuries. Of these, 56 were

known to be triggered by rain and had a spatial accuracy bet-

ter than 25 km. Due to the submission of a single detailed

report, the exact location of 14 landslides was known. How-

ever, these points represent a single cluster of landslides oc-

curring on 23 June 2014 near El Ayote, Nicaragua (INETER,

2014). In order to reduce the weight placed on this cluster,

six closely spaced landslides were pruned from the GLC. The

resulting 2014 catalog used in the analysis includes 42 land-

slides that occurred in Central America, one in Jamaica, and

seven that occurred in the Hispaniolan study area.

2.3 Susceptibility map

A susceptibility map was created for all of Central America

and the Caribbean Islands at a resolution of 30 arcsec with the

goal of discriminating susceptible from non-susceptible re-

gions (Fig. 1) (Kirschbaum et al., 2015a). In order to achieve

a consistent output across the region, one regional (faults)

and three global (slope, soils and roads) geographic data sets

were combined (Table 1). These variables were selected on

the basis of geographic extent, consistency, expert opinion

and empirical relevance. Several other surface variables, such

as forest cover and geology, were also tested within the sus-

ceptibility model framework but did not enhance predictions.

In some cases, variables that were largely redundant (e.g.,

cation exchange capacity) were eliminated, despite good val-

idation results.

The distance to the nearest major fault was derived from a

geologic map of the Caribbean (French and Schenk, 2004).

The USGS produced a global product highlighting statisti-
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Figure 1. Regional landslide susceptibility map created using a fuzzy overlay methodology from global slope, soil and road databases as

well as a regional map of faults at a resolution of 30 arcsec (approximately 1 km) (Kirschbaum et al., 2015a). Landslides recorded in the

study areas are shown for the years 2007–2013 (+) and 2014 (o). Overall, 166 landslide reports are from the Global Landslide Catalog and

24 landslides in El Salvador were selected from the MARN catalog. Large numbers of landslides are located near capital cities, implying

some degree of reporting bias. Inset map shows landslide susceptibility map for Hispaniola with 31 reported landslides.

cal properties of slope and elevation (e.g., median, maxi-

mum, 70th percentile) where Shuttle Radar Topography Mis-

sion (SRTM) data were aggregated from the nominal res-

olution (3 arcsec) to 30 arcsec (Verdin et al., 2007). The

70th percentile slope gradient was considered for this eval-

uation because the slope distribution most closely corre-

lated to the 3 arcsec SRTM data for reported landslide lo-

cations. The distribution of major soil types was obtained

in raster format from the Harmonized World Soil Database

(FAO/IIASA/ISRIC/ISSCAS/JRC, 2012). The variable “per-

cent clay” was selected to represent the regional soil prop-

erties. Road locations were obtained from the Global Roads

Open Access Data Set, version 1 (CIESIN and ITOS, 2013).

These four layers were overlaid in ArcGIS through the use

of fuzzy operators. First, each variable was transformed into

a “possibility” between 0 (representing low landslide hazard)

and 1 (representing high hazard) through the use of a fuzzy

membership function. Next, the non-topographic variables

were combined with a “fuzzy gamma” function, in which

gamma was set to 0.4. Finally, the output was overlaid with

the transformed slope values with the “fuzzy product” oper-

ator, a simple function chosen to prevent the identification of

flat ground as hazardous.

Using the standard deviation classification scheme, the

susceptibility map was divided into five categories that rep-

resented relative susceptibility: very low, low, medium, high

Figure 2. Probability distribution of susceptibility values at land-

slide locations reported from 2007 to 2013 compared to landslide

susceptibility values for all of Central America. Landslides occurred

in all susceptibility categories, but few landslides (< 10 %) occurred

in the lowest category. The LHASA model used a threshold of “low”

susceptibility or greater (SI≥ 2) with rainfall and antecedent rainfall

thresholds within the decision tree framework (Fig. 6). SI≥ 2 (low)

was chosen to exclude a large portion of Central America without

losing the ability to predict most landslide events.

and very high. Four historical landslide catalogs – varying

greatly in temporal and spatial scale, size and completeness

– were used to evaluate the susceptibility map. Figure 2 com-

pares the distribution of the five susceptibility categories at

Nat. Hazards Earth Syst. Sci., 15, 2257–2272, 2015 www.nat-hazards-earth-syst-sci.net/15/2257/2015/
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Table 1. Data sources used in the LHASA model.

Data type Data set Resolution Extent source and details

Slope 70th percentile 30 arcsec 65◦ N–S Verdin et al. (2007)

slope, USGS (∼ 1 km) derived from 3 arcsec

SRTM DEM

Soils Harmonized 30 arcsec, Global FAO/IIASA/ISRIC/ISSCAS/

World Soil nominal scale JRC (2012)

Database (1 : 5 000 000)

Roads Global Roads Multiple Global CIESIN and ITOS (2013)

Open Access sources

Data Set, (accuracy

version 1 ranges from

30 to 1265 m)

Fault Map showing 1 : 2 500 000 Central French and Schenk (2004)

zones geology, oil America

and gas fields, and

and geologic Caribbean

provinces of

the Caribbean

region

Rainfall TRMM Multi- 0.25◦, 50◦ N–S http://pmm.nasa.gov

satellite 3-hourly

Precipitation resolution

Analysis

Version 7,

real time

Landslide GLC, 322 Accuracy is Global Kirschbaum et al. (2010)

inventory points in region defined on a

point-by-point

basis

MARN, 297 Various El Salvador Gerencia de Geología

points mapping scales (2012)

and survey

types

recorded landslides to the distribution over the total study

area. Few landslides occurred in locations rated as having

“very low” landslide susceptibility (SI= 1), despite the fact

that this is the largest category by area. These locations were

not considered susceptible to landslides for the purposes of

the binary decision tree model.

2.4 Rainfall estimates

Satellite precipitation estimates from the TRMM TMPA-RT

product are available at a resolution of 0.25◦× 0.25◦ (Huff-

man et al., 2007, 2010). This product provides a snapshot

of precipitation rates utilizing TRMM and other satellites to

provide a precipitation map every 3 h from 50◦ N–S. TMPA-

RT data are available from March 2000 to the present. For

this analysis, daily rainfall totals were used. The GPM mis-

sion was launched in February 2014 and is a global succes-

sor to TRMM. GPM’s multi-satellite product IMERG (Inte-

grated Multi-Satellite Retrievals for GPM) is already provid-

ing data, although TMPA-RT will continue to be processed

into the near future.

3 Methods

The model inputs to LHASA required several processing and

calibration steps before they could be directly applied. Un-

less otherwise noted, all calculations were performed in the

statistical programming language R v3.1.2 (R Core Team,

2013). Raster operations were performed with “raster”, a

third-party package for R (Hijmans and van Etten, 2014). All

raster files were resampled to a resolution of 30 arcsec, the

same as the susceptibility map, using the nearest neighbor

method, and clipped to the two study areas. Thus, each pixel

represents a data point of approximately 1 km2 (30 arcsec)

www.nat-hazards-earth-syst-sci.net/15/2257/2015/ Nat. Hazards Earth Syst. Sci., 15, 2257–2272, 2015
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Figure 3. Maps showing rainfall values in mm day−1 for (a) 50th and (b) 90th percentiles calculated from TMPA daily rainfall estimates

covering the years 2001–2013. These two percentile maps were used within the decision tree framework to produce moderate landslide

hazard nowcasts.

and the model is run every 24 h. Where possible, the dates

of landslides were adjusted to match the time zone of the

daily rainfall data. The landslide catalog was converted from

a shapefile to a series of daily presence/absence landslide

rasters over the same extent as the rainfall files. This for-

mat enabled landslide events to be directly compared to the

daily maps of landslide hazard outputs of the LHASA model.

Most raster operations were performed in parallel on a Linux

server.

3.1 Landslide catalog

The landslide catalogs used to calibrate this model are known

to contain both spatial and temporal errors (Kirschbaum et

al., 2015b). The spatial accuracy of each landslide point was

estimated at the time of recording. Although the least accu-

rate reports were not used in this study, some landslides may

have occurred as much as 25 km from their reported loca-

tions. In these cases, as well as with more accurate reports,

the terrain and rainfall where the landslide occurred may dif-

fer from the conditions at the reported coordinates. In addi-

tion, the exact date and time of an event are often unknown.

To evaluate the extent to which landslide reports were in-

correctly evaluated as false negatives due to spatiotemporal

uncertainty, landslide points were spatially and temporally

buffered. Temporal uncertainties were accounted for by con-

sidering 1-, 3- and 7-day windows surrounding the reported

landslide date. Spatial uncertainties were evaluated by con-

sidering the exact location of the reported landslide, 1 and

5 km circular buffers surrounding the location, as well as a

variable buffer based on the spatial accuracy denoted in each

landslide entry. For this analysis, if a nowcast was generated

anywhere within the buffer spatiotemporal window, we con-

sidered this nowcast to be a success (true positive). There are

challenges inherent to this assumption, which are outlined in

Sect. 5. True positive rates were calculated for each combi-

nation of windows.

3.2 Daily rainfall

Owing to the diverse topography, coastal zones and prevail-

ing wind patterns, rainfall is unevenly distributed over Cen-

tral America and Hispaniola. There have been many differ-

ent approaches to representing the intensity-duration rain-

fall triggering relationships at various scales including crit-

ical rainfall (Aleotti, 2004; Li et al., 2011; Saito et al., 2010;

Tiranti and Rabuffetti, 2010), normalized rainfall or return

periods (Dahal and Hasegawa, 2008; Hromadka II et al.,

2010; Terlien, 1998) and the combination of multiple thresh-

olds (Brunetti et al., 2010; Cepeda et al., 2010b; Chlebo-

rad et al., 2006, among others). One of the challenges with

approaching rainfall-triggering relationships at a regional

scale is that the prevailing precipitation regimes are region-

ally heterogeneous. As a result, developing a single regional

intensity-duration threshold to represent the landslide trig-

gering relationships across this region was not optimal.

To address this problem, we considered the statistical dis-

tribution of daily rainfall over a 13-year record, using per-

centiles to create a precipitation metric that could be com-

pared across morphologies and landslide events. A daily pre-

cipitation time series from 1 January 2001 to 31 Decem-

ber 2013 was prepared for each pixel over the study region

and days with no rainfall were removed from the calcula-

tions. Then, every fifth percentile was calculated from the

distribution of non-zero values using the “quantile” func-

tion’s default method. The resulting series of raster files iden-

tify the local precipitation distribution at each pixel and pro-

vide a more localized way to address regional landslide trig-

gering (Fig. 3). The rainfall thresholds were then calibrated

with the landslide data to assign a separate rainfall threshold

for each 0.25◦ pixel. The calibration procedure is described

below.
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Figure 4. Comparison of (a) daily rainfall and (b) antecedent rainfall distributions (in mm) for days with and without reported landslides.

Results are plotted only for locations where landslides were historically recorded and include 123 landslides from Central America and

316 697 data points from times landslides were not reported. Due to the limitations of the GLC, it is likely that unreported landslides have

occurred in the category we are classifying as “other times”. The distributions substantially overlap, suggesting that daily and antecedent

rainfall thresholds cannot classify the data perfectly into landslide events and non-events.

3.3 Antecedent rainfall

Real-time measurements of subsurface pore pressure are not

available at most locations within the study area. Satellite-

based soil moisture retrievals are often biased or limited over

complex terrain, particularly with dense vegetation (Jack-

son and Schmugge, 1991; Njoku et al., 2003). Therefore, re-

motely sensed rainfall was chosen as a proxy for this vari-

able. Time is required for rain to infiltrate soil and rock and

generate higher pore pressures that lead to slope instabilities

as well as for pore pressure to dissipate. High levels of pre-

cipitation often trigger landslides, but the amount required

to do so is usually dependent upon the volume of prior rain

and the permeability of the soils and rocks. To describe this

phenomenon, an ARI was created from the TMPA-RT daily

rainfall estimates using a time-weighted average of the pre-

vious 60 days:

60∑
t=1

wt ·pt

60∑
t=1

wt

, (1)

where t = the number of days before the present, pt = the

precipitation at time t and wt = t−0.5. This closely resembles

the antecedent precipitation index introduced by Kohler and

Linsley (1951). The decay exponent and the 60-day window

were chosen by calibrating a preliminary decision tree model

using landslide reports and 500 randomly selected locations.

No rainfall or ARI threshold can serve as a perfect clas-

sifier to differentiate landslide and non-landslide rainfall

events because the distributions of these two data sets overlap

(Fig. 4). However, Fig. 5 shows that the relative frequency of

landslides increases at higher precipitation levels, allowing

Figure 5. Scatter plot showing the distribution of landslides (red)

and dates without recorded landslides (blue) comparing antecedent

rainfall and daily rainfall.

thresholds for current and antecedent rainfall to be combined

in such a way that the resulting classification is reasonably

effective.

3.4 Decision tree framework

At the most simplistic level, higher soil moisture values prior

to a landslide occurrence can be a key predisposing factor in

future landslide triggering (Wieczorek, 1987). Previous de-

cision tree models considering precipitation and antecedent

values have been derived at the city level and apply the trade-

off between rainfall and past rainfall infiltration to create

an alert framework (Aleotti, 2004; Godt et al., 2006) or at

a regional (subnational) scale considering accumulated pre-

www.nat-hazards-earth-syst-sci.net/15/2257/2015/ Nat. Hazards Earth Syst. Sci., 15, 2257–2272, 2015
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Figure 6. Decision tree structure highlighting the three tiers of decisions made in this model on a pixel-by-pixel basis across the study area,

which is computed daily. First, if a pixel has an SI≥ 2, the antecedent rainfall index (ARI) is considered using the 50th percentile value.

If the ARI≥ 50th percentile, a nowcast is issued if the daily rainfall exceeds the 50th percentile (moderate hazard) or 95th percentile (high

hazard). If the ARI < 50th percentile, a nowcast is issued if the daily rainfall exceeds the 90th percentile (moderate hazard) or 95th percentile

(high hazard). In all other cases, there is no nowcast issued (null).

cipitation and specifying a critical rainfall threshold (Lago-

marsino et al., 2013; Martelloni et al., 2012; Segoni et al.,

2014). In this study, antecedent rainfall was incorporated into

a three-level binary decision tree structure (Fig. 6). At the

first level, those pixels believed to have “very low” suscep-

tibility to landslides (susceptibility index of 1 or 0) are ex-

cluded from further analysis. All other pixels are considered

as having a non-negligible chance of slope failure. An SI≥ 2

(low) was chosen to exclude a large portion of Central Amer-

ica without losing the ability to predict most landslide events.

This categorization means that less than 60 % of the study

area is considered to be susceptible, while over 90 % of the

landslides occurred in susceptible pixels.

At the second level of analysis, the antecedent rainfall

value for each pixel is compared to the 50th percentile value.

This antecedent rainfall threshold roughly corresponds to the

division between the Central American wet season, during

which most landslides occur, and the dry season (Fig. 7b).

At the third level of the decision tree, the current daily rain-

fall accumulation is compared to the daily rainfall threshold

and a moderate or high landslide hazard nowcast is issued. If

the 50th percentile rainfall is exceeded and the soils are con-

sidered to be wet (ARI > 50th percentile), a moderate-hazard

level is assigned. If the rainfall exceeds the 95th percentile, a

high hazard is assigned. In dry conditions (ARI < 50th per-

centile), a moderate-hazard level is assigned if the daily rain-

fall exceeds the 90th percentile and a high-hazard nowcast is

generated if rainfall exceeds the 95th percentile. The “high-

hazard” nowcast is designed to represent the extreme trigger-

ing conditions under which landslides have a higher prob-

ability of occurrence, whereas the “moderate-hazard” now-

casts represent a lower probability of landslide activity. With

additional data, future work will seek to more narrowly quan-

tify the probability of landslides for each of these hazard

classes.

The moderate-hazard nowcast was calibrated by varying

the ARI and daily rainfall thresholds and then determining

the model’s success for the Central American catalog. Due to

the computational burden, the calibration process involved a

representative sample of the thresholds between the 50th and

95th percentiles for both ARI and daily rainfall records rather

than every possible set of thresholds. The model was not

calibrated for the 24 landslides that occurred in Hispaniola

because preliminary analysis of the reported landslide lo-

cations indicated that no combination of rainfall thresholds

would provide a good fit to the landslide observations. The

high-hazard nowcast was created to provide a representa-

tion of extreme rainfall at any time over the study region.

The 95th percentile was chosen based on past research and

qualitative analysis of the rainfall distributions over this area

(Kirschbaum et al., 2015b). Further discussion of this topic

can be found in the Results section.

Given the triggering variables, surface information and

landslide catalogs considered within LHASA, we posit that

the LHASA model is more successful in resolving the po-

tential conditions for landslides with a mix of soil, rock and

other debris, ranging from moderate to shallow depths and

occurring at moderate to high velocities. This assertion is

mostly due to the main types of landslides observed within

the study area as well as from the fact that currently we do
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Figure 7. Example time series of (a) rainfall and (b) antecedent rainfall for a pixel west of San Jose, Costa Rica. The time series highlight

four landslides that were reported in this area in 2010: 14 April, 22 May, 30 July and 5 November (shown as red circles). The first landslide

(Fig. 9a) occurred very early in the year before the peak rainy season and a nowcast was not issued. The time series shown in the upper graph

indicates that a moderate-hazard nowcast was triggered for the 5 November event and a high-hazard nowcast was triggered for the 22 May

event (Fig. 9b). However, due to the antecedent rainfall for the 14 April event and low rainfall totals for the 30 July event, no nowcasts were

issued.

not consider other triggering variables such as earthquake oc-

currence, anthropogenic triggers (mining, construction, etc.),

etc.

3.5 Evaluation

The predictive success of the dynamic landslide model was

evaluated with the “distance to perfect classification” metric,

rj (Cepeda et al., 2010a), which combines the true positive

rate (TPR) with the false positive rate (FPR):

rj =

√(
FPR2+ (1−TPR)2

)
, (2)

where TPR= true positives/(true positives+ false negatives)

and FPR= false positives/(false positives+ true negatives).

These metrics are often used to compare binary classifiers

(Fawcett, 2006). In this case, the true positives are pixels

where a landslide occurred on the same date that the model

issued a nowcast. The false negatives are pixels where a land-

slide occurred on the same date that the model failed to iden-

tify the potential for slope failure. The false positives are pix-

els where a landslide did not occur on the same date that the

model identified the potential for slope failure. The true nega-

tives are pixels where the model did not identify the potential

for slope failure and no landslide was reported. The confu-

sion matrix was calculated for each day in the study period,

and then results were summed before calculating the FPR

and TPR. This process was repeated each time the model ran

during calibration. For the 2007–2013 data set, the TPR var-

ied more rapidly with threshold changes than the FPR, so

changes in rj largely reflected changes in the model’s abil-

ity to predict the occurrence of a relatively small number of

landslides (Fig. 8). To quantify how the predictions respond

to different levels of accuracy in the GLC, we varied the spa-

tial area from 0 to 25 km around each of the landslide points

and varied the temporal window around each landslide re-

ported date/time by 1, 3 and 7 days. This provided a way to

calculate the probability of detection more realistically since

the uncertainty in both the location and the date of the val-

idation landslides was variable. After calibration, the same

metrics were calculated for an independent 2014 data set.

4 Results

The LHASA model was evaluated over Central America

and Hispaniola for 2007–2013 and then compared with an

independent validation data set for 2014. The best perfor-

mance, an rj of 0.38, was observed with an antecedent rain-

fall threshold of the 50th percentile and current daily rain-

fall thresholds of the 50th and 90th percentiles. The high-
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Table 2. True positive rate (TPR) considered over 0, 1, 5 km buffers

and a variable buffer based on the reported location accuracy. Tem-

poral windows of 1, 3 and 7 days were also evaluated. Results are

shown in percentages, with high-hazard TPR percentages shown in

parentheses. The susceptible pixels column (far right) shows the

percentage of reported landslides that have a susceptibility index

of 2 or greater within the spatial buffer considered, indicating the

maximum TPR that could be generated based on the rainfall and

antecedent thresholds of the model.

Spatial 1-day 3-day 7-day Susceptible

buffer window window window pixels

distance

Central 0 km 64 (26) 77 (37) 83 (47) 90

America 1 km 67 (28) 81 (39) 87 (50) 92

2007–2013 5 km 72 (34) 85 (48) 93 (59) 100

Variable 81 (40) 89 (57) 94 (65) 100

Hispaniola 0 km 21 (17) 29 (21) 46 (21) 50

2007–2013 1 km 33 (21) 67 (29) 67 (29) 75

5 km 46 (21) 71 (46) 88 (50) 100

Variable 54 (21) 71 (50) 88 (54) 96

Central 0 km 58 (12) 74 (33) 79 (47) 86

America 1 km 63 (12) 79 (35) 84 (49) 93

2014 5 km 72 (14) 86 (44) 91 (56) 100

Variable 67 (12) 84 (37) 91 (51) 91

Hispaniola 0 km 43 (43) 57 (43) 71 (71) 86

2014 1 km 57 (43) 71 (43) 86 (71) 100

5 km 71 (43) 86 (43) 86 (71) 100

Variable 71 (43) 86 (43) 86 (71) 100

hazard threshold (95th percentile) was not calibrated with

the available landslide data. The model results are summa-

rized in Tables 2 and 3. The TPR varied depending on the

spatiotemporal window considered for identifying the land-

slide. As introduced above, we accounted for the uncertainty

in the reported date and location of the landslide by apply-

ing spatial and temporal buffers around the reported latitude

and longitude and date of the event. We considered TPR re-

sults for 1-, 3- and 7-day windows surrounding the date of

the landslide and 0, 1 and 5 km buffers, as well as a buffer

equal to the qualitative location accuracy value reported for

the event (ranging from a 0 to 25 km radius surrounding the

landslide location). For each of these windows, if a nowcast

were issued anywhere within the buffer, we considered it to

be a successful prediction. The same approach was taken for

both moderate- and high-hazard categories.

4.1 Central America (2007–2013)

Results for all regions and time spans considered indicate

that generally as the buffer temporal and spatial window in-

crease, the TPR increases as well. This result is not surprising

as it provides more opportunities for a nowcast to be success-

ful. The temporal window (or spatial buffer) has more vari-

ability in the TPR values at the most conservative tolerances

assigned, ranging from 64 to 83 % for the temporal windows

Table 3. False positive rate (FPR) and distance to perfect classifica-

tion (rj ) for both high-hazard and moderate-hazard nowcasts. The

moderate-hazard model was calibrated for the period 2007–2013 in

Central America, so it is not surprising that this location has the low-

est rj value. Because the high-hazard nowcast is a heuristic model

intended to identify only the most extreme conditions while mini-

mizing false alarms, rj values are expected to be large.

Hazard level FPR rj

Central Moderate 11 % 0.38

America High 1 % 0.74

2007–2013

Hispaniola Moderate 9 % 0.80

2007–2013 High 1 % 0.83

Central Moderate 9 % 0.43

America High 1 % 0.88

2014

Hispaniola Moderate 7 % 0.57

2014 High 1 % 0.57

Figure 8. The moderate-hazard nowcast was calibrated by calculat-

ing rj , the distance to perfect classification, for a variety of rain-

fall and ARI thresholds that ranged from the 50th to the 95th per-

centile values. The lowest (best) rj value was observed for the

50th percentile ARI, 50th percentile rainfall over moist-condition

ground and 90th percentile rainfall over dry-condition ground.

These thresholds are represented by the second dot from the right

in the red circle. Ideally, the choice of the “best” rainfall thresh-

olds depends upon the intended use of the model and the economic

costs of different errors. Since these details are not yet available, rj
was selected to provide a balanced and easily interpreted measure

of model success.

and from 64 to 81 % for the spatial windows over Central

America. For the high-hazard nowcasts, results are consid-

erably lower, with only a TPR of 26 to 40 % based on the

spatial buffers and 26 to 47 % TPR when a 1-, 3- and 7-day
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window was considered. The FPR for Central America was

11 % for the moderate-hazard nowcasts and 1 % for the high-

hazard nowcasts. Table 2 also shows the percentage of land-

slides that fall above the threshold (SI≥ 2) specified in the

decision tree structure according to the spatial buffer consid-

ered (maximum susceptibility value was considered within

each buffered area). For Central America, 12 (10 %) land-

slides are located within the lowest hazard zone. This may

be due to the map’s 1 km resolution, where generally “safe”

pixels may contain small areas that are prone to landslides,

or due to the location of the reported landslide (e.g., the land-

slide was reported in the runout zone where slopes are very

gradual vs. higher up on the slope where initiation likely oc-

curred).

Even with the largest spatiotemporal buffers applied to the

reports, not every landslide was predicted. For example, one

group of landslides was reported in western Costa Rica along

the highway between Balsa de Atenas and Orotina (Fig. 9).

This report represents at least five different rockfalls that oc-

curred over this section of the road, denoted in the figure as a

single point. As the specific location was unknown, a spatial

accuracy of 10 km was assigned. The date of the event was

reported as 14 April 2010, but the exact time is unknown. The

model issued a moderate-hazard nowcast for the area east of

the reported landslide on both 14 and 15 April 2010 but not

to the west where the rockfalls occurred (Fig. 9a). Because

the exact timing of these events was unknown, there was a

possible temporal error of 1 day for this event. A second

event occurred in the same area on 22 May and a high-hazard

nowcast was issued in the area of the reported rockfall event

(Fig. 9b). Figure 7 plots the rainfall and antecedent rainfall

for the same area shown in Fig. 9, where four landslides oc-

curred in 2010: 14 April, 22 May, 30 July and 5 November.

As described above, a nowcast was not issued for the 14 April

event because it occurred before antecedent rainfall exceeded

the 50th percentile, despite the daily rainfall exceeding the

50th percentile (Fig. 9a). This specific incident might also

be attributed to slope destabilization associated with recent

highway construction because relatively little rain was re-

quired to move these steep slopes out of equilibrium. The

22 May event generated a high-hazard nowcast (Fig. 9b).

Rainfall totals for 30 July were not substantial enough to trig-

ger a nowcast. Lastly, a moderate landslide hazard nowcast

was issued for the 5 November event, which occurred the day

after a very intense precipitation event.

4.2 Hispaniola (2007–2013)

Because of the limited number of data points in Hispan-

iola, no calibration was performed in this study area. Instead,

the thresholds calibrated from the Central American catalog

were applied to the rainfall distributions over these islands. A

FPR of 9 % was observed for the moderate-hazard threshold

and 1 % for the high-hazard threshold. The TPR for the ex-

act location and date of the reported landslide was 21 % (i.e.,

Figure 9. This shows the results of the model nowcasts for a cluster

of rockfalls (denoted by a single black rockfall icon) that occurred

within the same area of the highway near Orotina, Costa Rica, for

two dates in 2010: (a) 14 April and (b) 22 May. The black circle

indicates the estimated maximum spatial error of these landslide re-

ports (10 km), suggesting that the landslides could have occurred

anywhere within that area. Blue crosses indicate the locations of

other landslides in the GLC from 2007 to 2013. The 14 April event

did not generate a moderate-hazard nowcast (yellow), but enough

rainfall was observed to the east of the landslide location to trigger

a moderate-hazard nowcast. Comparatively, the 22 May event (b)

shows that many high- and moderate-hazard nowcasts were gener-

ated within the proximity of the reported event.

the model predicted 5 of the 24 landslide events). The high-

hazard model performed poorly, with a TPR of 17–21 % for

the spatial buffers on the day of the landslide. The highest

TPR value at the most liberal spatial and temporal window

was 54 %. This rate is largely due to the fact that half of the

landslide events are recorded in locations not considered to

be susceptible to landslides, as shown in the far right column

of Table 2. The low susceptibility values corresponding to the

locations of the reported events may be due to spatial errors

in the GLC, since only 13 of the 24 reports were assigned an

accuracy better than 5 km. As the buffer size increases, the

TPR significantly improves. In addition, 11 of the 24 land-

slides reportedly occurred on days without any rainfall. It

is likely that some degree of temporal error in the catalog

explains this fact. The limited data inventory for Hispaniola

may also affect the susceptibility map calculations over this

area.

4.3 Global Landslide Catalog (2014)

The landslides recorded in the GLC during 2014 make up

an independent data set with which to evaluate the perfor-

mance of the thresholds developed for the previous years.

The 50 points in the GLC were separated by study area.

The TPR for the Central American study area for the ex-
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act location and date was 58 %, while the FPR was 9 % for

the moderate-hazard nowcasts. By contrast, the TPR for the

seven landslides in the Hispaniolan study area was only 43 %.

If the spatial and temporal tolerance is increased, the TPR

ranges from 63 to 91 % for Central America and 57 to 86 %

for Hispaniola. Overall, these results are similar to the re-

sults for the period 2007–2013. This suggests that the model

is not overfitted to a single data set. However, the fact that the

model does not perform as well in Hispaniola over both time

periods suggests that the use of percentile thresholds may be

limited to the geographic regions for which they were devel-

oped.

The high-hazard nowcasts had a FPR of 1 % and consis-

tently gave a TPR of 43 % for the 1- and 3-day windows

irrespective of the buffer considered, while the 7-day win-

dow produced a TPR of 71 %. The TPR values were consis-

tent across all spatial buffers because this very small data set

(seven events) did not happen to contain any events in which

a storm occurred near, but not at, the reported location of

landslide. Three of the reported events had rainfall that ex-

ceeded the 95th percentile, while two of the events occurred

on fairly dry days.

The use of validation data with substantial spatial and tem-

poral errors makes the evaluation of model performance diffi-

cult. One approach to this issue is to find times and locations

near recorded points that may be closer to the true location

of the landslides. Considering model outputs within 1 day

and 1 km (less than the spatial uncertainty of most reports)

of reported landslides raised the TPR of the Central Ameri-

can catalog to 79 % and the TPR of the Hispaniolan catalog

to 71 %. The performance of the model against a perfectly

complete and precise landslide catalog is, unfortunately, un-

known. However, when the cluster of 14 landslides with ex-

act locations in Nicaragua was compared to the model out-

put for 23 June 2014, only one landslide was not predicted

(Fig. 10). This cluster only represents a single event but also

supports an optimistic interpretation of the results for the

larger catalogs. Another potential approach could consider

dividing the study area into geomorphologically similar re-

gions and recalibrating the rainfall and ARI thresholds at

subregional scales, allowing the rainfall thresholds and even

susceptibility bins to be adjusted. However, this approach re-

quires a robust landslide inventory for calibration. We may

consider this approach should new data sets become avail-

able or we apply this model over a different study area.

5 Discussion

The objective of this system is to estimate potential landslide

activity over a very broad area in near real time using in-

put data that have very few points (relative to the area con-

sidered) as well as variable accuracy. These challenges re-

strict the usage of this model to the appropriate context: a

situational awareness tool that flags potentially affected ar-

Figure 10. Landslide hazard potential for 23 June 2014. Black

crosses indicate locations where a cluster of landslides occurred

near El Ayote, Nicaragua. Yellow pixels (moderate hazard) and

red pixels (high hazard) are shown for that day. Of 14 landslides,

13 were predicted by the moderate-hazard category. The southern-

most landslide was located in a relatively flat location that had been

mapped as having “very low” landslide susceptibility, so it was not

predicted despite daily rainfall exceeding the 50th percentile thresh-

old.

eas for further investigation rather than a direct tool for is-

suing warnings or declaring impacts. Results of the evalua-

tion suggest that when the finest spatial buffers and temporal

windows are considered for the 2014 validation data set, the

true positive rate for the moderate-hazard model is 43 and

58 % for the Hispaniolan and Central American data sets, re-

spectively (Table 2). However, as the search criteria are ex-

panded, even slightly, results are more promising. The high-

hazard model has a relatively low probability of predicting

landslides due to the fact that many landslide reports in the

GLC are not recorded on the same day as extreme rainfall

events. Given the limitations of the data available for evalu-

ating this system as well as for calibration of its components,

we feel that results of the LHASA model nevertheless en-

courage its use as a regional situational awareness tool for

potential landslide activity.

The LHASA model is currently implemented in a multi-

hazard website servicing Central America and Hispaniola.

While the model is currently parameterized for this region,

it could be adapted to serve other landslide-prone locations.

This flexible binary decision tree framework enables differ-

ent forcing variables (precipitation, antecedent precipitation)

and susceptibility variables to be considered dynamically.

The process of transferring the model to another location re-

quires a susceptibility map and an event-based landslide cat-

alog such as the GLC. The simplicity of the model, combined

with the fact that rainfall data are made available without cost

by NASA for every location between 50◦ N to 50◦ S latitude,
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means that it should be possible for web developers, students

and other programmers to implement LHASA rapidly.

Future work could include calibrating the LHASA model

in an area with an extensive and accurate landslide inven-

tory to fully assess the performance of this system. To our

knowledge, no landslide inventories of this type exist over

the current study region. Therefore, it would be necessary

to parameterize the model over a new domain. This is out-

side the scope of the existing work but may be feasible as we

continue to test this system in other regions. The thresholds

chosen by calibration in this study represent a compromise

between identifying landslide hazard and limiting the num-

ber of days on which an alert is issued. As a result, a large

number of days were identified as having moderate hazard

across the study area, especially during the rainy season. The

frequency of high-hazard nowcasts is significantly lower. Ul-

timately, optimal thresholds could be determined from infor-

mation on the relative cost to model users of false positives

and false negatives. Gathering these economic data is beyond

the scope of this study, as it would require extensive consul-

tation with current and potential users of the system.

This model relies on TRMM’s TMPA-RT data inputs but

GPM’s IMERG data will be incorporated into this system in

the near future, which will extend the latitudinal boundaries

of the precipitation information to 65◦ N–S and increase the

spatiotemporal resolution to 30 min sampling at a 0.1◦ spatial

resolution. If rain gauge or forecasted rainfall data are avail-

able for a region, this may also be applied to create a more ac-

curate real-time hazard assessment system. The LHASA re-

gional system is currently run on the Heroku Cloud Applica-

tion Platform (Heroku, 2015) with limited computational re-

sources required for generating daily regional nowcast prod-

ucts. The real-time IMERG product was made available in

March 2015, while TMPA-RT continues to provide data.

Once the IMERG algorithm has been running routinely for a

period of time, the entire TRMM archive will be reprocessed

to encompass one consistent precipitation data set for both

TRMM and GPM era. We will begin testing the application

of IMERG in the near future but will only be able to recom-

pute the percentiles in the analysis and fully recalibrate the

model once the reprocessing takes place (tentatively sched-

uled for 2017). Additional testing is required to determine the

effectiveness of satellite products from the Soil Moisture Ac-

tive Passive (SMAP; http://nasa.gov/smap) or modeled soil

moisture products within this area of complex terrain and

dense tropical vegetation. This is a topic of future study. It

may be possible to determine the relationship between the

water content of surficial soils and deeper soils (Swenson et

al., 2008), resulting in an estimate of pore pressure at crit-

ical depths below the ground surface. A different approach

would be to separate the geologic and topographic properties

currently embodied in the susceptibility map, then use them

directly in the decision tree structure. Finally, other trigger-

ing variables such as seismicity may also be considered in a

future version of this model by adding another branch to the

decision tree. In some regions, temperature has been shown

to drive landslide triggering during freeze/thaw episodes or

spring snowmelt (Do Amaral Vargas Jr. et al., 2013; Chleb-

orad, 1997; Li et al., 2013; Tatard et al., 2010); however, in

the Central American region, this triggering variable is less

relevant given the predominant tropical or subtropical tem-

peratures. The inclusion of other susceptibility or triggering

variables within the LHASA framework is both feasible and

fairly straightforward to implement.

Fundamentally, the model calibration for both the suscep-

tibility map and rainfall thresholds can be significantly im-

proved with a more robust, event-based landslide archive.

The GLC provides a global source for investigating rainfall-

triggered landslides. However, due to topographic, linguis-

tic and other reporting biases, there remain large gaps in the

landslide inventory for many areas. An additional capability

of the prototype regional natural hazard website is the ability

to access, share, edit and accept volunteered geographic in-

formation on landslide events in multiple languages. Future

dynamic landslide models are likely to benefit from the im-

proved accuracy and completeness of event-based landslide

catalogs compiled and edited through citizen science efforts

by large numbers of local end users.

6 Conclusions

The LHASA model provides a simple, flexible framework

that can be easily calibrated and transferred to other regions.

This model is meant to provide a regional near real-time

perspective of moderate to high landslide hazard potential

and currently lacks the spatial resolution and accuracy to

be considered over smaller (e.g., city, municipality) scales.

The ultimate goal of this paper is to present the LHASA

model framework with a set of calibrated thresholds for Cen-

tral America and the Caribbean region. With improved land-

slide inventory information we feel that the model calibration

could be significantly improved. The availability of satellite-

based rainfall, susceptibility products and the GLC provide

the opportunity to expand this analysis to other susceptible

regions. With TRMM and GPM data it is possible to produce

rainfall thresholds that incorporate the unique climate of each

site, even in locations where no rain gauges exist. Suscepti-

bility maps can benefit from the many landslide catalogs that

lack date or time attributes. Thus, dynamic models that in-

corporate susceptibility maps derived from these long-term

catalogs may estimate long-term hazard in ways that models

derived solely from recent event-based catalogs cannot.

Given the regional scope of this system, the LHASA

model correctly identifies the potential for a majority of the

landslide events recorded in the GLC. Although a large num-

ber of days without recorded landslides were identified as

moderately hazardous, many of these data points may have

had slope failures that went unrecorded due to lack of ob-

servations, economic impact or other factors. This dynamic
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landslide model made use of the best available real-time

rainfall data. However, future inclusion of GPM’s IMERG

will enable landslide modeling at finer spatial and tempo-

ral resolutions. In addition, improved soil moisture estimates

from SMAP may help to better quantify the ground condi-

tions prior to extreme rainfall events. Precipitation forecast

data may also be considered within this framework to pro-

vide landslide forecasts rather than near real-time nowcasts.

This is an area of active research. While more sophisticated

landslide hazard assessment and prediction models are fea-

sible when considering smaller spatial scales and more land-

slide information, the LHASA model serves as a template for

rapid adaptation of remote-sensing data sets for dynamic sit-

uational awareness of landslide hazards at the regional scale.
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