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Abstract. Unclassified roads comprise 60 % of the road net-

work in the United Kingdom (UK). The resilience of this lo-

cally important network is declining. It is considered by the

Institution of Civil Engineers to be “at risk” and is ranked

26th in the world. Many factors contribute to the degrada-

tion and ultimate failure of particular road sections. However,

several UK local authorities have identified that in drought

conditions, road sections founded upon shrink–swell suscep-

tible clay soils undergo significant deterioration compared

with sections on non-susceptible soils. This arises from the

local road network having little, if any, structural founda-

tions. Consequently, droughts in East Anglia have resulted

in millions of pounds of damage, leading authorities to seek

emergency governmental funding.

This paper assesses the use of soil-related geohazard as-

sessments in providing soil-informed maintenance strategies

for the asset management of the locally important road net-

work of the UK. A case study draws upon the UK administra-

tive county of Lincolnshire, where road assessment data have

been analysed against mapped clay-subsidence risk. This re-

veals a statistically significant relationship between road con-

dition and susceptible clay soils. Furthermore, incorporation

of UKCP09 future climate projections within the geohazard

models has highlighted roads likely to be at future risk of

clay-related subsidence.

1 Introduction

Minor, or non-strategic, roads which are owned and managed

by local authorities represent 98 % of the overall network in

the United Kingdom (UK) (Defra, 2013). As a subclass, the

unclassified road network represents 60 % of this minor net-

work (DfT, 2011) supporting local communities, society and

the wider economy.

The Institution of Civil Engineers regards one-third of the

UK’s road network to be in urgent need of maintenance, stat-

ing that immediate action required to improve road condi-

tions is its top priority (ICE, 2014). A number of factors can

lead to road deterioration, including (but not restricted to)

traffic volume, road works, poor construction or reinstate-

ment after repair of buried infrastructure, cold weather, tar-

macadam oxidation and underlying ground conditions. Sev-

eral UK local authorities have argued that during drought

conditions, changing moisture contents in underlying soils,

in particular those clay soils prone to volumetric shrinking

and swelling, have resulted in considerable structural damage

to their highway networks (Table 1). Highway assets them-

selves exacerbate developing drought conditions by prohibit-

ing the permeation of water into the underlying soils (Harri-

son et al., 2012).

A number of soil-related ground movements impact

on UK highway networks, including clay shrinkage and

swelling, sand washout, compression of soft soils and peat

shrinkage (Pritchard et al., 2014). The county of Lincolnshire

reported the largest impact of drought conditions on its high-

ways in 2003 (Table 1), indicating that it is particularly

prone to ground movement due to the county’s abundance of

shrink–swell (or expansive) susceptible clay soils. As clay-

related shrink–swell is the dominant form of ground move-

ment in the UK, this paper examines the impact of clay-

related shrink–swell on road infrastructure.

Road damage resulting from expansive clay soils is re-

ported to be problematic for a number of countries’ highway

networks, including the USA, Israel, India, South Africa, Su-

dan, Saudi Arabia, Nigeria, Australia and Algeria (Puppala
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Table 1. Drought damage to roads in 2003 (data sourced from

Wilway et al., 2008).

Authority Reported drought

damage (£ 000)

Lincolnshire 7397

Essex 5614

East Sussex 5568

Kent 4167

Cambridgeshire 3522

Hampshire 3030

Peterborough 2400

West Sussex 2221

Isle of Wight 1500

Wiltshire 1302

Buckinghamshire 1200

Surrey 1000

Suffolk 750

Norfolk 650

Bedfordshire 300

Total 40 621

et al., 2011; Abam et al., 2000; Alexander and Maxwell,

1996; Dafalla and Shamrani, 2011; Zumrawi, 2015). Tailor

et al. (2011) argue that expansive soils are one of the most

problematic foundation materials used in many of the coun-

tries identified above, often leading to annual replacement

and maintenance costs running into the millions (US) (Sap-

kopta et al., 1997). Longitudinal cracking is the predominant

mechanism of road failure recorded in the majority of studies

(Puppala et al., 2011). Cracking of the road surface can often

lead to a “vicious cycle” of successive shrink–swell episodes

within the substrate, resulting in rapid deterioration of road

surfaces and in the worst-case scenario car accidents and fa-

talities (Jegede, 2000). Wanyan et al. (2015), reporting on a

Texas road survey, found that substrate moisture fluctuations

represent the main perceived reason for longitudinal crack-

ing of road surfaces, further exacerbated by poor drainage

(Zumrawi, 2015).

Soil surveys, which classify the uppermost layer (0 to

1.2 m) of the earth’s surface, provide an understanding of soil

properties and their spatial distribution. However, despite the

intimate link between the soil and the infrastructure it sup-

ports, the application of soil surveys in highway asset man-

agement has seldom been undertaken within the UK. Else-

where this is not the case, including in the USA (Bauer, 1973;

Santi and Martens, 2003; Allemeier, 1974; Lee and Griffiths,

1987; Beatty and Bouma, 1973), Netherlands (Westerveld

and Van Den Hurk, 1973) and Australia (Murtha and Reid,

1976; Biggs and Mahony, 2004). Whereas it is recognised

that soil surveys have an established role (Hartnup and Jarvis,

1979), the UK still tends to look only to deeper geological

maps for indications of surface movements.

Highway engineers and asset managers often have a

civil engineering background, and many posses only gen-

eral knowledge of earth sciences, geology and geotechnics.

Clear spatial information which describes the risk of haz-

ardous ground conditions, without the need for geological

interpretation, is therefore potentially of great benefit to prac-

ticing engineers (Royse, 2011). Thematic soil-related geo-

hazard maps, derived through reinterpretation of traditional

soil maps and fusion with meteorological data, can provide

decision makers with a clear view of the potential hazards

affecting their assets.

This paper aims to demonstrate how soil-related geohaz-

ard assessments can serve within a decision support tool in

the asset management of local highways. Many tangible as-

sociations have been posited with regard to the impact of ge-

ology and soils on road condition (Willway et al., 2008), es-

pecially in light of climatic change. However, quantitative

analyses are currently lacking, providing this study with its

novel approach.

To achieve this aim, empirical road condition data pro-

vided by Lincolnshire County Council (LCC) have been in-

tersected spatially with an existing soil-related geohazard

model to understand the statistical and spatial relationship

between the two data sets. Furthermore, we investigate the

use of UKCP09 climate projections to understand future

clay-related subsidence risk in Lincolnshire. Subsequently,

suggestions and recommendations resulting from the use of

this approach for planned operational maintenance in Lin-

colnshire are described. Finally, we consider how this can

form a framework for other local authorities to follow, both

in the UK and internationally.

2 Lincolnshire study area

2.1 Climatic, topographical and geological setting

The administrative county of Lincolnshire is situated in mid-

eastern England, spanning from the Humber Estuary in the

north to the Wash in the south of the county (Fig. 1). As

a result of its flat, fertile lands, a large area of the county

is devoted to high-intensity agriculture. The county’s relief

is predominantly low lying (0–50 m above sea level) except-

ing the Lincolnshire Wolds in the central-northern area of the

county: a chalk outcrop, where heights range between 50 and

200 m above sea level.

This area of eastern England has a relatively mild, tem-

perate climate. Annual rainfall is relatively low; for exam-

ple in Lincoln it is 577 mm. Consequently, it is one of the

driest areas in the country (Hough and Jones, 1997). This

low rainfall, coupled with high evapotranspiration rates, con-

tributes to some of the highest soil moisture deficits (driest

soils) in the UK in an average year (Hodge et al., 1984; Rob-

son, 1990).
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Figure 1. Lincolnshire location map and the distribution of unclas-

sified roads.

The superficial geology and subsequently the soil parent

material of Lincolnshire is predominantly derived from Pleis-

tocene and more recent deposits (Hodge et al., 1984). The

influence of previous glaciations and regressions and trans-

gressions of the North Sea around the Wash have led to

extensive deposits of silts, clays and the formation of peat

material (Chatwin, 1961). Marine and riverine alluvium and

glacial till represent a large proportion of the deposits, with

glaciofluvial deposits dominating the Lincolnshire Wolds. As

a result, Lincolnshire contains a broad range of soil types, en-

compassing 73 soil associations (Cranfield University, 2015).

Further details of soil types and their distribution in Lin-

colnshire can be found in Hodge et al. (1984).

Industrial drainage in the Fenlands of Lincolnshire since

the 1600s have caused such extensive peat wastage that pre-

viously underlying clays and silts are now exposed at the

ground surface. Substantial thicknesses of peat are therefore

now confined to the edge of the fens or to areas remain-

ing undrained (Hodge et al., 1984). In 1985 it was recorded

that only 16 % (240 km2) of the pre-drained peatland re-

mained (Burton and Hodgson, 1987). The presence of large

Table 2. Road classification in terms of length and percentage of

network in Lincolnshire.

LCC Road class Length Percentage

hierarchy (DfT) (km)

1 A (principal) 888 10

2 A, (some) B 560 6

3 B, (some) C 1458 16

4 and 5 C, all unclassified 5808 66

areas of predominantly clay soils and their susceptibility

to volumetric shrinkage, combined with high soil moisture

deficits, means that Lincolnshire is particularly affected by

clay-related subsidence.

2.2 Unclassified road distribution

This paper considers the unclassified road network of Lin-

colnshire (Fig. 1), representing 66 % of the county’s high-

ways (Table 2), 85 % of these roads being in rural areas. Un-

classified roads are defined by the Department for Transport

(DfT) as local roads intended for local traffic (DfT, 2012).

The majority of unclassified highways in Lincolnshire, as

with many other UK counties, are deemed to be evolved.

Evolved roads have not been designed to modern engineer-

ing standards and have instead evolved from historic or even

ancient roads, even dating in some specific instances to the

Roman and Bronze Age eras (Astbury, 1958).

The Coarse Visual Inspection (CVI) is a nationally defined

standard of assessing road defects and is principally used on

the UK’s minor road networks. Further technical information

regarding this survey can be found in Wallis (2009). CVI sur-

veys revealed that Lincolnshire’s unclassified road network

has been subjected to severe drought-related subsidence, par-

ticularly during 2003 (Table 1) (M. Coates, personal commu-

nication, 2013). Moreover, during the 2010–2011 period, ap-

proximately 154 road sections were highlighted by the CVI

survey as having been damaged as a direct result of drought

conditions realising the shrinkage potential of clay rich soils

(Fig. 2). It is likely that subsequent wetting events over win-

ter months exacerbated road damage through swelling of clay

soils, as reported in other studies (e.g. Puppala et al., 2011).

These 2 event years led LCC to place a bid to central govern-

ment for additional emergency road funding.

LCC highlights several safety hazards arising from soil-

related drought damaged roads, which are often unclassified

and have speed limits of up to 60 mph (miles per hour). Spe-

cific risks include

– increased deterioration of the longitudinal profile of

roads, requiring drivers to reduce speeds below those

that would normally be appropriate for the width and

alignment of the road;

www.nat-hazards-earth-syst-sci.net/15/2079/2015/ Nat. Hazards Earth Syst. Sci., 15, 2079–2090, 2015
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Figure 2. Soil processes leading to longitudinal cracking of road surface with photo example from Fodder Dyke, Lincolnshire (photo:

Lincolnshire County Council, reproduced with permission; figure adapted from Pritchard et al., 2014, reproduced with permission).

– severe localised transverse depressions, which require

drivers to slow to speeds below 20 mph;

– longitudinal differential settlement and cracking, requir-

ing supplementary road signs to warn drivers and allow

roads to remain open;

– defects which are not easily seen at night or in adverse

weather conditions, increasing risk to motorists.

3 Data

3.1 Natural Perils Directory (NPD)

The NPD geohazard thematic data set, developed and main-

tained by staff at Cranfield University, provides a detailed

and comprehensive assessment of the environmental vulnera-

bilities to building structures and infrastructure posed by soil-

related geohazards (Jones et al., 1995; Hallett et al., 1994).

NPD represents a thematic reinterpretation of the national

soil map (NATMAP) which shows the spatial distribution of

all ∼ 700 soil series in England and Wales (Cranfield Uni-

versity, 2015). These soil data, alongside climatic data and

expert knowledge, are encompassed within a Land Informa-

tion System (LandIS) (Keay et al., 2009). LandIS is regarded

as the principle source of soil information for England and

Wales by Defra (Department for Environment, Food and Ru-

ral Affairs).

A core component of the NPD is the clay-related subsi-

dence model, or the underground foundation stability (UFS)

model. Based upon a pedoclimatic approach, UFS assesses

the likelihood of a soil to undergo shrink–swell and subse-

quently, whether a potential soil moisture deficit (PSMD) is

present for shrink–swell potential to be realised. Once clas-

sified, a 9 point vulnerability class, ranging from extremely

high to extremely low is assigned. The NPD model output is

expressed in a GIS (Geographical Information System) for-

mat on a vector polygon basis across England, Wales and

Scotland. This makes it suitable for easy integration with

other geospatial data (e.g. infrastructure networks). It is pre-

dominantly used by the insurance, reinsurance and water sec-

tors. However, its use in highway asset management has not

been explored until now.

3.2 Highway condition data

CVI assessment data for ∼ 4400 km (75 %) of unclassified

roads, collected between 2007 and 2014, were supplied in a

GIS vector-polygon format by Lincolnshire County Coun-

cil’s highway department (M. Coates, personal communi-

cation, 2014). Data were supplied for four survey periods:

2007–2011, 2011–2012, 2012–2013 and 2013–2014. CVI

is expressed as a series of indices, including assessments

for wearing course, edge effects and structural condition.

Following discussion with LCC, it was identified that the

“structural condition index” provided the most suitable index

for understanding the effects of soil on the network, which

also incorporated edge defects. Conversely, wearing course

degradation is a factor of traffic use, direct climatic effects

and road surfacing techniques and therefore soils do not ex-

ert a direct effect.

Each structural condition index GIS vector polygon repre-

sented a 50 m rolling average survey area, where increasingly

higher values indicated a worsening structural condition of

the highway (P. Shevill, personal communication, 2014); val-

ues ranged between 0 and 93. Generally, a value of < 40

represents a road in a good state of repair, whereas values

> 40 require further investigation and likely treatment op-

tions. To avoid any potential survey bias, Lincolnshire is di-

vided into 10 distinct sub-regional operational areas where

a percentage of each of these areas is surveyed each year.

Moreover, the current two-man surveying team, which has

Nat. Hazards Earth Syst. Sci., 15, 2079–2090, 2015 www.nat-hazards-earth-syst-sci.net/15/2079/2015/
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Table 3. CVI points assessed for each survey period per subsidence risk class.

Extremely Very High Medium- Medium Medium- Low Very Extremely

high high high low low low

2007–2011 3065 4976 1348 1544 4615 9 0 1249 11 794

2011–2012 3311 5237 1359 1577 4779 10 0 1340 12 373

2012–2013 3340 5483 1398 1588 4904 10 0 1360 12 181

2013–2014 3418 5367 1336 1541 4775 10 0 1323 11 801

undertaken the survey for a number of years, remains inde-

pendent from maintenance scheme selection and is not in-

fluenced by budgetary constraints (M. Coates, personal com-

munication, 2015).

3.3 UKCP09 future climate projections

UKCP09 climate projections (Jenkins et al., 2009) indicate

that the UK is likely to experience hotter, drier summers

and warmer wetter winters, especially in the south-east and

east Anglian region of England, for the forthcoming cen-

tury. Such weather patterns will exacerbate clay-related sub-

sidence.

The long lifespan of road infrastructure in the UK leads

to particular susceptibility to hazards under future climates

(Willway et al., 2008). Research undertaken by the authors

as part of the Infrastructure Transitions Research Consor-

tium (www.itrc.org.uk) project has involved the modelling of

probabilistic PSMD for the future scenarios of 2030 (2020–

2049) and 2050 (2040–2069). Model parameters, daily rain-

fall and potential evapotranspiration (Eq. 1) were derived

from a spatially coherent 5 km resolution gridded output

from the UKCP09 weather generator (Burton et al., 2013;

Jenkins et al., 2014).

PSMD=
∑

(rainfall− potential evapotranspiration) (1)

PSMD represents the fundamental climatic control on

clay-related subsidence and so has been incorporated within

the NPD geohazard model (Pritchard et al., 2015). Future

projections of clay subsidence risk for Lincolnshire are pre-

sented in Fig. 3. These enable assessment of future risk from

ground movement for Lincolnshire’s unclassified road net-

work.

4 Risk assessment

4.1 Overview

We have determined statistically the relationship between

CVI value and clay-subsidence risk class from NPD for each

survey period. This section describes the GIS and statisti-

cal framework used to assess the impact of clay-related sub-

sidence on Lincolnshire’s unclassified road network, illus-

trated in Fig. 4. GIS software was employed to provide a plat-

form for rapid analysis and handling of spatial data (Fedeski

and Gwilliam, 2007), including CVI and clay subsidence risk

class.

CVI data provided by LCC required processing to make

the data suitable for intersection with the NPD data (Fig. 3).

Polygon data were converted to points in ESRI’s ArcGIS

(v. 10.2) using the polygon centroid tools, and the open-

source software, Geospatial Modelling Environment (www.

spatialecology.com), was used to snap these points to the

road section (vector line feature). Road sections (GIS for-

mat) for the entire Lincolnshire network, classified by road

hierarchy, were provided by LCC. Processed CVI data were

then intersected with the NPD geohazard data set and the re-

sultant GIS shapefile attribute data imported directly into the

statistical package, R (R Core Team, 2014), for further sta-

tistical analysis. The number of CVI points assessed per sub-

sidence risk class are presented in Table 3. Similarly, future

subsidence projections have been intersected with the Lin-

colnshire unclassified road network within the GIS in order

to understand the change in potential exposure throughout

these scenarios.

5 Results

5.1 Current risk

Our results suggest that a spatial and statistical relationship

exists between clay-related subsidence risk and CVI (struc-

tural index) value. The box plots in Fig. 5 present the rela-

tionship between CVI over the survey periods of 2007–2011,

2011–2012, 2012–2013 and 2013–2014. Due to the extensive

unclassified road network in Lincolnshire, a 4-year rolling

CVI assessment program is used by the council. Therefore,

each survey year often represents road sections different to

those assessed in the previous year.

Ideally analysis would have considered many

years/decades. However, the use of GIS in Lincolnshire’s

highway asset management remains a still-emerging tech-

nology. Prior to GIS techniques, CVI data recording was

predominantly paper based and is therefore difficult to

investigate alongside other environmental data.

Overall, the CVI structural index for Lincolnshire’s un-

classified network shows significant deterioration between

the years 2007 and 2014. This is especially so on soils with

an extremely high to high risk of clay-related subsidence,

www.nat-hazards-earth-syst-sci.net/15/2079/2015/ Nat. Hazards Earth Syst. Sci., 15, 2079–2090, 2015
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Figure 3. Modelled clay-subsidence risk at the central estimate (50th percentile) for baseline (1961–1990), 2030 (2020–2049) and 2050

(2040–2069) UKCP09 scenarios for the administrative county of Lincolnshire (contains Ordnance Survey data, Crown copyright and database

right, 2015; soil data (England and Wales)© Cranfield University and for the controller of HMSO 2015).

where consistently high CVI values (i.e. > 60) are observed,

representing a significant deterioration of the structural road

condition on these higher-risk soils; roads identified at cur-

rent risk are provided in Fig. 6. Moreover, by 2012–2013

the CVI value on these soils has reached a critical point,

whereby the roads are deemed to have failed structurally (i.e.

CVI > 80), resulting in the enforcement of speed restrictions

as a result.

CVI for roads on soils at a medium-low risk for all survey

periods showed a consistently high level of subsidence risk.

However, this is only representative of a relatively low num-

ber of CVI points for each survey period (9, 10, 10 and 10).

These values were therefore excluded from the analysis.

5.2 Future risk

The entire unclassified road network for Lincolnshire was in-

tersected with future projections of clay subsidence risk for

2030 and 2050 (Fig. 3), using the 50th percentile or cen-

tral estimate. From this, metrics were produced that identify

lengths (kilometres) of road sections falling into each partic-

ular clay-related subsidence risk class. The resultant graph

(Fig. 7) shows clear shifts of road sections into higher vul-

nerability classes from the baseline (1961–1990) through to

2050 (2040–2069). This is especially so for the extremely

high class where between the baseline and 2050 there is a

& 300 % increase in the amount of road length on these soils.

There is also a ∼ 1200 % shift from roads being at a medium

risk to those becoming at medium-high risk between base-

line and 2030 and 2050 scenarios. However, medium-high-

risk soils do not appear to exert such structurally damaging

effects on road condition as compared with the higher classes

(Fig. 5).

6 Discussion

The low traffic volumes on local road networks mean that

the large capital investments required to adequately engineer

all unclassified roads on highly shrinkable soils are an un-

affordable solution in mitigating the impact of soil-related

subsidence. Road deterioration is affected by a number of

factors; however, this paper has shown quantitatively that

clay-subsidence-prone soils exert a profound structural im-

pact upon road conditions in the Lincolnshire study area.

This has resulted in subsequent economic impacts, with calls

made by the county for emergency funding from the DfT to

clear the maintenance backlog.

ADEPT (2009) argue that climatic change may lead to

wide-scale failure of the UK minor highway network. As

Nat. Hazards Earth Syst. Sci., 15, 2079–2090, 2015 www.nat-hazards-earth-syst-sci.net/15/2079/2015/
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Figure 4. Conceptual risk-assessment framework for spatial clay subsidence risk impacts upon Lincolnshire road network.

Figure 5. Clay subsidence risk against structural CVI (coarse visual inspection).

www.nat-hazards-earth-syst-sci.net/15/2079/2015/ Nat. Hazards Earth Syst. Sci., 15, 2079–2090, 2015
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Figure 6. Road sections identified “at risk” of clay-related subsidence at present (soils data (England and Wales)© Cranfield University and

for the controller of HMSO 2015).

this work shows, UKCP09 scenarios indicating hotter, drier

summers and warmer, wetter winters through to 2080 (Jenk-

ins et al., 2009) are likely to exacerbate clay-related subsi-

dence risk (Harrison et al., 2012; Blenkinsop et al., 2010;

Pritchard et al., 2015). Williams et al. (2012) argue that de-

cisions around risk made by local authorities are predomi-

nantly a consequence of regulatory obligations. As a result,

many studies have discussed the acute problem of flooding

impact on highways, which causes widespread and econom-

ically significant damages (e.g. Bollinger et al., 2014). How-

ever, little attention has been brought to the impact of more

chronic, systemic and less visible geohazards such as clay-

related subsidence to highway infrastructure. An analysis of

the impacts of current and future geohazards to road infras-

tructures nationally will lead to a greater awareness amongst

local authorities and policymakers. It will also lead to a bet-

ter understanding of the viable adaptation and mitigation op-

tions which can be implemented to tackle the issue at hand

(Williams et al., 2012) as well as informing the debate on

infrastructure investment planning.

The construction of entirely new roads in the UK is rare.

More commonly, existing networks are upgraded (Brown,

2013). Rawlins et al. (2013) state that with new develop-

ments, an awareness of the potential hazards and the influ-

ence of climate change should be incorporated into design

principles. As a result, the findings of this research can aid

planning of new highways.

Nat. Hazards Earth Syst. Sci., 15, 2079–2090, 2015 www.nat-hazards-earth-syst-sci.net/15/2079/2015/
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Figure 7. Road length kilometres per clay subsidence vulnerability class for baseline, 2030 and 2050 scenarios.

The All Party Parliamentary Group on Highway Mainte-

nance recently called for the incorporation of highway asset

management plans (HAMPs) within local authorities high-

way departments to become mandatory (APPGHM, 2013).

Moreover, recommendations exist to make funding streams

from the Department for Transport accessible only if HAMPs

are in place. Therefore, specific risk information, in this case

relating to the spatial distribution of hazardous soils, is vital

to these asset management plans. Within LCC, integration

of clay-related subsidence assessment within the planning of

highway maintenance has provided the basis for a decision-

support tool for establishing which specific treatments high-

way engineers can use to improve drought-damaged road

sections. Whereas previously a blanket approach to resur-

facing would have been applied to all affected sections, it

is now recognised that unclassified road sections on drought-

susceptible soils are predominantly prone to failure. There-

fore, with large capital investment not being an option, other

value-for-money options are being sought.

LCC have made attempts to reinforce their road network,

for example with the use of steel reinforcing grids (e.g. at

A1073, Crowland) which act to reinforce the road struc-

ture on clay-subsidence-susceptible soils. Although this tech-

nique has proven successful, it is both expensive and proves

problematic when resurfacing works or a utility trench has to

be emplaced below the road surface, so it is not a wholly vi-

able option. Moreover, Wanyan et al. (2015) state that thicker

and stronger road surface layers do not necessarily provide

better performance in respect to expansive clay soils but

rather just delay inevitable cracking of the road surface. In-

stead, they posit that more attention should be focused on

improving the stiffness and strength of the roads foundation

(or subgrade).

More recently, LCC have been trialling an in situ road

recycling process known as retread, for specific drought-

affected sections of their network. This process involves the

re-incorporation of in situ road planings into the founda-

tion of the road. Retread offers an in situ treatment using

cold-laying techniques; therefore heat and more energy is

not required (Heaton, 2014). Being in situ, this also reduces

the high disposal costs of potentially hazardous (bitumen-

containing) waste to landfill. Moreover, road planings ac-

quired from other sites across the network have been im-

ported in some areas to further deepen road foundations to

try and minimise the impacts of clay-related subsidence.

A sum of £ 1 million, within the Lincolnshire road mainte-

nance budget, has been sourced from a bid to central gov-

ernment and assigned to the retread project over the pe-

riod 2013–2015. This process, although having been imple-

mented in other counties for a number of years, is a new

initiative by LCC. Due to this approach being novel in Lin-

colnshire, it is not currently known what the long-term reli-

ability of this method will be on Lincolnshire’s subsidence-

prone soils; however, current results appear positive (Heaton,

2014).

Although not explored within this paper, the shrinkage of

clay soils is a known precursor to shallow and deep-seated

slope movements (Page, 1998). In this situation, shrink-

age cracks allow water ingress to reach clay shear surfaces

(Loveridge et al., 2010). This results in increased pore-water

pressures, especially during intense storms. High pore-water

pressure with additional weight from large agricultural ve-

hicles or articulated delivery vehicles can result in shear

slippage, slope movement and subsequent highway failure

(Hawkins, 2013; Loveridge et al., 2010). As a result of agri-

cultural and drainage practices, much of the highway net-

work in Lincolnshire is flanked by steep-sided drainage dikes

or has been left raised above the surrounding land due to

peat shrinkage. Therefore, these steep-sided embankments

www.nat-hazards-earth-syst-sci.net/15/2079/2015/ Nat. Hazards Earth Syst. Sci., 15, 2079–2090, 2015
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Figure 8. Road embankment instability, B1165 Ravens Bank, Lin-

colnshire (photo: O. Pritchard).

and the presence of shrink–swell soils can lead to specific

localised slope failure (e.g. Fig. 8).

This paper has assessed the use of soil-related geohazard

mapping in the asset management of minor highway net-

works within Lincolnshire. The risk-assessment framework

(Fig. 4) presented has enabled LCC to prioritise its lim-

ited road maintenance capital on road sections at risk from

drought-related clay subsidence. It has also acted as the ba-

sis for a decision-support tool, making highway engineers

more conscious as to where hazardous soils present them-

selves spatially, highlighting the damaging effect that these

can have upon the unclassified road network during drought

conditions as well as guidance as to which treatments prove

economically and structurally viable.

The study also highlights the structurally damaging effects

that are likely to occur on England’s unclassified road net-

work under the UKCP09 climate projections and on soils

prone to clay-related subsidence, especially in the south-east

of England. The incorporation of probabilistic subsidence

projections provides a novel approach to evaluate the fu-

ture risk of soils to highway networks. The standardised CVI

method of road condition survey within the UK means that

rapid soil-geohazard assessment could be readily applied to

other administrative areas affected. Further research is re-

quired to consider the potential impacts of other infrastruc-

ture failures and maintenance activities (e.g. water main fail-

ures and construction of utility trenches) on the soil structure

and to what extent this results in degradation of road founda-

tions and ultimately of road surface quality.

7 Conclusions

This research has considered the impact of clay-related sub-

sidence on highways from a UK perspective. The issue of

the impact of expansive soil on road surface conditions, how-

ever, is a recognised problem for a number of countries. The

soil-informed maintenance strategy proposed here could be

extended and applied successfully in an international con-

text, highlighting the inherent value in a greater coopera-

tion between highway engineers and engineering geologists,

geomorphologists and soil scientists; highway engineers of-

ten having little earth-science experience. This strategy also

enables the incorporation of modelled climate change im-

pacts, which, with global scenarios, indicate an increased

vulnerability of global infrastructure networks as a result.

Therefore any improvement on climate adaptation measures

is highly beneficial for the continuous and economical run-

ning of highway networks globally. The availability of appro-

priate soil data (e.g. national soil survey maps) and empiri-

cally derived shrink–swell assessment will often dictate the

potential of the methodology presented here. However, the

recently launched SMOS (Soil Moisture and Ocean Salin-

ity) and SMAP (Soil Moisture Active Passive) satellite plat-

forms provide tools to obtain almost real-time data to pre-

dict soil moisture levels in areas where meteorological data

are sparse and to predict potentially damaging impacts on

highway infrastructure where expansive soil distribution is

known. Moreover, differential SAR interferometry, which

is able to detect ground movements at the millimetre scale

(Calo et al., 2014), could be a source of estimating where

expansive soils are distributed, importantly providing a more

economical means to undertake regional, national-scale and

even cross-border assessments of shrink–swell impacts on

road infrastructure.
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