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Abstract. Nuclear power plants located in the French At-

lantic coast are designed to be protected against extreme en-

vironmental conditions. The French authorities remain cau-

tious by adopting a strict policy of nuclear-plants flood pre-

vention. Although coastal nuclear facilities in France are de-

signed to very low probabilities of failure (e.g., 1000-year

surge), exceptional surges (outliers induced by exceptional

climatic events) have shown that the extreme sea levels es-

timated with the current statistical approaches could be un-

derestimated. The estimation of extreme surges then requires

the use of a statistical analysis approach having a more solid

theoretical motivation. This paper deals with extreme-surge

frequency estimation using historical information (HI) about

events occurred before the systematic record period. It also

contributes to addressing the problem of the presence of out-

liers in data sets. The frequency models presented in the

present paper have been quite successful in the field of hy-

drometeorology and river flooding but they have not been

applied to sea level data sets to prevent marine flooding.

In this work, we suggest two methods of incorporating

the HI: the peaks-over-threshold method with HI (POTH)

and the block maxima method with HI (BMH). Two kinds

of historical data can be used in the POTH method: clas-

sical historical maxima (HMax) data, and over-a-threshold

supplementary (OTS) data. In both cases, the data are struc-

tured in historical periods and can be used only as comple-

ment to the main systematic data. On the other hand, in the

BMH method, the basic hypothesis in statistical modeling

of HI is that at least one threshold of perception exists for

the whole period (historical and systematic) and that during

a giving historical period preceding the period of tide gaug-

ing, only information about surges above this threshold have

been recorded or archived. The two frequency models were

applied to a case study from France, at the La Rochelle site

where the storm Xynthia induced an outlier, to illustrate their

potentials, to compare their performances and especially to

analyze the impact of the use of HI on the extreme-surge fre-

quency estimation.

1 Introduction

France derives over 75 % of its electricity from nuclear en-

ergy. Most nuclear power plants in France are not located on

the coasts. Only five are located on the Atlantic coast (includ-

ing the Channel). Like any other installations, nuclear power

plants can be subject to external influences and aggressions

such as extreme environmental events (river and/or marine

flooding, earthquakes, etc.). The Blayais nuclear power plant

was partially flooded when storm Martin struck the French

coast in 1999. A combination of an exceptional surge (out-

lier), of a high tide and high waves (induced by strong winds)

led to the overflow of the dikes. According to Mattéi et

al. (2001), these dikes were not designed for such a concomi-

tance of events. A guide to protection, including some funda-

mental changes in the assessment of flood risks, has therefore

been produced by the Nuclear Safety Authority (ASN, 2013).

However, some issues like the frequency estimation of ex-

treme surges remain among the priorities of the Institute for

Radiological Protection and Nuclear Safety (IRSN). During

the last 3 decades, France has experienced several other vio-

lent storms (the Great Storm of 1987, Martin in 1999, Klaus

in 2009 and Xynthia in 2010) that caused very high surges

which can be considered to be outliers. An outlier can be de-

fined as an observation that is well outside of the expected

range of values in a sample.
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Surge frequency estimation is an important step in the

analysis of the risk associated with marine flooding. The

estimation of the frequency of occurrence of extreme en-

vironmental events using probability functions has been a

common issue for many decades (e.g., Dalrymple, 1960;

Gringorten, 1963; Cunnane, 1987; Chow et al., 1988; Rao

and Hamed, 2000; Bernardara et al., 2014). The engineer

generally needs to determine the surge of a given return pe-

riod T , i.e., the surge quantile XT or design surge. Tradi-

tional methods for analyzing and estimating the frequency of

extreme events have been generally based on available local

observations from the systematic record alone. However, it

seems that these methods are not really suitable for an ex-

treme events data set containing a surge (outlier) which is

much higher than any other observed surges (e.g., Hu, 1987;

Ebrary, 1999). Indeed, the presence of an outlier in a sam-

ple may lead to poor estimation of the distribution param-

eters. In order to base our statistical inference on the right

tail of the selected distribution, detection and treatment of

outliers are key elements to an effective frequency estima-

tion and risk analysis (Barnett and Lewis, 1998; Chebana et

al., 2012). During the last 4 decades, several authors (Leese,

1973; US Water Resources Council Hydrology Committee

(USWRC), 1982; Stedinger and Cohn, 1986; Condie, 1986;

Jarrett, 1990; Salas et al., 1994; Ouarda et al., 1998; Hamdi,

2011; Payrastre et al., 2011, 2013) have recognized the value

of using other sources of information in the frequency esti-

mation of extreme events.

Indeed, to obtain both a consistent and accurate estimate

of extreme events requires the use of a consistent technique

which improves the incorporation of the outlier in the fre-

quency estimation. Regional estimation, in which on-site ob-

served exceptional events may become normal regional ex-

treme observations and do not appear to be outliers any

more, was considered by the scientific community to be a

serious track to analyze the frequency of occurrence of the

surges (Bardet et al., 2011; Bernardara et al., 2011; Weiss

and Bernardara, 2013). However, the inter-sites dependency

issue in the regional framework must be revised (Bardet and

Duluc, 2012). Additional information refers also to historical

events which have been experienced before the systematic

period. HI may arise from verbal communication from the

general public, written records in archives (books, newspa-

pers, damage reports, unpublished written records, etc.) and

from high-water marks left by extreme floods for instance.

Other sources of HI such as paleoflood data (which can be

obtained from the manipulation of certain types of proxy

data) can be useful as well. A review of the literature on HI

and the role it can play in a frequency analysis has been made

by several authors (e.g., Stedinger and Baker, 1987; Salas et

al., 1994; Ouarda et al., 1998). The basic reason for working

on such a topic arises from the fact that, despite their signif-

icant impacts on nuclear-related facilities and on economic

and social activities, statistical characterization of extreme

storm surges, using HI, has been explicitly handled in only

two references in all the literature (Van Gelder, 1996; Bulteau

et al., 2014). Van Gelder (1996) used a Bayesian framework

to account for known historical sea floods in the estimation

of sea dikes design level in the Netherlands. More recently,

Bulteau et al. (2014) have also used a Bayesian framework

to estimate extreme sea levels for the design of coastal de-

fences. The authors applied the Bayesian method to the site

of La Rochelle in France. The probabilistic and statistical

treatment of surge data containing outliers is also limited in

the literature especially in a local frequency analysis context.

A basic hypothesis in statistical modeling of HI is that

at least one threshold of perception (S0) (below which the

magnitude of the surge is unknown) exists and that, dur-

ing a giving historical period preceding the period of tide

gauging, only surges above the threshold (large enough to

be remembered and/or to leave a mark somewhere on the

coastal region) have been recorded or archived. Typically S0

is the surge at which significant economic damage occurs.

We named this method the block maxima method with HI

(BMH). Plotting position rules, to calculate observed proba-

bilities based on both historical and systematic information,

have been proposed in the literature (Hirsch, 1987; Hirsch

and Stedinger, 1987; Guo, 1990). The development proposed

by Hirsch (1987) is considered herein. The reader is referred

to Hirsch (1987) and to Sect. 3.1 of the present paper for

more details on the BMH model. Another method of using

HI in the frequency estimation of extreme events, which has

not been frequently explored in the literature, is based on

the use of two kinds of historical data: classical historical

maxima (HMax) data, and over-a-threshold-supplementary

(OTS) data. In both cases, the data are structured in historical

periods and can be used only as complement to the main sys-

tematic data. This method is called the peaks-over-threshold

method with HI (POTH) in this paper. More details about the

OTS and HMax data are provided in Sect. 3.2 of the present

paper.

Whatever the approach used, parametric methods based

on the method of the maximum likelihood (ML) for estimat-

ing the distribution parameters have been developed and used

(Leese, 1973; Hosking and Wallis, 1986; Guo and Cunnane,

1991). The selection of the ML method was based on its sta-

tistical features for large samples and for its ability to easily

incorporate any additional data in the estimation process. HI

are often imprecise, and we should consider their inaccuracy

in the analysis. However, even with important uncertainty,

the use of HI is a viable mean to decrease the influence of

outliers by increasing their representativeness in the sample

(Hosking and Wallis, 1986a; Wang, 1990; Salas et al., 1994;

Payrastre et al., 2011).

The objective of the present work is to examine the po-

tential gain in estimation accuracy with the use of Historical

events for the two methods described above. The La Rochelle

tide gauge located in the French Atlantic coast is used in this

paper as a case study. The paper is organized as follows.

A brief review of the basic definition and concepts is pre-
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sented in Sect. 2. The third section presents the case study

with systematic and historical data. In the Sect. 4, the de-

veloped frequency analysis models will be applied to the La

Rochelle site. The results of the analysis are further discussed

in the same section, before the conclusion and perspectives

in Sect. 5.

2 Basic definitions and concepts

A frequency estimation procedure with HI must include the

following steps: (i) hypothesis testing (verification of station-

arity, randomness and homogeneity) and detection of out-

liers; (ii) selection of S0 (for the BMH method) and the his-

toric threshold (for the POTH-OTS); (iii) compute empirical

probabilities corresponding to systematic observations (for

the BMH method, only observations below S0 are taken into

account); (iv) the computation of empirical probabilities of

historical data (using the Weibull formula for the POTH ap-

proach and the exceeding formula for the BMH one). Be-

cause some surge events exceeding the perception-threshold

S0 occur among the systematic data, these events are virtu-

ally removed from the systematic period and are treated as

historical data (Bayliss and Reed, 2001) in the BMH fre-

quency model; (v) the selection of a parameters-estimation

method (ML in our case) and estimating a theoretical dis-

tribution function (the GEV (generalized extreme value) for

the BMH model and the GP for the POTH one) to fit the ob-

servations; (vi) calculating from the theoretical distribution

the T -year values of interest (say 100 or 1000 years). We an-

alyze systematic observed skew surges that are available in

the period from 1941 to 2010. Data sets were extracted from

the predicted tide levels and corrected observations (Bardet

and Duluc, 2012). The selected extremes for a particular year

were obtained from statistically independent surges. It should

be noted that the same raw data set analyzed by Bardet and

Duluc (2012) is used in this paper.

A common problem in statistical modeling is the existence

of gaps within the observation period (due to damage or fail-

ure of the measurement system, human errors, strikes, wars,

etc.). Whatever the HI approach (BMH, POTH) to be used,

we must take into account these missing periods in the anal-

ysis. Worth noting is that it happens quite often that failure

in the measuring stations occurs because of the storm, thus

creating a non-independent gap. Then we should ensure that

the gaps occur independently from a measured variable. By

means of classical extreme value distributions we are often

able to analyze the statistical behavior of the maximum of a

sequence of independent identically distributed (iid) random

variables. Such a sequence usually represents values mea-

sured on a regular time scale. In our application the extreme-

surge data used for the BMH frequency model are the annual

maximum (AM) surges. As it is the maximum of a block of

values, it is often denoted as block maximum (Fig. 1).

Figure 1. A sketch of a systematic record. To the left: the block

maxima data set (for the BMH method). To the right: the POT data

set (for the POTH method). In POT only surges Xi > us are mod-

eled through exceedances Yi =Xi − us. The distribution F(X) is

known only for the upper part x > us.

On the other hand and in the context of a point process

model, surge events occur at successive random times Ti
when a random variable is observed. We consider that only

large surge values are of interest (values exceeding a suffi-

ciently high threshold us). We can assume that the times Ti
corresponding to large enough surgesXi should be described

by a homogenous Poisson process for which the numberN of

surges on a time interval of length ws follows a Poisson dis-

tribution with mean λws. The λ parameter is the rate, and it is

generally given in number of events per year. Surges Xi are

assumed to be iid random variables with continuous distribu-

tion FX(x) and density fX(x). The return period in such a

case is given by T = 1/λ(1−FX(x)). The annual maximum

surges (for the BMH model) and the peaks-over-threshold

(POT) surges (for the POTH model) are used in this paper as

systematic data sets. The construction of the probability plot

is a key step of a frequency analysis. There are several for-

mulas that can be used to calculate the observed probability

of an event in the systematic period. Based on several studies

(e.g., Alam and Matin, 2005; Makkonen, 2006) the Weibull

plotting position rule was used (pemp = i/(n+ 1)).

3 Historical information

HI refers to events which have been experienced before the

systematic gauging period. Although the frequency analy-

sis using HI often lacks precision in the data used, it has

been shown to improve the frequency estimation of extreme

events. As mentioned earlier in this paper, there are two

methods (BMH and POTH) to integrate HI with systematic

data in a frequency model. Whatever the method used and

comparing with the traditional frequency models, there are

two fundamental differences when using HI.

i. A different class of plotting position formulas can be

used for the empirical probabilities. For instance, the

exceedance formula is used when applying the BMH

frequency model. The exceedance formulas are based

on the fact that the frequency of the whole surges ex-
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ceeding S0 (since it subdivides the range of probabili-

ties between groups of below and above thresholds) is a

key descriptor of the data set. For the POTH model, the

same plotting position formula (Weibull, 1939) is used,

but the probabilities of HI and of the systematic data are

separately calculated.

ii. A second fundamental difference when using HI in a

frequency model is that an adapted MLE methodology

should be used. To take into consideration available in-

formation on historical events, this methodology leads

to use additional terms (depending on the method and

the information type) in the likelihood expression.

The development of the plotting position formula for the

BMH model and derivations of the likelihood equations for

the frequency models with historical information are ad-

dressed hereafter.

Typically, historical surges are stated in terms of a large

event (a huge submersion for instance) which took place in

a particular year without knowing the characteristics (rank

or magnitude) of the events that took place in other years.

Also worth noting is that the completeness is not guaran-

teed. In fact, we only know extreme surges that have caused

damages and thus participating in high levels. Extreme his-

torical surges associated with low or medium tides are often

not known. In this paper, surges are described in four types:

(i) exact historical surges (magnitudes can be accurately es-

timated); (ii) events above a threshold (lower bound); (iii) an

upper bound over a given period: this bound was never ex-

ceeded; (iv) surges whose magnitudes are known with some

uncertainty and bounded by upper and lower limits (range).

On the basis of these HI types, a joint likelihood function of

the historical and systematic data `(G|θ) will be expressed

and discussed in more detail in the rest of the paper. With the

tools exploited in this study, both BMH and POTH models

can use exact values as HI. However, the second and the last

HI types can only be used with the BMH frequency model

whereas the third type can only be used with the POTH

model (particular case of OTS historical information without

events above the threshold).

3.1 The block maxima method with HI (BMH)

In applying the BMH method one may assume that HI are

available in relation to one or more fixed thresholds of per-

ception. Typically these thresholds of perception (St ) are

surges at which important economic damage occurs. A first

difficulty with this method is to quantify the magnitude of

historical surge events (as it is often subject to important un-

certainty) and to estimate the empirical frequencies from a

sample of both systematic data and HI. A second difficulty

lies in the hypothesis of the HI completeness. Indeed, his-

torical surge data are supposed to be exhaustive and all the

events exceeding St are reported. In other words, for the en-

tire historical period, we assume that the thresholds have not

been exceeded except for the available historical data. The

selected statistical distribution for the BMH model is the gen-

eralized extreme value (GEV). Indeed, the annual maxima

data converge asymptotically to this distribution function.

Mathematical derivations to calculate plotting positions of

systematic and historical data for the BMH model using more

than a threshold of perception is detailed in Appendix A

and illustrated by Fig. 2. The ML estimators are obtained by

maximizing the likelihood function over the parameter space

θ (or usually simpler, by maximizing the logarithm of this

function). Under the assumption that the surges are iid, the

global likelihood function of the whole data sample is any

function L(G|θ
↔
)which is the product of the likelihood func-

tions of the particular types of events and information. It can

then be expressed as

L
(
G|θ
↔

)
=

sys. data︷ ︸︸ ︷
L
(
Xsys|θ

↔

)
·

exact historic •︷ ︸︸ ︷
L
(
Y exact

hist |θ
↔

)
·

lower bound hist.↑︷ ︸︸ ︷
L
(
Y low

hist |θ
↔

)

·

range historicl︷ ︸︸ ︷
L
(
Y

range

hist |θ
↔

)
. (1)

Details about each term of this equation are presented in Ap-

pendix B.

3.2 The peaks-over-threshold method with HI (POTH)

The historical data (HMax and OTS data) are structured in

historical periods and can be used only as complement to the

main POT systematic data (Fig. 3). The OTS data are over-

a-threshold historical data recorded on periods with known

durations and known exceedances. The periods are assumed

to be potentially disjoint from the systematic period and

other historical periods. For each period with known duration

wOTS, we must have a threshold uh and all observations ex-

ceeding this threshold. The historical threshold uh cannot be

smaller than the main threshold us (used for the POT system-

atic data). A HMax data period corresponds to a time interval

of known duration wHMax during which historical nk-largest

values are available. Periods are also assumed to be poten-

tially disjoint from the systematic period and other histori-

cal periods. The selected statistical distribution for the POTH

model is the generalized pareto (GP) distribution. Indeed, the

exceedances law converges to this distribution function.

Calculating empirical probabilities of historical data and

constructing an empirical distribution function (in a POTH

context) is the same as that of systematic data. A classic em-

pirical formula can be used. Otherwise, as mentioned earlier

in this paper, it was shown that the Weibull plotting position

formula p = i/(̃n+ 1) is more adequate than the other com-

monly used rules. In this formula, ñ is a prediction of the

number of events on the historical period for HMax (since

this number is unknown). A natural choice is ñ= λwHMax

(λ is the events rate on the systematic period). For an OTS

period with duration wh and with no surge observations, the
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Figure 2. A sketch of systematic records and historical information: a multiple-threshold case.

Figure 3. POTH: a sketch of systematic records and historical in-

formation (HMax and OTS data).

never exceeded threshold uh is shown as a horizontal seg-

ment with return period up towh. To estimate the distribution

parameters by using the maximum likelihood technique in

the POTH model, let us assume a set of POT systematic ob-

servations Xsys, i with two sets of historical OTS and HMax

surges XOTS,i and XHMax,i . The global log-likelihood can be

expressed as

`(G|θ)=

systematic data︷ ︸︸ ︷
`
(
Xsys,i |θ

)
+

OTS data︷ ︸︸ ︷
`
(
XOTS,i |θ

)
+

HMax data︷ ︸︸ ︷
`
(
XHMax,i |θ

)
. (2)

Details about each term of this expression are presented in

Appendix C.

4 Data and models settings

The frequency analysis is performed at the La Rochelle site,

which is located on the French Atlantic coast. Independent

surges time series were obtained from the predicted tide lev-

els and corrected observations (Bardet et al., 2012), provided

by the French Oceanographic Service SHOM (Service Hy-

drographique et Océanographique de la Marine) for the tide

gauge named “La Pallice”. One of the most important fea-

tures of the station La Rochelle is the fact that the region,

in which this station is located, has experienced important

storms during the last 2 decades (the storm Martin in 1999

and Xynthia in 2010). Figure 4 displays the geographic loca-

tion of the La Rochelle site.

4.1 Systematic data and statistical tests

In the case of the BMH model, the annual maximum surges

available in the period from 1941 to 2010 constitute the sys-

tematic record and all events occurred before 1941 are con-

sidered to be HI. The choice of systematic data for the POTH

approach is different. Indeed, to use all available data sep-

arated by periods of missing data, we concatenated all the

surges gauged since 1941 to form one systematic record. It

was shown in previous researches (e.g., Bardet et al., 2011;

Hamdi et al., 2014) that a threshold us equal to 41 cm is an

adequate choice that gives a rate λ equal to 4 events year−1.

BMH and POTH systematic data from 1941 to 2010 are rep-

resented by bar plots in Figs. 5 and 6 respectively.

Stationarity, homogeneity and randomness of time se-

ries are required conditions in a frequency analysis (Rao

and Hamed, 2001). The Kendall test for stationarity (Mann,

1945), the Wald–Wolfowitz test for randomness (Wald and

Wolfowitz, 1943) and the Wilcoxon test for homogeneity

(Wilcoxon, 1945) are the three non-parametric tests used as

a prerequisite for frequency analysis. The La Rochelle sta-

tion passed these tests at the significance level of 5 %. The

Grubbs–Beck test (GBT) for the detection of outliers is also

www.nat-hazards-earth-syst-sci.net/15/1515/2015/ Nat. Hazards Earth Syst. Sci., 15, 1515–1531, 2015
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Figure 4. Geographic location of the La Rochelle site.

Figure 5. La Rochelle site – systematic and historical data and set-

tings of the BMH frequency model.

used in the present work. The results of this test show clearly

that the 2010 event is undoubtedly an outlier. The reader can

be referred to Grubbs and Beck (1972) for more details on

this test.

4.2 Settings of the BMH and POTH frequency models

Some historical known events experienced by the La

Rochelle site are available. We chose in this part to consider

only the information collected with a tide gauge before 1941.

This information was collected as part of the PhD thesis of

Gouriou (2012) at the University of La Rochelle and corre-

sponds to a 12-year surges record (between 1863 and 1874)

at the Old Harbour of La Rochelle. Only the four highest

values are considered in the present work (Table 1). Through

Garnier and Surville (2010) or Breilh et al. (2014), we could

identify that some other extreme events that happened in the

La Rochelle area, during gaps in the systematic period ex-

ploited in the present work. In particular, an event occurred

in 1957 is comparable in terms of consequences to the Xyn-

thia event. But these events have not been measured by tide

gauges or the estimated levels are not clearly associated with

La Rochelle site. However, this is worrying for us since ex-

Figure 6. La Rochelle site – systematic and historical data and set-

tings of the POTH frequency model.

Table 1. Historical known values.

Year 1866 1867 1869 1872

Surge (cm) 111 80 87 96

haustiveness in HI has been assumed in the developed BMH

model and in the POTH model with OTS data. A possible

solution is to choose a threshold of perception St (in the case

of the BMH method) or a historical threshold uh (in the case

of the POTH method) as high as possible. This would allow

us to get closer to the completeness of the HI. Care must be

taken when using the available HI (Table 1), it is not neces-

sary to use all the available historical data and depending on

the selected threshold, one or more historical data can be ex-

cluded from the analysis. This is indeed the case here, only

the historical surge of 111 cm induced by the event that took

place in 1866 was used. Some elements of justification will

be presented in the next section. The other data are consid-

ered quite small and taking a threshold of perception below

these values further exacerbate the problem of the assumed

completeness.

We introduced in a previous section some parameters char-

acterizing data sets (containing both HI and a systematic

record) that we apply here on the La Rochelle records.

4.2.1 Settings of the BMH frequency model

As mentioned in Sect. 4.1, events occurred before 1941 are

considered to be HI. The threshold of perception is not easy

to estimate. In addition to the fact that it was not exceeded

during all the historical period except when information is

available, the value of the threshold of perception must meets

the following criteria: (i) should be as high as possible;

(ii) should be exceeded by the selected historical values intro-

duced in the estimation; (iii) may result in serious economic

damage and disruption. In the case of marine surges, the last

criterion is not always taken into account for the simple rea-

son that high surges can occur at the same time with low tide

and may not cause damage.

The 2010 event (Xynthia) is exceptional (comparing to

the other observed systematic surge peaks) and affected not
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only the French coasts but also western Europe. The surge

value (153 cm) caused by the Xynthia event has largely ex-

ceeded twice the average of the other surge records (61 cm).

This event is considered to be historic in the BMH frequency

model. This changes its empirical probability but not the

value of the overall likelihood. Consequently, the theoretical

probabilities remain unchanged. All other systematic surges

seem to be ordinary extreme ones with relatively low return

periods. The choice of the threshold of perception becomes

then a goal easy to achieve; we simply need to choose a

threshold that allows us to consider only the Xynthia event

to be historic among the systematic ones. It should range be-

tween the Xynthia event surge (153 cm) and the maximum

value of all the other systematic observations (90 cm). A

value of St = 110 cm with a total of two exact values (nk = 2)

is then utilized in the present paper. Only one of these values

is systematic (ne = 1) and there are no lower bounds (lb= 0)

and ranges (nr = 0) that can be used for this case study. Fig-

ure 5 illustrates well these model settings.

4.2.2 Settings of the POTH frequency model

The parameters characterizing a POTH model data set are

uh and wh. In order to be consistent with the BMH model

assumptions and to compare the two models results, the HI

is used in this work as OTS data. As shown in Fig. 6, HI

complements then the systematic record with these OTS data

recorded on one historical period (1866–1940) with known

duration (wOTS = 75 years) and one exceedance (nk = 1). As

was the case for the BMH frequency model and to ensure

exhaustiveness of HI, a threshold as high as possible should

be chosen. A value of uh = 110 cm is then utilized. Unlike

the BMH frequency model, systematic events that exceeded

the historical threshold are not considered to be historical in

the POTH model. Consequently their empirical probabilities

will be different (compared to their equivalents in the BMH

model) but theoretically the likelihood remains insensitive to

the fact that these observations are considered to be system-

atic or historic. Worth noting is that theoretically, with the

proposed BMH and POTH models settings, the portion of

the likelihood related to the addition of the HI must converge

to the same value and the impact of the use of the HI must be

the same for the two concepts.

The POTH frequency model is applied with the Renext

tool developed by the French Institute for Radiological Pro-

tection and Nuclear Safety (IRSN). The Renext software pro-

poses fits and diagnostics for the POT method. The software

is programmed in the R environment (open-source software

for statistical computing: http://www.r-project.org/).

5 Results and discussion

In this section we report the results of the BMH and POTH

frequency models for the extreme storm surges frequency es-

timation and analysis applied to the La Rochelle station. All

the developments and simulations were carried out within the

R environment. The packages “evd” (Stephenson, 2012) and

“Renext” (Deville, 2013), which have specifically been de-

veloped for extreme events frequency analysis, were used.

As shown in Figs. 5–6, the surge frequency analysis was

performed considering only one scenario for each method:

30 systematic surges and 1 exact historical observation for

the BMH frequency model and 106 systematic POT surges

and 1 OTS data for the POTH model. Whatever the fre-

quency model settings, the historical period considered in

these two cases starts when the first historical data was ob-

served (75 years long). For each model, the evaluation of the

impact of additional HI (by comparing quantiles with no his-

torical data and those obtained using the whole 1866–2010

data set, including both systematic and HI), constitutes the

main result of this paper, and it is highlighted later in the

present section. These results are presented in form of prob-

ability and diagnostic plots (Figs. 7–8) and in form of tables

summarizing the numerical estimates of the return levels of

interest and uncertainty parameters.

Fitting the GEV/GP distributions to the data yields the fol-

lowing parameters, the absolute and relative widths (1CI and

1CI/ST, respectively) of the confidence intervals of the rep-

resentative surge quantiles which are presented in Tables 2

and 3. Since high return periods are needed for the safety

of nuclear installations, the main focus was set to the 100,

500 and 1000-year surge quantiles. The uncertainty corre-

sponding to the return level is closely related to that of the

model parameters. The Delta method was used to calculate

the variance of the return level estimates. The distribution

functions (GEV for the BMH model and GP for the POTH

model) was fitted to data. Figure 7–8 consists of 4 subplots.

In each figure are displayed the fitting and the Q–Q plots (top

left panel and top right panel, respectively) excluding the HI.

The graphics with HI are presented in the bottom. The solid

line in the middle is the fitted distribution function, while

the dashed lines are the lower and the upper bounds of the

70 % confidence intervals of surge quantiles. In the plots at

the bottom (with HI), the systematic data are represented by

empty circles, while the HI is depicted by a solid red cir-

cle. In the next sub-sections, we present the results of each

frequency model separately. However, we can afford to an-

alyze first in the present sub-section the results when no HI

is included. It can be seen that the fit with no historical data

included, presented in Figs. 6 and 7, is poor at the right tail

of the distribution and more particularly at the outlier. It is

observed that the POT model gives lower surge estimates for

the La Rochelle station than the AM model. Quantiles corre-

sponding to 100, 500 and 1000-year return periods given by

the POT model are approximately 6 cm lower than those ob-

tained by the AM method. The corresponding confidence in-

tervals are very large when the annual maxima data are used,

and it is much narrower in the case the POT frequency model

is used. This was expected because the robustness of the re-
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Figure 7. The GEV distribution fitted to the AM of peak surges at the La Rochelle station: with no historical information included (top left

panel) and the corresponding Q–Q plot (top right panel); with both systematic and historical data (bottom left panel) and the corresponding

Q–Q plot (bottom right panel).

Figure 8. The GP distribution fitted to the POT surges at the La Rochelle station: with no historical information included (top left panel) and

the corresponding Q–Q plot (top right panel); with both systematic and historical data (bottom left panel) and the corresponding Q–Q plot

(bottom right panel).

sults greatly depends on the amount of available information

and since the POT method generally uses more data than the

AM one. Also note that this difference between the AM and

the POT models should decrease, and the estimated values

become fairly close when additional data (given by historical

information in our case) is used. This also has been proven

in a theoretical way by the scientific community (e.g., Lang-

bein, 1947; Chow et al., 1988; Hamdi et al., 2013).
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Table 2. The T -year quantiles (in cm) estimated on the basis of the systematic and historical periods and absolute and relative widths of their

70 % confidence interval (the BMH frequency model).

T (years) No historical data included Systematic and historical data

ST 1CI70 % 1CI/ST ST 1CI70 % 1CI/ST

(cm) (cm) (%) (cm) (cm) (%)

100 128.16 183.95 144 119.11 72.59 61

500 157.15 348.25 222 141.64 131.55 93

1000 170.14 437.39 257 151.27 162.14 107

Table 3. The T -year quantiles (in cm) estimated on the basis of the systematic and historical periods and absolute and relative widths of their

70 % confidence intervals (the POTH frequency model).

T (years) No historical data included Systematic and historical data

ST 1CI70 % 1CI/ST ST 1CI70 % 1CI/ST

(cm) (cm) (%) (cm) (cm) (%)

100 127.53 37.51 29 118.78 19.77 17

500 155.15 65.25 42 140.30 33.12 24

1000 167.71 80.35 48 149.66 40.28 27

5.1 Results of the BMH frequency model

In a classical frequency analysis (with systematic data

only), some goodness-of-fit criteria and tests (e.g., χ2,

Kolmogorov–Smirnov and Anderson–Darling tests) can be

applied. As soon as any HI is used, testing the goodness

of the fit becomes a more complicated business. The way

additional HI affects the quantile and uncertainty estimates

can even though be analyzed using a visual inspection of di-

agnostic plots (Fig. 7) and the numerical results presented

in Table 2. As shown in Fig. 7, the use of HI appreciably

changes not only the empirical probabilities and the esti-

mated quantiles but also the uncertainty associated to these

estimates. The observed probabilities of surges that exceeded

the threshold of perception were calculated using the ex-

ceedance formula. It can be seen that this formula allows

better positioning of the outliers in the systematic data and

gives to these events more reasonable return periods. It can

then be concluded that the fit with empirical frequencies of

large surges (at the right tail of the distribution and especially

at the outlier) is more satisfactory when using HI.

Including HI reduces the relative width of the confidence

bounds. This finding is underpinned by the values of the ab-

solute and relative widths of the confidence intervals of surge

quantiles presented in Table 2. This is the case when more

data are included in the parameters estimation (if the extra

data are consistent with previous ones). The relative widths

of the confidence bounds for the BMH frequency model with

no HI involved are 2.4 times larger than those obtained with

both systematic and historical surges. This holds for all the

return periods of interest (100, 500 and 1000 years). This fact

is also graphically underpinned by the confidence intervals

plots presented in Fig. 7. The BMH model with both sys-

tematic and historical data gives return levels systematically

lower than those given with systematic data only.

5.2 Results of the POTH frequency model

The visual inspection of diagnostic plots is complicated when

the POTH frequency model is used. Remember here that the

empirical probabilities are calculated with the Weibull plot-

ting position rule (not with the exceedance formula), but in

a separate way for the historical information and the system-

atic data. Their positions are therefore not the same as those

given by the BMH model. We can quickly see from Fig. 8

that the visual fit at the outlier is almost the same as that

obtained with no HI included. The fit of the large empiri-

cal frequencies, at the right tail of the distribution excluding

the outlier, is slightly better than that obtained without HI.

The improvement is not significant, and as shown in Fig. 7,

several observations have remained outside the confidence

interval.

The results given in Table 3 indicate that the values of

relative confidence intervals widths with no HI involved are

1.65 times narrower than those obtained with both system-

atic and historical surges. In other words, the user of this

method is more confident in its parameter and quantile esti-

mates when using HI. As with the BMH model, return levels

given by the POTH frequency model with HI are also lower

than those obtained with no historical data included.
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6 Further discussions on the impact of the historical

information

One of the most important questions still remains is about

the robustness: what is the impact of the use of the HI on

the BMH and POTH models results (for high return levels)?

And what are the shortcomings and the advantages of the two

frequency models?

In order to compare the two approaches, the two model

settings were chosen to be as close as possible. This is why

for the POTH model we have considered one period end-

ing where the systematic period began (the same period as

that used in the BMH model). The POTH historical data can

be handled differently; one could use for instance the four

available historical data (Table 1) over the corresponding pe-

riod of 12 years without making assumptions about the non-

gauging period (1873–1940). From Tables 2 and 3, the con-

vergence of the AM quantiles towards the POT ones is clearly

observed when the HI is used. 100, 500 and 1000-year quan-

tiles obtained by the POTH method are close to those given

by the BMH one (with a difference of only 1.8, 1.6, and 1.4 %

respectively).

This convergence can be seen as tangible evidence of

the robustness of the two models results. Unlike the POTH

model, the BMH one gave a relatively better visual fit not

only at the outlier but also at the other large empirical fre-

quencies. The confidence intervals obtained by the POTH

method are much more advantageous (much tighter), and

the relative width is only 20 % for the 100-year return surge

(against 60 % for the BMH model).

The biggest disadvantage of the BMH frequency model

comes from the completeness assumption. It is assumed that

during the historical period the perception threshold was

never exceeded except in years when the information is avail-

able. This hypothesis can quickly become unsuitable if we

have evidence that one or more significant events occurred

during the historical period and we cannot get more details

on these events

The application with one piece of HI (1863–1874) fol-

lows on nicely from the methodology proposed in this pa-

per. However, that the single additional surge (111 cm) has

made the Xynthia datum seem more consistent with the es-

timated distributions could just be a coincidence arising as

a consequence of the extreme value distributions’ shape pa-

rameter being difficult to estimate with precision. In addition,

the fact that the empirical probabilities are better positioned

with the exceedance formula can be a misleading element

in our assessment of the fits and the uncertainty. This section

deals with the impact of additional extreme value data, which

occurred during both the systematic and historical periods,

on the robustness and the uncertainties in both the frequency

estimation of the Xynthia event and the extrapolated levels

corresponding to other desired return periods.

As mentioned in Sect. 4.2, additional extreme surges are

available. Breilh et al. (2014) have constructed a historical

Table 4. Additional historical data.

Year 1924a 1940a 1941b 1957b 1999b

Surge (cm) 127 139–159 137 111 217

a Historical skew surges estimated with the flooding levels collected by Garnier

and Surville (2010) in the La Rochelle area.
b Historical skew surges estimated with the maximum water levels modeled by

Breilh and al. (2014) at La Pallice.

database of storm-induced coastal floods that affected the

La Rochelle region over the last 5 centuries. The analysis

of the documented events (some flooding events described

as “comparable to Xynthia”) led the authors to propose ob-

served and modeled maximum water levels possibly reached

during these events (Table 4), in particular at La Pallice,

where the systematic data were measured. Three of the de-

ducted skew surges (1941, 1957 and 1999) are generated by

events that have occurred during the gaps of the systematic

period. Fortunately, the developed POTH frequency model

has been developed to manage this type of data by consid-

ering them to be HI. Moreover some HI was collected from

archives by Garnier and Surville (2010) or Gouriou (2012).

It is noteworthy that, unlike the 1863–1875 data, this addi-

tional information is not clearly related to the La Rochelle

station and not always precise (some events as in 1940 are

known with intervals); therefore, care must be taken when

using these data in the developed frequency models. There-

fore, to complete the data of Breilh et al. (2014), only the

high skew surges collected for the 1924 and 1940 events are

considered in this work, as presented in Table 4.

The question that rises is the following: would additional

extreme HI improve the fits and the uncertainties? Four study

cases were considered with the POTH model: (1) frequency

estimation with systematic data only (ws = 26 years); (2) the

1999, 1957, 1941 and 1940 events are considered to be

HMax data with a length of historical period wHMax equal to

45 years (the 1940–2010 period without the systematic data);

(3) the 1924 historical surge is added to the HI considered in

case 2 (the length of the historical period becomes 61 years

by adding the 1924–1939 missing period) and (4) the 1863–

1874 piece of HI (the four highest surges) is considered to be

a separate historical period with an effective durationwHMax1

equal to 12 years, and is combined with the five previous his-

torical surges over a historical duration of 110 years. For the

1940 surge which is known with an interval, we considered

a mean value with the POTH model. The estimates of the

return levels (in cm) of interest and corresponding relative

widths (in %) of the 70 % confidence intervals for each case

are summarized in Table 5.

This complementary discussion illustrates the important

reduction of confidence intervals associated with the use of

additional historical data. This reduction clearly appears in

the four case studies. Indeed, the results given in columns 3,

4 and 5 of Table 5 indicate that the value of the relative con-

fidence interval width decreases as we add more historical
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Table 5. The T -year quantiles (in cm) estimated on the basis of the systematic and historical periods and relative widths (in %) of their 70 %

confidence interval (the POTH frequency model).

T Sys. data +1999, 1957, +1999, 1957, +1999, 1957,

(years) only 1940∗, 1941 1940∗, 1941, 1941, 1940∗,

1924 1924, 1863–1874

ws = 26 ws = 26; ws = 26; ws = 26; wHMax1 = 110;

wHMax =45 wHMax = 61 wHMax2 = 12

ST 1CI/ST ST 1CI/ST ST 1CI/ST ST 1CI/ST

100 127.53 30 165.35 32 163.06 29 146.51 20

500 155.15 42 227.68 48 222.83 44 190.93 30

1000 167.71 48 260.44 55 254.00 51 212.96 35

∗ The mean value of the 139–159 cm interval is considered.

data. However the value of the relative confidence interval

width with no HI involved are 1.4–1.5 times narrower than

that obtained with both systematic and all of the historical

surges. In other words, the user of this method is more con-

fident in its parameters and quantile estimates when using a

more exhaustive HI. For instance, the use of only one event

(1866) as in Sect. 5.2 could be misleading because the small

value of the relative confidence interval can be explained by

the fact that we consider only two surges exceeded 110 cm

over one century, whereas we observed five other extreme

surges at least over the same period. With the same consider-

ation, it can be also shown from Table 5 that the return levels

given by the POTH frequency model with HI are significantly

higher than those obtained with no historical data included or

with only the 1866 event for which too much importance was

given to the exhaustiveness of a medium historical value.

Another issue that has arisen in the present paper is about

the historical data that were not used because they were be-

low the threshold of perception (Table 1). Assuming that

these data are of valuable information, we strongly believe

that these data must be exploited. Theoretically, nothing pre-

vents us from considering them as systematic information

even if it occurred 50 years before the beginning of the sys-

tematic period. In other words, systematic data that have ex-

ceeded the threshold of perception are considered to be his-

torical information and historical data that have not exceeded

this threshold would be considered as systematic informa-

tion, subject to an adapted length of the whole systematic

period.

7 Conclusion

In this paper, two methods for how to use historical surges

into the local frequency analysis have been presented and ap-

plied to the La Rochelle site located on the French Atlantic

coast. The first method is based on the presence of a per-

ception threshold using annual maxima data (BMH model)

and the second method is based on the use of historical data

periods and POT surges (POTH model). Two adapted likeli-

hood functions and different class of plotting positions for-

mulas are then built to properly handle the information on

historical surges. Several types of HI can be considered in

the frequency analysis when using these methods. Unlike the

BMH frequency model, systematic events that exceeded the

historical threshold are not considered as historical data in

the POTH model. Consequently their empirical probabilities

are different and fitting to the observations was improved es-

pecially with the BMH frequency model, but the likelihood

remains the same with similar hypotheses for the historical

information. Although the two approaches are physically dif-

ferent, the use of historical information has close impacts

when using the two methods with the available data and the

applied settings. The comparison of the theoretical distribu-

tions fitted to AM and POT extreme events have indicated

that, at high return periods (greater than 100 years), the two

approaches give comparable predictions of surge magnitudes

when historical information is used. This can be interpreted

differently; the amount of information is more critical and

important than the choice of the approach.

Care is always needed when modeling data with the aim of

extrapolating whatever the model used (BMH or POTH) and

regardless of whether or not HI is used. As indicated by the

results of the case study and reasoning in terms of high return

levels and associated uncertainty, we have two models that

handle differently the impact of the use of HI on high quan-

tiles estimation. In such an exercise in which extreme values

are used with the aim of extrapolating, it is very important

to account for the underlying error with which we make our

inferences. Despite the improvement of the uncertainty de-

gree resulting from the use of HI in the BMH model, this

uncertainty remains high. The distribution parameters and

quantiles estimates are qualified with a much more appro-

priate degree of uncertainty when using the POTH frequency

model, because more systematic data are available with this

model. On the other hand, how the theoretical distribution

is representative of the observations is also an important is-
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sue. Overall observations are relatively well fitted except at

the outlier when the POTH frequency model is used. Unlike

this model, the BMH one provides a much better visual fit at

large frequencies and tends to similar return levels when HI is

used. Indeed, the BMH frequency model has the advantage of

allowing the repositioning in history of the systematic obser-

vations that exceeded the threshold of perception (the outlier

for instance). However, the BMH frequency model needs to

assume the exhaustiveness of HI, whereas the POTH method

is more faithful to the observations and needs fewer hypothe-

ses with regards to the empirical distributions.

Overall, adding information on historical surges to the lo-

cal frequency models has reduced the variance of the distri-

bution function parameters estimates, except if the assump-

tion of exhaustiveness is too strong as with an only medium

surge over a large historical period. The relative confidence

intervals widths decrease as more historical data are used.

However additional historical data do not necessarily lead to

more robust estimates, the high return levels being very sen-

sitive to the historical values. Then it is absolutely necessary

to have historical data the more complete possible, in order

to have both robust estimates and reduced uncertainties.

During our research that led to the writing of this paper

we noted three perspectives. The first one is related to the

kinds of historical information, which are different in the

two models (lower and/or upper bounds, threshold of percep-

tion, etc.). The BMH and POTH models could be adapted to

consider similar HI, and the plotting positions for the POTH

model could be calculated with the exceedance formula. In

addition, given the importance of the exhaustiveness of the

implemented historical data, another kind of HI considering

“at least k events above the threshold of perception” would be

very interesting for the two models, then partially answering

to the exhaustiveness issue. This treatment would be partic-

ularly relevant when the number or the values of historical

data cannot be accurately estimated, and could be based on

a “binomial censored data” approach (Stedinger and Cohn,

1986). The second perspective is relative to the spatial exten-

sion of extreme surges data including HI. It can be envisaged

that using the two methods presented herein may improve

the frequency estimation and uncertainty in a regional frame-

work, by increasing the amount of information. This work is

ongoing. Finally, the last perspective is no less important and

may be complementary to the first and the second ones. The

question that has arisen is about the historical data that were

not used because they were below the threshold of percep-

tion. Assuming that these data are of valuable information,

we think that these data have to be exploited.
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Appendix A: Empirical probabilities for the BMH

model: plotting positions with multi-thresholds case

For historical data, let us assume that there are m thresh-

olds S1,S2, . . .,Sm such that only nkt highest observations

are larger than or equal to them. Let ns be the total number

of systematic observed surges (annual maxima) and ng the

total number of surges in our data set (nk of them are known

to be the highest) in the total period of n years. The period of

n years contains within it the ns years (ns < n) systematic pe-

riod. Note that ne of the nk highest values are occurred during

the systematic period
(
ng = nk+ ns− ne;ne ≤ nk;ne ≤ ns

)
.

Figure 2 shows a schematic illustration with a multi-

threshold case (m thresholds), 9 exact values over thresh-

olds (nk = 9), 5 of them are systematic (ne =5), three lower

bounds and one range.

A set of plotting positions can be determined in

this multi-threshold case. Define a series of thresholds

St (t = 1,2, . . .,m) such that S1 > S2 > .. . > Sm (Fig. 2).

The systematic record can be considered as a special case

of historical exact data with Sm+1 = 0. For convenience, de-

fine S0 =+∞. To estimate the probability of exceedance P̂i
of each observed surge, one needs to estimate exceedance

probabilities P̂t of each threshold St . The estimates P̂t and

P̂i must have the property P̂t < P̂i < P̂t−1 whenever St−1 <

Xi < St and P̂1 < P̂2 < .. . < P̂n (n is the total number of

annual surges Xi over the n years). The probability of ex-

ceedance of a threshold Pt can be defined as

Pt = Pr[X ≥ St ] . (A1)

The last equation can be re-expressed as

Pt = Pr
[
X ≥ St−1

]
+Pr

[
St ≤X < St−1 |X < St−1

]
Pr
[
X < St−1

]
, (A2)

Pt = Pt−1+Pr
[
St ≤X < St−1 |X < St−1

]
(1−Pt−1) , (A3){

P̂t = P̂t−1+C
t
p

(
1− P̂t−1

)
P0 = Pr[X ≥ 〈S0 =∞〉]= 0

, (A4)

where Ctp is the conditional probability of threshold St . Re-

cursive compute is possible in this formulation. We can start

by estimating the probability of exceedance of the lowest

threshold and work upward. The boundary conditions be-

come useful for this calculation. The aim now is to cal-

culate the conditional probability Ctp that a surge falls be-

tween the t th and the (t − 1)th thresholds. Since m periods

of Nt (t = 1,2, . . .m) are associated to m thresholds where

N1 >N2 > .. . > Nm, one can define a (m threshold ×m pe-

riods) matrix ntp of all combinations of number of surges

above all the thresholds and during all the periods. And con-

sider for each threshold St two variables: A
↔

t−1

t
the number of

surges X, such that St ≤X < St−1 and
←

Bt−1 the number of

surges X, where X < St−1. A
↔

t−1

t
and

←

Bt−1 can be expressed

as
A
↔

t−1

t
= ntt− n( t-1 )t

←

Bt−1 =Nt −
∫ t

1
n(p,t)dp

t = 2, . . .,m and p = 1,2, . . ., t

. (A5)

ntt is the number of surges above threshold St during pe-

riod Nt , and for instance, n32 is the number of surges above

threshold S3(m= 3) during the period N2(p = 2). Hirsch

and Stedinger (1987) have shown that the conditional prob-

ability estimated by the method of moments (identical to the

maximum likelihood estimator) as A
↔

t−1

t
/
←

Bt−1. The assign-

ment of specific Weibull plotting positions to all the indi-

vidual known surges which are greater than threshold St but

below threshold St−1 can be generalized to the formula:

P̂i =
(

1− P̂t

)
+

(
P̂t − P̂t−1

)
(i− a)

/(
A
↔

t−1

t
+ 1− 2a

)
, (A6)

where i is the rank of the ith surge among the A
↔

t−1

t
surges

in the range St ≤Xi < St−1 and a is a constant (a = 0 if

the spacing between plotting positions is Weibull). By com-

bining Eq. (A4) and Eq. (A6), a different expression of ex-

ceedance probabilities can be obtained:

P̂i =
(

1− P̂t

)
+

(
P̂t − P̂t−1

)
· (i− a)

/(
A
↔

t−1

t
+ 1− 2a

)
. (A7)

Let the spacing between plotting position be Hazen

(a = 0.5):

P̂i =
(

1− P̂t

)[
1+ (i− 0.5)

/
←

Bt−1

]
. (A8)

This can be re-expressed as

P̂i = P̂i−1+

[(
1− P̂

)
t

/
←

Bt−1

]
. (A9)

Appendix B: Maximum likelihood estimator for the

BMH model

The ML estimators are obtained by maximizing the likeli-

hood function over the parameter space θ (or usually sim-

pler, by maximizing the logarithm of this function). For a

given systematic and historical surges data set G (where ng

is its length and n is its total period as described in Sect. 2.3),

nk of the ng observations are above the threshold of percep-

tion. Also remember that the n years period contains within

it the systematic record period of ns years (ns < n) and ne

of the nk values took place during the systematic period

(ng = nk+ns−ne; ne ≤ nk; ne ≤ ns). Let us assume that the

ng surges are available with a density function fX(.). Under

the assumption that the surges are iid, the global likelihood

function of the whole data sample is any function L(G|θ)

proportional to the joint probability density function fX(.)
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evaluated at the observed sample, and it is the product of the

likelihood functions of the particular types of events and in-

formation Ei :

L(G|θ)=

n∏
i=1

L(Ei |θ). (B1)

The events can be the (s− e) systematic events (xi), the nk

historical surges (yi) above the threshold of perception St
with exactly known magnitudes, the nlow lower bounds his-

torical events
{
ylow,i

}
i=1,...nlow

and the nr range historical

events
[
ylow,yup

]
i
.

– ML estimator for the BMH systematic data: the like-

lihood function is given by the joint distribution of

X1,X2, . . .,Xs-e. It can be expressed as

L
(
Xsys|θ

)
=

ns−ne∏
i=1

fX (xi,θ) . (B2)

– ML estimator for the BMH historical exact data: the

likelihood function is given by the joint distribution of

nK,Y1, . . .,Ynk
, It can be expressed as

L
(
Y exact

hist |θ
)
= Pr[nK = nk;θ ]

nk∏
j=1

fX|X>St
(
yj ,θ

)
, (B3)

where yi denotes a surge exceeding the threshold of per-

ception St and observed in the total period n (as de-

scribed in Sect. 2.3). Since fX|X>St (y)= fX(y)/p, the

above equation simplifies to

L
(
Y exact

hist |θ
)
=

(
n
nk

)
(1−p)n−nk

nk∏
j=1

fX
(
yj ,θ

)
. (B4)

– ML estimator for the BMH historical lower bound data:

L
(
Y low

hist |θ
)
=

nlow∏
i=1

[
1−F

({
ylow,i

}
,θ
)]
. (B5)

– ML estimator for the BMH historical range data:

L
(
Y

range

hist |θ
)
=

nr∏
i=1

[
F
({
yup,i

}
,θ
)
−F

({
ylow,i

}
,θ
)]
. (B6)

Appendix C: Maximum likelihood estimator for the

POTH model

– ML estimator for the POT systematic data: let us as-

sume a set of n POT systematic observations Xi and a

selected threshold us and consider ws the total duration.

The likelihood L
(
Xsys,i |θ

)
is

L
(
Xsys,i |θ

)
= Pr(N = n) ·

n∏
i=1

f
(
Xsys,i,θ

)
. (C1)

For a homogeneous Poisson process with rate λ, the

above equation can be re-expressed as

L
(
Xsys,i |θ

)
=
(λws)

n

n!
exp(−λws) ·

n∏
i=1

f
(
Xsys,i ,θ

)
. (C2)

The log-likelihood `
(
Xsys,i |θ

)
is then: `

(
Xsys,i |θ

)
=

n log(λws)− log(n!)− λws+

n∑
i=1

logf
(
Xsys,i,θ

)
.

– ML estimator for the OTS historical data: for HI,

consider an OTS period with threshold uh, duration

wOTS and with given k observed surges XOTS,i for

i = 1,2, . . .,k. The events with XOTS > uh form an ho-

mogenous Poisson process with a rate λ(1−F (x,θ))

and their number K follow a Poisson distribution. Con-

ditional on {K = k}, the k observed surges are inde-

pendent with density f (x)/(1−F (uh,θ)) for x > uh.

Hence

L
(
XOTS,i |θ

)
= Pr(K = k) ·

n∏
i=1

f
(
XOTS,i,θ

)
[1−F (uh,θ)]

, (C3)

L
(
XOTS,i |θ

)
=
(λwOTS [1−F (uh,θ)])

k

k!

exp(−λwOTS [1−F (uh,θ)])

k∏
i=1

f
(
XOTS,i,θ

)
[1−F (uh,θ)]

. (C4)

And by taking the log, the log-likelihood l
(
Xh,i |θ

)
takes the form

l
(
XOTS,i |θ

)
= k log(λwOTS)− log(k!)− λwOTS

[1−F (uh,θ)]+

k∑
i=1

logf
(
XOTS,i,θ

)
. (C5)

– ML estimator for the HMax historical data: consider

a HMax period with duration wHMax and with given

nk observed surges XHMax,i for i = 1,2, . . .,nkh
. For

{N = n} and conditional on {N = n}, the probability of

observing the surge XHMax,i is

Pr
[
X1,X2, . . ., Xnk

∣∣N = n]= n!

(n− nk) !
·F(Xk)

n−nk

nk∏
i=1

f
(
XHMax,i,θ

)
. (C6)

Among the n observations, nk values must be equal to

the observed ones while the n− nk remaining values

must be less or equal to XHMax,nk
. The likelihood can
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be obtained by using the total probability formula:

L
(
XHMax,i |θ

)
=

∞∑
n=nk

Pr[N = n]
n!

(n− nk) !

F(Xk)
n−nk ·

nk∏
i=1

f
(
XHMax,i,θ

)
. (C7)

After using the homogenous Poisson process with rate λ

L
(
XHMax,i |θ

)
=

nk∏
i=1

f
(
XHMax,i,θ

)
· (λwHMax)

nk

exp(−λwHMax) ·

∞∑
n=nk

(λwHMax)
n−nk

(n− nk) !

F(Xk)
n−nk , (C8)

L
(
XHMax,i |θ

)
=

(λwHMax)
nk exp(−λwHMax [1−F (Xk)])

nk∏
i=1

f
(
XHMax,i,θ

)
. (C9)

And by taking the log, the log-likelihood l
(
Xh,i |θ

)
takes the form

l
(
XHMax,i |θ

)
= nk log(λwHMax)

− λwHMax [1−F (Xk,θ)]

+

nk∑
i=1

logf
(
XHMax,i,θ

)
. (C10)
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