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Abstract. Spatial variation of nonlinear wave groups with
different initial envelope shapes is theoretically studied first,
confirming that the simplest nonlinear theoretical model is
capable of describing the evolution of propagating wave
packets in deep water. Moreover, three groups of laboratory
experiments run in the wave basin of CEHIPAR (Canal de
Experiencias Hidrodinámicas de El Pardo, known also as El
Pardo Model Basin) was founded in 1928 by the Spanish
Navy. are systematically compared with the numerical sim-
ulations of the nonlinear Schrödinger equation. Although a
little overestimation is detected, especially in the set of ex-
periments characterized by higher initial wave steepness, the
numerical simulation still displays a high degree of agree-
ment with the laboratory experiments. Therefore, the non-
linear Schrödinger equation catches the essential character-
istics of the extreme waves and provides an important phys-
ical insight into their generation. The modulation instabil-
ity, resulting from the quasi-resonant four-wave interaction
in a unidirectional sea state, can be indicated by the coef-
ficient of kurtosis, which shows an appreciable correlation
with the extreme wave height and hence is used in the modi-
fied Edgeworth–Rayleigh distribution. Finally, some statisti-
cal properties on the maximum wave heights in different sea
states have been related with the initial Benjamin–Feir index.

1 Introduction

In the past, the free surface elevation in deep water is as-
sumed to follow a Gaussian structure and is modeled as
the linear superposition of a large number of elementary

wavelets with Rayleigh distributed amplitudes and random
phases (Longuet-Higgins, 1952). At this linear level of ap-
proximation, surface displacements are symmetric with re-
spect to the mean water level and completely described by
the autocorrelation function or power spectrum.

However, surface waves are nonlinear in nature and
bound waves need to be taken into account (Hasselmann,
1962; Longuet-Higgins, 1963). As reviewed by Guedes
Soares (2003), numerous theoretical and empirical models
of wave heights have been suggested after the proposal of the
linear Rayleigh model. The non-Gaussian and phase-coupled
bound modes have no significant effect on the crest-to-trough
wave heights although they make wave crests shaper and nar-
rower, and troughs shallower and more rounded (Tayfun and
Fedele, 2007; Petrova et al., 2008).

In a recent study, third-order nonlinearity represented by
the fourth-order cumulants has been successfully applied in
the statistics of the so-called abnormal, freak or rogue waves,
of which the probability is described reasonably well by
the theoretical approximation based on Gram–Charlier (GC)
expansions (Tayfun and Fedele, 2007). The deviation from
Gaussian structure is mainly attributed to modulation insta-
bility in the wave train, which can be considered as a quasi-
resonant four-wave interaction in unidirectional narrowband
waves. The third-order nonlinear interactions between free
wave modes, described quantitatively by means of the coeffi-
cient of kurtosisλ40, are responsible for the large amplitude
events and the increased probability of occurrence of abnor-
mal waves, as shown in a series of studies (e.g., Hagen, 2002;
Guedes Soares et al., 2003, 2004a, b; Petrova et al., 2007;
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Onorato et al., 2006; Mori et al., 2007; Cherneva et al., 2009,
2011; Shemer et al., 2009, 2010).

Due to the potentially severe damage from extreme waves
to the vessels and offshore structures at sea (Guedes Soares
et al., 2008; Fonseca et al., 2010), a lot of efforts have been
devoted to the topic of the mechanisms of their generation.
A number of reasons why freak wave phenomena may oc-
cur have been explained. Besides the linear superposition of
Fourier components with coherent phases and strong wave–
current interaction or wave diffraction, recently it has been
strongly argued that nonlinear self-modulation of a slowly
varying wave train can produce abnormal waves. A simple
example is the case of a uniform narrowband wave train to
sideband perturbations where nonlinear interaction known as
the Benjamin–Feir instability will result in focusing of wave
energy in space and/or time as illustrated in laboratory exper-
iments (Lake et al., 1977).

To a first approximation, the evolution of the envelope
of a narrowband wave train is described by the nonlin-
ear Schrödinger equation, which was first derived by Za-
kharov (1968) using a spectral method and by Hasimoto and
Ono (1972) and Davey (1972) using multiple-scale meth-
ods. The nonlinear Schrödinger equation in one-space di-
mension may be solved by means of the inverse scattering
transform. For vanishing boundary conditions, Zakharov and
Shabat (1972) found that for long times the solution consists
of a combination of envelope solitons and radiation modes,
in analogy with the solution of the Korteweg–de Vries equa-
tion. For periodic boundary conditions, the solution is more
complex. Linear stability analysis of a uniform wave train
shows that close side bands grow exponentially in time in
good qualitative agreement with the experimental results of
Benjamin and Feir (1967) and Lake et al. (1977). For long
times there is a considerable energy transfer from the carrier
wave to the side bands.

Numerical modeling performed with a higher-order non-
linear Schrödinger equation can provide more information,
as shown in the comparison with real data from field experi-
ment collected in the WACSIS JIP (WAve Crest Sensor Inter-
comparison Study) done in the work of Liu et al. (2005), as
well as in other studies that dealt with full-scale data (Slun-
yaev et al., 2005, 2013).

Although higher-order nonlinear equations such as the
Dysthe equation are more accurate than the NLS (nonlinear
Schrödinger) model (Shemer et al., 2002) in describing the
evolution of groups of strongly nonlinear waves produced in
the wave tanks, the studies of the properties of the nonlinear
Schrödinger equation have been vital in understanding the
conditions under which freak waves may occur (Onorato et
al., 2001). One typical example explaining extreme waves is
the work of Osborne (2000) where the solution of the one-
dimensional nonlinear Schrödinger equation with periodic
boundary conditions is written as a “linear” superposition of
stable modes, unstable modes, and their mutual nonlinear in-
teractions. The stable modes form a Gaussian background

wave field from which the unstable modes occasionally rise
up and subsequently disappear again, repeating the process
quasi-periodically in time.

In this study, the properties of the nonlinear Schrödinger
equation will be analyzed to describe the evolution of var-
ious envelopes, and simulations of random waves in unidi-
rectional sea states characterized by the JONSWAP power
spectrum will be performed. Experiments carried out in the
offshore basin of CEHIPAR (El Pardo Model Basin), Spain,
are categorized into three groups according to the initial wave
steepness parameter and are compared with numerical simu-
lations as well. The influence of nonlinearity on the predic-
tion of extreme wave heights is also investigated and some
statistical characteristics of maximum wave height are pre-
sented on the basis of the initial Benjamin–Feir index (BFI).
This complements similar experimental work and analysis
performed in Onorato et al. (2006) and Mori et al. (2007), by
using new experimental data.

This paper is organized as follows: in Sect. 2 a short re-
view of basic theory and analytical formulae applied in this
paper are given. Section 3 briefly introduces the facilities
in the wave basin and the experimental data, and Sect. 4 is
devoted to the numerical simulation of spatial evolution of
wave envelops of Gaussian and bichromatic waves. The ex-
ceedance distributions of wave height, from laboratory ex-
periments and numerical simulations, in three typical sea
states are compared in the first part of Sect. 5, where the the-
oretical models including linear and nonlinear are also pre-
sented. The second part of Sect. 5 reveals some statistics on
the maximum wave heights and some useful conclusions are
summarized in the last section.

2 Theory

The simplest weakly nonlinear model that describes the evo-
lution of free waves is the so-called cubic Schrödinger equa-
tion, which has been derived from the Zakharov equation un-
der the narrowband approximation (Zakharov, 1968) and rep-
resents a perfect framework in which the basic features of the
modulational instability are contained. Working as a balance
between dispersion and nonlinearity, the dimensional NLS
equation in arbitrary depth, in a frame of reference moving
with the group velocity, has the following form:

∂A

∂t
+ iα

ω0

8k2
0

∂2A

∂x2
+ iβ

ω0k
2
0

2
|A|

2A = 0, (1)

whereA is the complex wave envelope,ω0 andk0 are the
carrier wave frequency and corresponding wave number.α

andβ are two coefficients that in general depend on the di-
mensionless water depthk0h, and both tend to 1 ask0h → ∞

approaches infinity. The analytical forms ofα andβ can be
found in the book of Mei (1989).

In order to derive the BFI in a simple and instructive
way, Eq. (1) is nondimensionalized in the following ways:
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Fig. 1.Effect of finite water depth on the BFI.

A
′

= A/a0, x
′

= x1K and t
′

= t (1K/k0)
2αω0/8, where

1K anda0 represent typical spectral bandwidth and wave
amplitude, respectively, and thus reduces to

∂A

∂t
+ i

∂2A

∂x2
+ i

(
2ε

1K/k0

)2
β

α
|A|

2A = 0, (2)

where primes have been omitted for brevity.ε =a0k0 is a
measure of the wave steepness. The Benjamin–Feir index is
now defined as the square root of the coefficient of nonlinear
term:

BFI =
2ε

1K/k0

√
|β|

α
. (3)

The term
√

|β|/α is close to 1 ask0h tends to infinity and de-
creases as the water becomes increasingly shallow, andβ will
become negative if the value ofk0h is smaller than 1.36 as
indicated in Fig. 1. In such case the modulational instability
disappears and Stokes waves are stable to perturbations (She-
mer et al., 1998; Onorato et al., 2001). Considering that time
series are normally measured in the laboratory experiments,
the term1K/k0 in the BFI is replaced by 21ω/ω0 for in-
finite water depth. Due to a historical reason, a factor

√
2 is

also added into Eq. (3), hence a random wave train tends to
become unstable if BFI> 1 (Alber and Saffman, 1978).

For the purpose of better understanding the capability of
the NLS equation in describing the evolution of propagating
wave packets with a narrow spectrum, two simple but typi-
cal shapes of initial surface elevation are analyzed in the fol-
lowing numerical simulation. The first simulated series has a
Gaussian shape of envelope and its initial surface elevation is

η(t) = a0exp

[
−

(
t

mT0

)2
]

cos(ω0t)−16T0 < t < 16T0, (4)

where the carrier wave periodT0=2π/ω0. The energy
spectrum of Eq. (4) presents a Gaussian shape as well
and its relative width at half maximum is given by

1ω/ω0=
√

2ln2/(2mπ). The value of the parameterm is
set to be 4.0 in this paper, so that all cases considered meet
the condition1ω/ω0= 0.047< ε, thus satisfying the narrow
spectrum assumption of the NLS equation.

In the second series of numerical simulations the bichro-
matic wave has been studied with the initial surface elevation
in the following form:

η(t) = a0cos(ω0/20t)cos(ω0t)−15T0 < t < 15T0. (5)

The carrier wave frequency and the maximum amplitude in
the simulation are identical to those with the shape given by
Eq.(4). The spectrum of this kind of surface elevation is bi-
modal, with two equal-height peaks atω =ω0±1ω, where
1ω =ω0/20, satisfying the requirement of narrow spectrum
approximation again (Shemer et al., 2002).

For the more realistic ocean environment, the initial con-
dition for the numerical simulations is typical of sea states
described by the JONSWAP (Joint North Sea Wave Project)
power spectrum.

S (ω) = α1g
2ω−5exp

[
−

5

4

(ω0

ω

)4
]
γ exp

[
−(ω−ω0)

2/
(
2σ2

0 ω2
0

)]
, (6)

whereσ0 = 0.07 if ω ≤ω0 andσ0 = 0.09 if ω >ω0. Here
ω0 is the peak frequency,γ is the peak enhancement pa-
rameter, andα1 is the Phillips’ constant related with the sig-
nificant wave heightHs. As γ increases, the spectrum be-
comes higher and narrower around the peak frequency. In the
present simulations,γ = 3 and1ω is estimated with half-
width at half maximum of the computed wave spectrum and
ε =k0Hs/2 (Onorato et al., 2006). The initial JONSWAP ran-
dom surface elevation has been synthesized as sums of inde-
pendent harmonic components, by means of the inverse fast
Fourier transform of complex random Fourier amplitudes,
which are prepared according to the “random realization ap-
proach” by using random spectral amplitudes as well as ran-
dom phases (Onorato and Proment, 2011).

Some previous investigations (Hagen, 2002; Onorato et
al., 2006; Cherneva et al., 2009; Toffoli et al., 2008a, b,
2010a, b, 2011) suggest that the noticeably increasing fre-
quency of occurrence of unusually large waves is accompa-
nied by an increment on the coefficient of kurtosisλ40, which
has been related with the Benjamin–Feir index for narrow-
band long-crested waves at long times (Janssen, 2003).

λ40 =
π
√

3
BFI2, (7)

where the BFI is stationary. Larger BFI means that non-
linearity dominates dispersion and apparently leads to a
higher value of coefficient of kurtosisλ40 in accordance with
Eq. (7). Considering that BFI has a larger variability in its
computation (Serio et al., 2005), it makes sense to use BFI as
an initial parameter to indicate the chance of observing the
freak waves and to takeλ40 as a critical parameter to describe
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Table 1.Locations of wave gauges.

Gauge 1 2 3 4 5 6

I Pos. (m) 20 40 60 80 100 120
II Pos. (m) 30 50 70 90 110 130

the extreme wave height in the produced series. The statis-
tics of the unusually large wave heights generated by mod-
ulation instability can be explained reasonably well by the
theoretical approximations based on GC expansions (Bitner,
1980; Tayfun and Fedele, 2007; Mori and Janssen, 2006).
Such approximation represents Hermite series expansions of
distributions describing non-Gaussian random functions that
are related to the stochastic structure of waves only through
certain key statistics such as the coefficient of kurtosis of
surface displacements. For narrowband long-crested waves,
Mori and Janssen (2006) proposed a modified Edgeworth–
Rayleigh (MER) distribution.

E(h) = exp

(
−

h2

8

)[
1+

λ40

384
h2

(
h2

− 16
)]

. (8)

A more general form of third-order nonlinear model (GC)
is given by Tayfun and Fedele (2007). Under a certain con-
dition, i.e., 3 →3app≡8λ40/3 where3 =λ40+2λ22+λ04,
the GC model converges to the MER model. The cumu-
lant coefficients are expressed in the same way as Tayfun
and Lo (1990):λ40 =

〈
η4

1

〉
/σ 4

−3,λ22 =
〈
η2

1η̂
2
1

〉
/σ 4

−1,λ04 =〈
η̂4

1

〉
/σ 4

−3 whereσ is the standard deviation of the free wave
profile η1 that is derived via inversion of the observational
time seriesη (Fedele et al., 2010). The bound waves could
also be removed by band-pass filter (Onorato et al., 2005) or
other procedures (Shemer et al., 2007). Evidently,η1 is non-
Gaussian, but its crest and trough amplitudes have the same
distribution. The symmetric amplification imposed on them
is due to quasi-resonant interactions and reflected on3. If
the third-order nonlinearity is negligible, i.e.,λ40∼=0, Eq. (8)
reduces to the Rayleigh exceedance distribution given by

E(h) = exp

(
−

h2

8

)
. (9)

3 Facilities and experimental data

The wave basin in CEHIPAR, Spain, is 152 m long, 30 m
wide and 5 m deep as sketched in Fig. 2. The wave maker
is located at one of the 30 m sides. The waves are produced
by 60 flaps with independent motion. On the opposite side
to the wave maker there is a wave beach that serves to ab-
sorb the incident wave energy. The wave maker can produce
long- and short-crested sea states with up to 0.4 m significant
wave heights and spectra of standard or arbitrary shape. The
length scale of the laboratory experiments examined here is

Table 2.Parameters in different sea states.

Case Hs (m) Tp (s) ε Symbol

1 5 14 0.051

Square

2 6 14 0.062
3 6 13 0.071
4 8 14 0.082
5 12 16 0.094
6 5 10 0.101
7 12 15 0.107

8 3 7 0.123

Circle

9 9 12 0.126
10 8 11 0.133
11 7 10 0.141
12 3.5 7 0.144
13 6 9 0.149
14 11 12 0.154
15 8 10 0.161

16 4 7 0.164

Triangle

17 12 12 0.168
18 7 9 0.174
19 9 10 0.181
20 11 11 0.183
21 6 8 0.188
22 12 11 0.199
23 5 7 0.205

Fig. 2.Layout of the CEHIPAR wave basin.

1 : 40. The waves generated for this study are long-crested
and are registered by six capacitance wave gauges situated
in the midline of the basin. Each experiment with the same
initial conditions is carried out two times. For the second ex-
periment, the gauges are moved 10 m downstream and repeat
the same realization. The detailed gauge locations are listed
in Table 1.

In this study the spectrum generated at the wave maker
is unidirectional. Each experiment uses different sets of ran-
dom phases but the variance of amplitudes is such that the
spectrum of waves generated at the wave maker represents
at full scale a JONSWAP spectrum characterized with peak-
enhancement factorγ = 3 and Philips parameterα1 in de-
pendence of the produced significant wave heights.
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H. D. Zhang et al.: Modeling extreme wave heights from laboratory experiments 963

4 Wave envelopes

In this section, the transformation of deterministic wave
groups is investigated in deep water by the numerical solu-
tion of the simplest nonlinear model, i.e., the NLS equation
which can reproduce the Benjamin–Feir instability. The ini-
tial wave envelopes are derived with the Hilbert transform
of the surface elevations expressed in Eqs. (4) and (5), and
depicted in Fig. 3, respectively. The generated surface eleva-
tions are normalized by their corresponding maximal wave
amplitudes in the initial conditions. For economy of space,
only three results from cases 4, 13 and 23 in Table 2 are pre-
sented from top to bottom in Fig. 3, where the spatial evolu-
tion tendencies of envelopes are typical since they are from
different sea state groups.

In the low sea state, e.g., Fig. 3a and d, no significant varia-
tion of the wave envelope along the tank is observed either in
the Gaussian wave or in the bichromatic wave for the reason
that the modulation instability is weak as the initial steepness
is small.

In the moderate sea state, e.g., Fig. 3b and e, they show
the similar evolution speed but different tendency. For the
envelope pulse, the initial Gaussian wave group adjusts its
shape and width to become a fundamental soliton with os-
cillatory tails and attains a “sech” profile. The related theo-
retical predictions (Zakharov and Shabat, 1972) were tested
experimentally by Yuen and Lake (1975). For the case of the
evolution of a nonlinear continuous wave train, the amplitude
does not grow exponentially for all time, but instead grows to
a maximum value and then decreases in amplitude for later
times and most of them repeat this oscillation periodically
over time (Fermi–Pasta–Ulam recurrence). This modulation
and demodulation process has been verified in the experi-
ments (Lake et al., 1977) and the oscillatory unstable modes
of this type are often referred to as breathers. In our simu-
lation, this is demonstrated by a periodically repeated pulse
train for the specified bichromatic wave envelope.

In the severe sea state, e.g., Fig. 3c and f, the same varia-
tion could be observed but with a higher evolution speed and
a steeper envelope due to the stronger modulation instabil-
ity. It needs to be stressed that for long distances the Gaus-
sian envelope displays a periodic variation more or less like
the continued series in the presence of stronger nonlinear-
ity. Moreover, the symmetry of the initial condition is con-
served in all cases, which obviously contradicts with the re-
ality, but the envelope modulation is quantitatively correct,
which has been confirmed many years ago. Thus the NLS
equation could be applied in the analysis of extreme wave
height distribution considering that it is capable of describ-
ing the evolution of the wave packet.

Fig. 3. Spatial variations of wave envelopes in three typical sea
states.(a–c) are from Gaussian waves and(d–f) are from bichro-
matic waves. The three rows of panels correspond to the smooth,
moderate and severe sea states, respectively.

5 Comparisons

5.1 Exceedance distribution

In general,3 is smaller than3app and, as pointed out by
Cherneva et al. (2013), the difference will be slightly en-
larged as the wave steepness increases. However, in Fig. 4
3 is almost equal to3app in all sea states not only in the
simulation but also in the experiment where the bound waves
have been removed. Thus it could be concluded that the small
discrepancy between3 and3app is mainly due to the Stokes
contribution and supports the fact that the strong deviation of
coefficient of kurtosis from Gaussian behavior is in princi-
ple the result of modulation instability, i.e., a quasi-resonant
four-wave interaction process that takes place near the peak
of the spectrum (Onorato et al., 2005). Furthermore, it is ob-
vious that larger3 appears in the case with larger initial BFI
and the numerical simulations overestimate the experiments,
especially in the third group of severe sea states.

With reference to the above discussion and that3 ≈3app,
the MER model will make no difference to the GC model
in the prediction of extreme wave heights; the MER model
is adopted for the study in this paper. To have sufficiently
good statistics, the exceedance probability of wave heights
presented in Fig. 5 is based on both zero up-crossing and
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Fig. 4.Relationship between3 and3app.

down-crossing waves. Due to the limitation in space, the
comparison will only focus on three locations that could rep-
resent the initial, intermediate and end stages of wave evolu-
tion and correspond to the three columns in Fig. 5, respec-
tively. From top to bottom, the sea states become more and
more severe and come from three typical cases listed in Ta-
ble 2. Meanwhile, for clarity in graphics, the empirical ex-
ceedance distributions are compared with the theoretical pre-
dictions of the linear Rayleigh distribution in Eq. (9) and the
third-order MER model in Eq. (8) as well.

Under the low sea state, e.g., Fig. 5a–c, the numerical sim-
ulation and experimental data are in good agreement. Since
the initial wave steepness is so small in the first group that the
nonlinearity is negligible and the wave surface elevation ap-
proximates to be Gaussian distributed. As a result, the third-
order nonlinear MER model reduces to Rayleigh statistics
along the wave tank as anticipated.

As for the moderate sea state, e.g., Fig. 5d–f, the NLS
equation also simulates the experiment reasonably well ex-
cept for the initial stage where the wave height in the experi-
ment is still Rayleigh distributed but the numerical result has
achieved a fully developed condition earlier due to no energy
dissipation in the simulation. As the wave propagates down-
stream in the basin, modulation instability will significantly
work on the evolution process, as reflected by the perfect
fit of the third-order MER model to the larger wave height
distribution. What needs to be reminded is that the number
of waves in the time series also plays a significant role in
the prediction of extreme wave heights, particularly in long-
term evaluations (Mori and Janssen, 2006; Cherneva et al.,
2011; Zhang et al., 2013). Further comparison of MER model
with a large amount of data from a higher-order nonlinear
Schrödinger equation can be found in the work of Gramstad
and Trulsen (2007).

In the most severe sea state, e.g., Fig. 5g–i, the same con-
clusion can be drawn that the NLS equation still captures the
main characteristics of extreme wave heights, particularly in

Fig. 5. Exceedance distributions of scaled wave heights. The three
rows correspond to three typical sea states listed in Table 2, i.e.,
case 4, case 13 and case 23. The three columns present the results
obtained from Gauges set at 20, 80 and 120 m away from the wave
maker, respectively. The solid line, dash line and dot-dash line mean
Rayleigh distribution, MER models in experiment and in simulation
in sequence. The full and empty marks still have the same meaning
as before.

the intermediate and end stages of the evolution process, and
the pronounced deviation at the beginning stage can be ex-
plained in the same manner as before. It is also detected that
the numerical simulation presents larger wave heights than
the experiments, which definitely attribute to the energy dis-
sipation such as wave breaking in reality (Bitner-Gregersen
and Toffoli, 2012). In other words, to give an exact descrip-
tion of the tail of the exceedance probability, the influence of
wave breaking must be considered.

5.2 Statistics on maximum wave heights

The relationship between the coefficient of kurtosis and BFI
is depicted in Fig. 6. As expected, the theoretical function
(solid line) represented by Eq. (7) overestimates the results
both in experiments and in simulations for the reason that the
analytical expression is derived for the nonlinear steady state
at infinity while the data points are from all wave gauges, for
most of which the nonlinearity is not fully developed. More-
over, in laboratory experiments, the coefficient of kurtosis is
sensitive to wave breaking in high sea states, which definitely
leads to a further deviation from the theoretical prediction as
we can see (the full symbols) in Fig. 6. These conclusions
are in conformity with those derived in MARINTEK (Nor-
wegian Marine Technology Research Institute; Zhang et al.,
2013).

Based on a large number of abnormal waves registered in
the Sea of Japan, Tomita and Kawamura (2000) obtained an
appreciable correlation between the scaled maximum wave
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Fig. 6.Coefficient of kurtosis vs. BFI.

height and the coefficient of kurtosis. After analyzing all sea
state records during the storm of November 1997 in North
Alwyn and Draupner’s storm in the beginning of 1995, a
linear regression model was derived by Guedes Soares et
al. (2003). As shown in Fig. 7, the same conclusion can be
seen clearly in the present experiments and simulations. Now
it is confirmed again that the behavior of some statistical
quantities such asλ40 could work as an indicator on the pres-
ence of extreme events in the time series (Guedes Soares et
al., 2004). In this sense, the coefficient of kurtosis is thought
to be the representative statistical measure with respect to the
probability of occurrence of abnormal waves (Hagen, 2002).
Meanwhile, it is observed again that the simulated results are
larger than those in the experiments, particularly in the case
with larger initial BFI. As we have explained before, this dis-
crepancy is due to the nonbreaking phenomenon which leads
to no energy dissipation and thus permits the formation of
extreme large waves.

As a result from the interest in understanding the rogue
wave generation, the maximum achievable wave height dur-
ing the evolution of an unstable wave train has been inves-
tigated in the past. The first experimental study was made
by Su and Green (1984), who tried to describe the steep-
ness of the maximum wave as a function of the initial steep-
ness of the wave train. Moreover, their results were further
compared with the cubic NLS solution by Tanaka (1990)
who had shown that the simulation generated much higher
maximum wave steepness than the tank experiment, and
were also compared with another tank experiment carried
out in Tokyo by Waseda (2005), who showed a systematic
deviation from Su’s result and gave a higher value due to
the controlled perturbations. In our experiments, the maxi-
mum wave heights are computed from zero up-crossing and
down-crossing waves, respectively. Thus four-scaled maxi-
mum wave heights could be derived from the two series for
each sea state, and their mean value is displayed in Fig. 8. It
is very interesting that the maximal scaled wave height ap-
pears in the moderate sea state where the initial steepness

Fig. 7.Scaled maximum wave height vs. coefficient of kurtosis.

is ε ≈ 0.14 rather than in the severe sea state. This varia-
tion is consistent with that observed in Su and Green’s ex-
periment (1984). The numerical simulation also presents the
same tendency although a little overestimation is observed in
moderate and severe sea states. Considering that there is no
energy dissipation in the numerical simulation, this change
should be attributed in part to the complicated nonlinear ef-
fect.

The same procedure of processing wave data is adopted
in Fig. 9 where the relationship between steepness of max-
imum wave height and initial Benjamin–Feir index is man-
ifested. In our experiment a similar variation to that of Su
and Green’s (1984) and Waseda’s results (2005) occurs, de-
spite the difference in the wave system (continuous spec-
trum vs. three-waves system). Our numerical results are also
consistent with those derived from simulations of higher-
order nonlinear equations, i.e., Dysthe and Zakharov equa-
tions (Waseda, 2005). Apparently, in Fig. 9, a good agree-
ment between simulation and experiment could be detected
except for the severe sea state and this discrepancy is mainly
due to energy dissipation in the form of wave breaking.
Moreover, many observations have proved that the maximum
wave steepness (Michell, 1893) known as the Miche–Stokes
limit, which is close to 0.1429 in deep water and depicted by
the dashed line in Fig. 9, could be exceeded (Toffoli et al.,
2010b), but the mean steepness of maximum wave height in
our laboratory experiment does not exceed the Stokes limit.
Thus it reveals that the change of wave shape is more related
to the reduction of the wave period rather than to the increase
of wave height (Toffoli et al., 2010b).

6 Conclusions

This paper, considers the capability of the NLS equation in
describing the evolution of propagating wave packets that
have a narrow spectrum. The influence of nonlinearity on the
prediction of extreme wave heights in different random sea
states is also investigated. The high-level agreement between
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Fig. 8.Dimensionless maximum wave height vs. initial BFI.

numerical simulations, governed by the dynamics of the NLS
equation, and the laboratory experiments carried out in the
wave basin of CEHIPAR, provides another validation for the
nonlinear Schrödinger equation in describing the formation
of extreme waves.

However, the numerical simulations overestimate the ex-
perimental results particularly in the group of severe sea state
for the reason that the NLS equation could not model wave
breaking. This kind of limitation, which also the higher-
order spectral method (HOSM) has, is observed in other
studies as well (Bitner-Gregersen and Toffoli, 2012). Nev-
ertheless, it still catches the main characteristics of the ex-
treme waves and provides an important physical insight
of their formation.

The speed and type of the evolution of the wave packet
strongly depends on the initial conditions. The envelope
pulse will eventually disintegrate into a definite number
of envelope pulses or solitons that are stable to collisions
(Zakharov and Shabat, 1972). In the absence of dissipative
effects, the end state of the evolution of a nonlinear wave
train in deep water is neither random nor steady, but is a se-
ries of periodically recurring states (FPU recurrence).

Without the influence of bound waves, third-order GC and
MER models make no difference in prediction of extreme
wave heights in that3 is almost equal to3app in all sea
states not only for laboratory experiments but also for nu-
merical simulations. To be more precise, the MER model
tends to the linear Rayleigh distribution due to the insignif-
icant nonlinearity in the low sea state; as the evolution of
waves approaches the fully developed condition in the mod-
erate sea state, the third-order MER model can describe the
larger wave heights reasonably well; in the most severe sea
state MER model still works but is strongly affected by the
serious wave breaking in the experiment.

As expected, the relationship between the coefficient of
kurtosis and BFI is overestimated by Eq. (7) considering
that the analytical expression is derived for the nonlinear
steady state at infinity while the data points are from all wave

Fig. 9.Steepness of maximum wave height vs. initial BFI.

gauges. The scaled maximum wave height presents a highly
correlated relationship with the coefficient of kurtosis. Thus
to a certain degree,λ40 can give an indication of the presence
of extreme events in the time series.

It is noted that the maximal-scaled wave height appears in
the moderate sea state where the initial steepness isε ≈ 0.14
rather than in the severe sea state (Su and Green, 1984), and
the numerical simulation also presents the same tendency.
Considering that there is no energy dissipation in the numer-
ical simulation, this phenomenon should be attributed in part
to the complicated nonlinear effect. For the severe sea state
represented by larger initial BFI, the steepness of maximum
wave height is normally large. Since the mean steepness of
maximum wave height in our laboratory experiment does not
exceed the Stokes limit, while the exceedance has been re-
ported in many research works, it indicates that the change
of wave shape is more related to the reduction of the wave
period rather than to the increase of wave height (Toffoli et
al., 2010b).

It should be also mentioned that real ocean waves are
not long-crested and directional spread may play an impor-
tant role in determining the statistical properties of the sur-
face elevation as described in Onorato et al. (2009), Mori et
al. (2011) and Toffoli et al. (2010a).Numerical modeling per-
formed with a higher-order nonlinear Schrödinger equation
can provide more information, as the comparison with real
data from field experiments collected in the WACSIS JIP by
Liu et al. (2005).
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