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Abstract. The purpose of this study was to enhance the ac-
curacy of numerical wave forecasts through data assimila-
tion during typhoon periods. A sequential data assimilation
scheme was modified to enable its use with partitions of di-
rectional wave spectra. The performance of the system was
investigated with respect to operational applications, specifi-
cally for typhoon waves. Two typhoons that occurred in 2006
around Taiwan (Kaemi and Shanshan) were used for this case
study. The proposed data assimilation method increased the
forecast accuracy in terms of wave parameters, such as wave
height and period. After assimilation, the shapes of direc-
tional spectra were much closer to those reported from inde-
pendent observations.

1 Introduction

The application of data assimilation to operational wave
modelling has rapidly increased over the past 20 yr, in part
due to the increase in the near real-time availability of wave
and wind observations. This increase in data availability
has drastically increased since the launch of earth-observing
satellites, such as ERS-1 and ERS-2. It has also inspired
many researchers to investigate the possibilities of includ-
ing data assimilation methods in operational wave forecast-
ing systems to improve the accuracy of the estimation of sea
states.

Assimilation techniques for wave forecasting are com-
monly divided into sequential techniques (e.g. Lionello et al.,
1992; Komen et al., 1994) and variation methods. Sequen-

tial techniques are computationally inexpensive and have re-
sulted in some success in improving wave forecasts (e.g.
Günther et al., 1993). This success has led to the implemen-
tation of this type of system into the operational wave analy-
sis/forecast cycle at the European Centre for Medium-Range
Weather Forecasts (ECMWF).

Wave and wind data calculated using sequential tech-
niques are used to correct the winds and waves at each time
point of the model regardless of the previous model states.
Because the space-time structure of the modelled wave field
is not taken into account, the results are not fully consistent
with the dynamics of the wave model. In the first attempt
of wave data assimilation, Komen (1985) improved swell
forecasts in the southern North Sea through the use of ob-
served wave heights in the central North Sea. The waves pre-
dicted by the model were replaced in the wave model with
independent observations whenever and wherever available.
However, the utility of these new observations was relatively
short-lived because the corrections were quickly lost due to
the uncorrected winds and waves found elsewhere in the
wave model domain. Hasselmann et al. (1988) and Janssen
et al. (1989) improved the results of the model by distribut-
ing the corrections over a larger area and by including wind
corrections.

In other cases, the impact of this type of system has
proven to be too weak to improve the accuracy of the model,
as the researchers expected (Burgers et al., 1992; Masten-
broek et al., 1994; Bidlot et al., 1995). As suggested by
Mastenbroek et al. (1994) and Bidlot et al. (1995), this re-
sult may be caused in part by the fact that significant wave
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Table 1. Simulated regions, grid resolutions, and time steps of
model nestings.

Nesting Range Grid resolution Time step

1st layer 110◦–140◦ E/10◦–40◦ N 1x = 0.250◦ 1y = 0.250◦ 60 min
2nd layer 119◦–125◦ E/20◦–27◦ N 1x = 0. 067◦ 1y = 0.067◦ 30 min
3rd layer 121◦–124◦ E/21◦–25◦ N 1x = 0.020◦ 1y = 0.020◦ 12 min

height observations alone do not contain sufficient informa-
tion for a proper renewal of the wave spectrum, which is the
prognostic variable in a spectral wave model. Recently, se-
quential assimilation systems have been developed and are
capable of assimilating observations of the full wave spec-
trum (Hasselmann et al., 1994, 1996; Voorrips et al., 1997;
Breivik et al., 1996). Voorrips et al. (1997) demonstrated the
benefit of using spectral information by comparing a method
that utilised this information with a method based only on
significant wave height assimilation.

During the past decade, the most frequently used op-
erational assimilation schemes have been single-time-level
schemes, such as optimal interpolation (OI) (e.g. Janssen et
al., 1989; Lionello et al., 1995; Hasselmann et al., 1997;
Voorrips et al., 1997). OI is computationally fast and easily
applicable to the online wave analysis/forecasting conditions,
but it suffers from some drawbacks. Forecast errors are of-
ten inhomogeneously distributed over the wave spectrum and
limit the improvements obtained by the assimilation of wave
heights alone (Mastenbroek et al., 1994). Thus, some groups
have challenged the use of SAR (Synthetic Aperture Radar)
data (Breivik et al., 1996; Hasselmann et al., 1997). Although
the use of SAR data may be found useful for wave models in
regional seas, the density of SAR observations is simply too
low to have a serious impact on the wave analysis. Addition-
ally, the spectral resolution of SAR, which truncates waves
shorter than 100 m, is a larger problem for partly sheltered
seas where the average wavelengths are substantially shorter
than those in the open ocean. However, there is a good alter-
native to the SAR data for regional seas. Regional seas are
densely covered with pitch-and-roll buoys, which measure
spectral information. Moreover, pitch-and-roll buoys supply
more data than satellites in the region because they continu-
ously record data at fixed positions.

The aim of this study was to investigate the potential use
of the spectral observations from pitch-and-roll buoys, which
were reported in near-real-time, for assimilation in an opera-
tional forecast system. The set-up of an optimal interpolation
scheme if only one buoy is available in the forecast domain,
which is located in the deep ocean approximately 220 km
away from the Taiwan coast, is discussed. In addition, the
impact of assimilation on the wave analysis and forecast is
quantified by comparing runs with and without assimilation
for several typhoons that occurred in 2006.

2 Descriptions of the simulation region

This study focused on coastal waters in eastern Taiwan. A
three-level nesting scheme was applied to obtain detailed
wave information in this region and to effectively simulate
the wave field (Fig. 1). The simulated regions, grid resolu-
tions, and time steps of the model nestings are listed in Ta-
ble 1. The grid resolution and time step conformed to the
CFL condition. The purpose of including the larger region
was to provide boundary values for the next finer layer. For
this study, we only concentrated on the fine-resolution grid
(i.e. layer 3). The SWAN wave model (Booij et al., 1999)
was used for all layers. The parametric sensitivity analysis
(Lee et al., 2009) was used to search for optimal parameter
values in SWAN wave model. These two parameters revealed
by sensitivity analysis are: nonlinear saturation-based white-
capping combined with wind input (default value is 0.0015;
tuned value is 0.00172) and the coefficient of the JONSWAP
results for bottom friction dissipation (default value is 0.038;
tuned value is 0.0284).

All SWAN model runs were forced by operational 1-hour
wind fields, with a 0.5◦ resolution in longitude and latitude,
provided by the Central Weather Bureau (CWB). In order to
match up with the model simulation, the wind fields were
linearly interpolated in space and time, with the simulated
regions, grid resolution and time step corresponding to the
model nesting.

Observed spectral data from the Gagua Ridge buoy
(122.78◦ E, 22.01◦ N) were used for model assimilation. The
Gagua Ridge buoy is located approximately 220 km east of
Taiwan, where the water depth is approximately 6000 m.
Measurements from the Hualien buoy (Fig. 1) were used
for verification purposes. The Hualien buoy is moored near
the shore (approximately 1 km off-shore, where the water
depth is approximately 21 m). Pitch-and-roll buoys are de-
veloped, manufactured, and operated by the Coastal Ocean
Monitoring Center (COMC) of National Cheng Kung Uni-
versity, which was commissioned and is supported by the
CWB, and the buoys report directional wave spectra every
hour. A fast Fourier transform (FFT) was used to obtain the
full two-dimensional wave spectrum (Brigham, 1988).

3 An introduction to the data assimilation scheme

OI (Hollingsworth, 1986) is a statistical method used to con-
struct the analysed significant wave height field. It deter-
mines the minimum error variance solution for the model
state by combining a model first-guess field and observa-
tions with pre-specified forecast and observation error co-
variances. Previous experience has been obtained with the
optimal interpolation method applied to wave height and
wave period measurements (Janssen et al, 1989; Lionello
and Janssen, 1990; Burgers et al, 1992; Mastenbroek et
al, 1994). The Optimal Interpolation of Partitions (OI-P)
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Fig. 1. Computational regions of the model and locations of data buoy stations. 

Fig. 1.Computational regions of the model and locations of data buoy stations.

method, which used in the present study is also an optimal
interpolation method, but an extended version which assim-
ilates observations of full wave spectra from pitch-and-roll
buoys (Hasselmann et al., 1996; Voorrips et al., 1997). Spec-
tral partitioning (Gerling, 1992) is a technique used to de-
compose a wave spectrum into the main wave systems, which
are the wind sea system and swell systems. Instead of spec-
ifying the main wave systems, a fairly accurate characteri-
sation of the spectrum may result from specifying the wave
energy of different frequencies and directional bands. In this
study, the model-simulated directional spectra were replaced
by the observed data from data buoys and the OI-P scheme
was derived based on the procedure from OI formulas (Li-
onello et al., 1992) as follows. The analysed directional wave
spectra at each pointxi , denoted asSi

A (f,θ), were expressed
as a linear combination ofSi

P(f,θ), indicating the first-guess
results produced by the model and bySk

O (f,θ)(k = 1, . . .,
Mobs), and the observation:

Si
A (f,θ) = Si

P(f,θ) + σ i
P

Mobs∑
k=1

Wik

Sk
O (f,θ) − Sk

P(f,θ)

σ k
P

, (1)

whereσ k
P is the root mean square error in the model predic-

tion. In addition:

σ k
P =

〈(
Sk

P(f,θ) − Sk
T(f,θ)

)2
〉1/2

, (2)

whereSk
T(f,θ) represents the idealised true value of the di-

rectional wave spectra. The weights,Wik, were chosen to
minimise the root mean square error in the analysis ofσ k

A :

σ k
A =

〈(
Sk

A(f,θ) − Sk
T(f,θ)

)2
〉1/2

,

The angle brackets indicate an average over a large number
of iterations. Assuming that the errors in the model are unre-
lated to the errors in the measurements, the solution is:

Wik =

Nobs∑
m=1

PimM−1
mk, (3)

where the elements of matrixM are of the form:

Mmk = Pmk + Omk, (4)

whereP andO represent the error correlation matrices of the
model predictions and observations, respectively (both are
actually scaled withσ i

P):

Pmk =

〈(
Sm

P (f,θ) − Sm
T (f,θ)

)(
Sk

P(f,θ) − Sk
T(f,θ)

)
σm

P σ k
P

〉
(5)

Omk =

〈(
Sm

O (f,θ) − Sm
T (f,θ)

)(
Sk

O(f,θ) − Sk
T(f,θ)

)
σm

P σ k
P

〉
, (6)

whereSm
P (f,θ), Sm

O (f,θ) and Sm
T (f,θ) were expressed as

the directional wave spectra at each pointm of the model
prediction, observation and the idealized true value, respec-
tively. Sk

P(f,θ), Sk
O(f,θ) and Sk

T(f,θ) represent the direc-
tional wave spectra at each pointk of the model prediction,
observation and the idealized true value, respectively. There-
fore, the prediction error correlation matrixP and the ob-
servation error correlation matrixO must be clearly speci-
fied. This specification would, in practice, require the deter-
mination of statistics for both predictions and observations,
which are presently unavailable. If the idealised true value is
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Table 2. SWH RMSE statistics of the various numerical experi-
ments performed compared with data collected from the Gagua
Ridge buoy.

Direction
Frequency 8 16 32

10 0.85 0.73 0.71
20 0.77 0.47 0.43
41 0.58 0.39 0.34

known, the RMSE between the observations and first-guess
results can be obtained. However, errors are inherent in any
observation technique during data collection; therefore, we
are unable to obtain the idealised true observation and the as-
sumptions from Lionello et al. (1992) were adopted in this
study.

Pmk = exp

(
−

|x̄m − x̄k|

Lmax

)
(7)

Omk = δmk

(
σm

O /σm
P

)
= δmkRm, (8)

where|x̄m − x̄k| is the distance between grid pointsm and
k. Lmax = 5◦, which is the correlation length. The effect of
variations ofLmax and of the ratio betweenσm

O andσm
P on

the results of the assimilation is discussed and verified (Fan,
2008). The observation errors are random and unrelated.δmk

is the Kronecker delta. In addition, the simulation analysis
yielded a ratio between the observation and first guess with a
standard deviationRm of 1.

4 Adjustments of the optimum parameter of OI-P

4.1 Optimal frequency and directional bands for
partitioning

The assimilation procedure was used to integrate the model’s
first guess and the observed partition parameters (e.g. fre-
quency and direction) into an analysed field of parameters.
An important input value for the OI-P procedure is the co-
variance of the errors of the observed and model parameters.
The covariance is obtained by calculating long-term statistics
of the differences between the observations and the hind-
casts of the SWAN model. The observational errors are as-
sumed to be spatially independent.

Although there is only one data buoy in the deep ocean, the
first-guess spectra of neighbouring grid points of the Gagua
Ridge buoy must be used as fictitious buoy data. The weight
between the virtual stations and the field station was acquired
by comparing the wave spectra of virtual stations with the
wave spectra of the field station. Wave spectral data col-
lected for 3 months from the Gagua Ridge buoy were used
to carry out statistical analysis, and the OI-P of these wave

Table 3.Average errors of significant wave heights and mean wave
periods for different virtual stations.

Average 3 virtual 5 virtual 7 virtual
error stations stations stations

Hs(cm) 18.7 12.8 10.1
Tm(s) 1.1 0.7 0.4

spectra were then calculated. The computer processing time
was influenced by the number of wave directions and wave
frequencies inputted into the model. Therefore, with 2-day
warm up assimilations set as initial values, the assimilation
data taken from the 3rd day onward were used to acquire the
optimal choices in terms of RMSE (root mean square error)
for the comparison of the significant wave heights between
observational and simulated data (Table 2). The most accu-
rate results of the model assimilations were obtained when 32
wave directions and 41 wave frequencies. Due to limitations
of transmission technology for real-time data, higher resolu-
tions were not investigated and this resolution was applied
for the assimilation of typhoon events later on.

4.2 Optimising the number of virtual stations

Generally, at least two observed stations are required to carry
out OI; however, only the Gagua Ridge buoy station was used
in this study. Therefore, we needed to select additional sta-
tions for optimal interpolation purposes. The wave heights,
which were corrected with altimeter wave height data, were
distributed over a finite region of influence with radius of the
order of 1000 km (Bauer et al., 1992). However, in order to
enable the fictitious buoy data representative virtual stations,
and consider the average of storm radius is around 200 and
300 km, so a radius has been extensively defined for 250 km
from the Gagua Ridge buoy station. Figure 2 shows the vir-
tual stations on the grid points. In order to obtain the his-
torical wave data of virtual stations, the covariance between
the observations and the hind-casts of the SWAN model de-
scribed in Sect. 4.1 were used to figure out wave data of vir-
tual stations. Three, five, and seven stations were selected to
complete the numerical tests, respectively; these three sets
of combinations were then used to identify the appropriate
test method. The average errors of the SWHs and mean wave
periods (MWPs) at the Gagua Ridge buoy for different se-
lected stations in the 2-day model simulations are shown in
Table 3. An increased number of virtual stations in the nu-
merical tests resulted in more accurate model results. How-
ever the average error of significant wave height within 0.1 m
is acceptable during typhoon periods. Therefore, seven vir-
tual stations were established for evaluation.

This set-up of virtual stations will cover most of the ty-
phoons approaching the east coast of Taiwan. In principle
the concept can be applied to other areas, too, but the special
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Fig. 2. Locations of virtual stations on the grid points. Fig. 2.Locations of virtual stations on the grid points.

geometry (e.g. the presence of islands) and the climatology
of the storm systems must be taken into account.

5 Verifications of the results from the assimilation runs
against buoy observations

The influence of the assimilation on the wave analyses
and wave forecasts was assessed by running the SWAN
wave model for two typhoon events in the summer of
2006: Typhoon Kaemi and Typhoon Shanshan. In cases
where the CWB wind fields were missing and no simula-
tions were performed, these warm-up periods were removed
from the evaluation.

The effects of OI-P assimilation in the SWAN model are
shown in Figs. 3–6. In general, the results of the assimila-
tion runs were much closer to the buoy measurements com-
pared to the reference runs, one-dimensional spectra, sig-
nificant wave heights, and mean periods. Figure 3 shows,
for example, the directional wave spectra obtained at the
Hualien Buoy station at 05:00 UTC on 26 July 2006 from
buoy observations, an assimilation run, and a reference run
(Fig. 3a–c, respectively). Assimilation runs means: model-
runs with data assimilation; reference runs means: model-
runs without data assimilation. The assimilation results were
similar to the results obtained using the buoy observations
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Fig. 3. Directional wave spectra at the Hualien buoy on 26 July 2006 at 0500 UTC: (a) 

buoy observation, (b) assimilation run, and (c) reference run. 
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Fig. 4: Spectra at the Hualien buoy on 24 July 2006 at 0500 UTC and on 15 September 2006 

at 1500 UTC. 

Fig. 3.Directional wave spectra at the Hualien buoy on 26 July 2006
at 05:00 UTC:(a) buoy observation,(b) assimilation run, and(c)
reference run.

for the directional distribution, intensity, and main direction
of the spectra in the rose diagram. For the directional spectral
distribution, the results of the reference run showed a direc-
tion shift of 20–30◦ toward the west compared with the ob-
servation and assimilation results. Additional high-frequency
components appeared in the reference runs, which were re-
moved by the assimilation.

Figure 4 shows the one-dimensional frequency of wave
spectra at the Hualien buoy on 24 July at 05:00 UTC for Ty-
phoon Kaemi (Fig. 4a) and on 15 September at 15:00 UTC
for Typhoon Shanshan (Fig. 4b). The results also reveal that
the same tendency of the wave spectra for both typhoon
events exists. The intensity of the wave spectra in the ref-
erence runs was lower than that in the assimilation runs and
observations, which were similar to one another. Other fea-
tures, such as the second peak at approximately 0.18 Hz in
Fig. 4a and 0.15 Hz in Fig. 4b, were not simulated in the ref-
erence run.

The SWH time series (Fig. 5) and MWP time series
(Fig. 6) show the improvements of the model results by as-
similating data into the models for both typhoon events. The
hindcast results of the SWH in Fig. 5 revealed that neither the
peak values nor the timing of the peak values were calculated
correctly without data assimilation. The oscillations around
the peak times were modelled well by the assimilation runs.

The comparison of the MWPs for both typhoon events
(Fig. 6) showed that the tendency of the time series for both
assimilation runs was similar to the observed tendency. In
contrast, the results of the reference runs show a signifi-
cant difference from the observed tendency. The assimilation
run was able to simulate the arrival of the long waves cor-
rectly, while the reference run lagged by approximately 24 h
for Typhoon Kaemi and by approximately 3 h for Typhoon
Shanshan. Thus, the data assimilation performed well in the
SWAN wave model simulation of the MWP.

The statistical comparisons for the two typhoon events
of the modelled waves with the Hualien buoy observations
in terms of bias, RMSE, and scatter index (SI) are sum-
marised in Table 4. Although the tendency of the time series
for both assimilation runs was similar to the observed ten-
dency, there were significant differences found between Ty-
phoon Kaemi and Typhoon Shanshan when comparing the
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Fig. 3. Directional wave spectra at the Hualien buoy on 26 July 2006 at 0500 UTC: (a) 

buoy observation, (b) assimilation run, and (c) reference run. 
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Fig. 4: Spectra at the Hualien buoy on 24 July 2006 at 0500 UTC and on 15 September 2006 

at 1500 UTC. 

Fig. 4.Spectra at the Hualien buoy on 24 July 2006 at 05:00 UTC and on 15 September 2006 at 15:00 UTC.

Table 4.Statistical results of the comparison between the model results and independent observations at the Hualien buoy station: bias, root
mean square error (RMSE), and SI.

Typhoon Variable Assimilation run Reference run
Bias RMSE SI Bias RMSE SI

Typhoon Kaemi SWH(cm) 1.18 13.50 15 −4.96 55.77 61
MWP(s) 0.33 0.49 8 −0.92 1.80 30

Typhoon Shanshan SWH(cm) 20.36 22.33 12−35.91 62.95 33
MWP(s) 0.43 0.46 6 −0.62 1.55 20
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Fig. 5. SWH time series at the Hualien buoy (a) during Typhoon Kaemi and (b) 

during Typhoon Shanshan. 

Fig. 5. SWH time series at the Hualien buoy(a) during Typhoon
Kaemi and(b) during Typhoon Shanshan.
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Fig. 6. MWP time series at the Hualien buoy (a) during Typhoon Kaemi and (b) 

during Typhoon Shanshan. 
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statistical results between the model results and independent
observations at the Hualien buoy.

The results from the assimilation run were closer to the
observations than the results from the reference run. In other
words, the OP-P concept proposed in this paper can enhance
the forecast capability even if only one reference buoy within
the forecast domain is used for assimilation. Therefore, data
assimilation performed well in the SWAN wave model sim-
ulation for the SWH and MWP.

6 Conclusions and outlooks

A spectral wave data assimilation scheme is presented in this
paper and is based on the wave spectrum being separated
into wave systems and the subsequent OI of wave partitions.
The assimilation experiments in the eastern Taiwan region re-
sulted in a large improvement in the sea state analysis specif-
ically for typhoon waves.

To obtain the optimal number of parameters, the numerical
results showed that the use of 32 directions and 41 frequen-
cies was optimal for data assimilation.

In order to carry out OI, the wave data of virtual stations
were established successfully via a statistical technique. The
numerical results indicate that the number of virtual stations
should be greater than five for the errors to be stable.

The impact of data assimilation on wave forecasts depends
on the layout of the observations system, e.g. 7 buoy stations
were sufficient for Typhoon Kaemi.

The assimilation results for both typhoon events were
close to the buoy observations for the directional distribution,
intensity, and mean spectral direction. The results reveal the
same tendency for the wave frequency spectra. The under-
prediction of the reference run was clearly corrected by the
assimilation. Comparisons of the SWH and MWP time series
indicated that the performance of the model output was im-
proved by incorporating data assimilation for both typhoon
events: Typhoon Kaemi and Typhoon Shanshan.
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