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Abstract. The evaluation of the probability of occurrence of
extreme natural events is important for the protection of ur-
ban areas, industrial facilities and others. Traditionally, the
extreme value theory (EVT) offers a valid theoretical frame-
work on this topic. In an over-threshold modelling (OTM)
approach, Pickands’ theorem, (Pickands, 1975) states that,
for a sample composed by independent and identically dis-
tributed (i.i.d.) values, the distribution of the data exceeding
a given threshold converges through a generalized Pareto dis-
tribution (GPD). Following this theoretical result, the anal-
ysis of realizations of environmental variables exceeding a
threshold spread widely in the literature. However, applying
this theorem to an auto-correlated time series logically in-
volves two successive and complementary steps: the first one
is required to build a sample of i.i.d. values from the avail-
able information, as required by the EVT; the second to set
the threshold for the optimal convergence toward the GPD.
In the past, the same threshold was often employed both for
sampling observations and for meeting the hypothesis of ex-
treme value convergence. This confusion can lead to an er-
roneous understanding of methodologies and tools available
in the literature. This paper aims at clarifying the concep-
tual framework involved in threshold selection, reviewing the
available methods for the application of both steps and illus-
trating it with a double threshold approach.

1 Introduction

A reliable estimation of extreme natural hazard is important
for the protection of remarkable natural sites, urban areas,
industrial facilities, etc. In particular, extreme natural events
include floods, heavy rainfalls, high and low temperatures,
strong winds, high sea levels or sea surges, oceanic waves,
among many others.

Traditionally, the estimation of the probability of occur-
rence of such extreme events is performed by fitting a
probability distribution to a sample of historical observa-
tions for a given phenomenon observed at a given site,
usually recorded as a time series of observations. In this
framework, the extreme value theory (EVT) (Fréchet, 1928;
Gnedenko, 1943; Gumbel, 1958; Pickands, 1975) offers a
sound theoretical framework.

In particular, Pickands’ theorem (that can be seen as a
central limit theorem for extreme values) states that, in a
sample composed by independent and identically distributed
(i.i.d.) values, the distribution of the data exceeding a given
threshold converges towards a generalized Pareto distribu-
tion (GPD) (Pickands, 1975). Following this theoretical re-
sult, the over-threshold modelling (OTM) approach widely
spread in extreme value analyses, together with the appli-
cation of the GPD, (Davison and Smith, 1990; Simiu and
Heckert, 1995; Embrechts et al., 1997; Palutikof et al., 1999;
Coles, 2001; Mackay et al., 2001; Pandey et al., 2001; Ros-
bjerg and Madsen, 2004; Ribatet et al., 2007). It is widely
recognized that the choice of the threshold is a critical point
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in this approach and the final estimation could significantly
depend on its value (Onoz and Bayazit, 2001; Li et al., 2012).

In this theoretical framework, the choice of the appropri-
ate threshold should be a statistical optimization procedure.
Given an empirical sample of i.i.d. observations, the selected
threshold must be high enough to meet the hypothesis of con-
vergence on the GPD but it should be low enough to limit
the variability of the GPD parameter calibration on the sub-
sample of observations over the threshold (Beirlant et al.,
1996). This is the well-known dilemma between bias and
variance.

However, environmental variables are often handled as
time series, i.e. discrete realizations of this variable, com-
ing from either observation or modelling, far from being
i.i.d. More precisely, environmental time series are often
composed by dependent values because of the strong tem-
poral autocorrelation (e.g. Zawadzky, 1987; Smith, 1988;
Colombo et al., 1999; Walton, 2000; Marani, 2003; Bernar-
dara et al., 2006). The autocorrelation is indeed explained
by the dynamical behaviour of the subjacent physical sys-
tem and its momentum. Since the pioneering works of Hurst
(1951), some studies even suggest that the autocorrelation of
some environmental time series could be infinite (Schertzer
and Lovejoy, 1997; Elek and Markus, 2004; Koscielny-
Bunde et al., 2006).

An attempt to cope at the same time with EVT and au-
tocorrelated data is the introduction of the extremal index,
(Leadbetter et al., 1983; Smith and Weissman, 1994; Em-
brechts et al., 1997; Ancona-Navarrete and Tawn, 2000;
Coles, 2001; Beirlant et al., 2004). The extremal index is an
extra parameter that allows taking into account data auto cor-
relation on the extreme value theorem. The extremal index
represents the reciprocal of the mean size of event clusters.
Estimating this index allow to apply the EVT theorem results
directly on a series of auto correlated observations.

However, in general, the EVT cannot be applied directly to
the observed data and a data pre-processing is needed in or-
der to build the i.i.d. sample required by its hypothesis. This
data pre-processing is often called physical declustering, be-
cause it tends to extract independent observations from the
time series, which are naturally (physically) clustered.

Moreover, environmental time series can be composed
by nonidentically distributed (nonhomogeneous) values. In-
deed, natural phenomena can have very different physical
genesis, they can exhibit strong seasonality of the observed
phenomena or they can depend on other covariates. Among
others, Adamowski (2000), Garavaglia et al. (2010) and
Allamano et al. (2011) show that mixing heterogeneous sam-
ples can lead to biased estimation of extreme value probabil-
ity of occurrence. Garavaglia et al. (2010) introduced a com-
pound distribution for extreme rainfalls taking into account
seasonality and different physical genesis. For wave heights,
probability distribution and even time series autocorrelation
may depend on direction, fetch, water depth and other co-
variates (Mathiesen et al., 1994; Jonathan and Ewans, 2007;

Taylor et al., 2009; MacKay et al., 2010; Mazas and Hamm,
2011). Many possibilities exist for getting time series of ho-
mogeneous physical phenomena (clipping, decomposition,
cleaning, etc.) but they are beyond the scope if this paper.
In the following, if not stated differently, it will be consid-
ered that the time series are identically distributed, but they
are still not composed of independent values.

Accordingly to the previous considerations and within the
framework of the OTM, the constitution of the sample for
the statistical inference of the extreme return levels of the
environmental variable logically requires two successive and
complementary steps: the physical declustering and the sta-
tistical optimization.

The need for both declustering and statistical optimization
was generally recognized in the past. However they were
often confused or merged together, arising methodological
questions and confusing the meaning of the two operations.
For instance, Lang et al. (1999) stated that “two different ap-
proaches can be adopted for threshold selection: the first one
is based on physical criteria [. . .] and the second one is based
on purely mathematical and physical considerations”, but
they neither separate both steps, nor recognized their com-
plementarity. It is indeed important to clarify which, among
the numerous parameters to be defined for an OTM anal-
ysis, often largely arbitrary (Takvor and Panagiota, 2001),
are involved in the physical declustering and which ones are
involved in the optimization procedure. Even when in the
past the two steps were performed separately (Dupuis, 1998;
Egozcue et al., 2005; Bernardara et al., 2008, 2011; Gar-
avaglia et al., 2010; Bardet et al., 2011; Mazas and Hamm,
2011; Wahl et al., 2011), or when approaching the two steps
at the same time (i.e. the extremal index approach), the un-
derlying concepts were not clearly exposed.

With the previous considerations in mind, this paper aims
at clarifying the general conceptual framework of threshold
selection for over-threshold modelling, distinguishing in par-
ticular the physical declustering procedure from the statis-
tical optimization. A large literature review of the existing
methods for both steps is given.

The main improvement of this effort of review and clarifi-
cation is that, distinguishing both steps, the existing methods
can be used in the right context, namely the physical declus-
tering can be done based on physical arguments and the sta-
tistical optimization is performed later with purely statistical
methods.

Note that this theoretical discussion is relevant in a multi-
disciplinary context, including different environmental appli-
cations (e.g. hydrology, meteorology, ocean sciences). This is
an important point toward sharing of the knowledge of OTM
techniques between different domains and different scientific
communities. As a consequence, in this paper literature re-
view and examples are based on environmental phenomena
as different as floods, heavy rainfalls, extreme winds, high
sea levels, extreme sea surges, and oceanic waves.
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The paper is organized as follows. In Sect. 2, the two steps
are depicted and the methodological framework is clarified.
In Sect. 3 a review of the current methodology for physi-
cal declustering and statistical optimization of the statistical
threshold is given. It is also shown that often in the past the
two steps were merged together and sometimes confused. In
Sect. 4 this general framework is applied to two different case
studies for the estimation of hydrological and maritime ex-
treme observations. In particular a double threshold is intro-
duced. In Sect. 5 some final conclusions are drawn.

2 Distinguishing two steps for OTM

Let Z(t) be a time series (or, more generally, a spatial field)
of discrete realizations of a given environmental variable,Z

(e.g. a river discharge, a significant wave height, a sea level,
a surge, a temperature, a wind speed, etc.) at a given resolu-
tion, 1t (i.e. time step, either regular or irregular). This can
be the result of observation or modelling. The time series is
assumed to be identically distributed.

For extreme value estimation applications, times series
lasting several years are generally needed. For this reason,
their size can be very important, depending on its duration,
K, and time step,1t . For example, a daily series lasting 20 yr
contains around 7000 values, while an hourly series lasting
5 yr contains more than 40 000 values. Note also that envi-
ronmental measures are often submitted to failure of mea-
surement device, thus the time series can be incomplete.

2.1 Step 1: physical declustering

The physical declustering aims at extracting a sample of
i.i.d. values,Xi , from the time series,Z(t). This step can be
viewed as an identification procedure, through purely phys-
ical consideration, of independent events. We claim that the
notion of event and its correct understanding is a fundamen-
tal concept of EVT analysis applied to a time series. An event
is defined here as a continuous physical phenomenon of the
environmental variable, notably out of its mean regime, as
can be instinctively comprehended by anyone: a storm for
wind speed or wave height, a flood for river discharge, a heat
or cold wave for temperature, a drought for rainfall, etc.

The events have a given duration that is often longer that
the resolution1t of the time series. In this case an event is
composed of a set of consecutive discrete realizations of the
variable, called cluster. The analyst should then define a ran-
dom variableX describing the events. Very often this event-
describing variableX represents the maximum value ofZ(t)

within the event, or cluster, and is often called the “peak” of
the event. However,X may also be the result of any mathe-
matical transformation of the cluster values: this is the case
for the volume of a flood, for example. Generally speaking,X

can be any characteristic of the event. The actual definition of

X will depend mainly on the natural phenomenon involved,
on the available data and on the aim of the study.

The appropriate physical declustering technique also de-
pends on the characteristics of the given natural variable, of
the time step of the series and on the physic and dynamic
characteristics of the observed process. For instance, the
declustering of a daily temperature time series will require
different techniques than the declustering of hourly rainfall
observations. In general, the knowledge of the physics of the
studied phenomenon drives the physical declustering choices
that should guarantee: first the independence of the selected
events and second that no event is omitted in the process.

It is quite important to stress thatZ andX are per se differ-
ent random variables. It is quite clear in the case of daily river
discharge vs. flood volume, but it is also true in the case of
three-hourly wind speed vs. the peak wind speed of a storm,
for instance. In particular, even if each event can be associ-
ated to a particular instant of occurrence on the time line,X

does not depend on time any more.
A sample ofNT i.i.d. valuesXi is thus obtained. Its size is

much lower than the size of the time seriesZ(t), generally in
the order of few hundreds instead of several thousands.

In Sect. 3 a review of practical methods for physical
declustering of environmental time series is given.

2.2 Step 2: statistical optimization

The physical declustering allowed the setting up of an i.i.d.
sample: the EVT hypothesis is now met and the well-known
statistical models can be applied.

Let us introduceus, which stands for statistical thresh-
old and let us define the random variableY = X − us, given
X > us. Y is the exceedance ofX above the thresholdus.
Thus a sampleYi of sizeN can be defined from the sample
Xi : Yi = Xi −us, givenXi > us. Note the sample size reduc-
tion (N ≤ NT) as theXi values falling below (or equal to)us
are excluded from the analysis.

Within the theoretical framework of OTM, and in partic-
ular according to Pickands’ theorem, whenus increases, the
probability distribution of the sampleYi converges toward
the generalized Pareto distribution (GPD) whose cumulative
distribution function of the GPD, in its three parameter for-
mulation, is given by

F (y)= 1−

[
1+k

(
y−µ

σ

)]−
1
k

, (1)

where k, k 6= 0, is the shape parameter, also indicated as
ξ (or −ξ) in statistic literature,σ is the scale parameter
and µ is the location parameter, withy > µ for k > 0 and
µ< y < µ− σ/k for k < 0. Note that following Pickand’s
theorem, the location parameter is generally set equal to zero.
Note also that the modified scale parameter,σ ∗

= σ −kus, is
often used as scale indicator.us is thus the optimal threshold
providing the best compromise between the convergence of
theYi through a GPD (bias minimization) and the necessity
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Autocorrelated time series of observations 𝑍 𝑡  
 Temporal evolution of the environmental variable 𝑍 

i.i.d. sample 𝑋𝑖 (size 𝑁𝑇) 

 𝑋: Event-describing random variable 

GPD-convergent sample 𝑌𝑖 = 𝑋𝑖 − 𝑢𝑠|𝑋𝑖>𝑢𝑠
 (size 𝑁) 

Exceedances over the statistical threshold of the « extreme » 𝑋𝑖 

Physical Declustering 
 

Aim: identifying and characterizing independent 
events 

Statistical Optimization 
 
Aim: setting a threshold for the convergence of the 
𝑋𝑖 towards the GPD by determining the extreme 

domain in a statistical meaning 

Fig. 1. General framework for identifying extreme data for over-
threshold modelling (OTM).

to keep enough dataYi for the estimation of its parameters
(variance minimization). The extrapolation of the estimated
GPD will yield the estimated return levels (or extreme quan-
tiles). Theus threshold selection step is called here statisti-
cal optimization. The statistical optimization step is a purely
statistical problem for which several methods have been pro-
posed in the literature; see Sect. 3 for a general review. It does
not depend on the particular random variable (environmental
or not) and it is general for every extreme value application.

A general overview on the two-step framework is depicted
in Fig. 1.

3 Review of methods for physical declustering and for
statistical optimization

In this section a literature review of the physical declustering
and the statistical optimization techniques is given. Its aim is
not to particularly recommend any of these to the detriment
of the others, but rather to catalogue the different practices.
At the end of this section a discussion is proposed to under-
stand why and how these two steps were often merged and
confused in the past and we point out that this knowledge is
important in order to perform correctly both steps.

3.1 Methods for physical declustering (Step 1)

3.1.1 General principles

As stated in the previous sections, the physical declustering
procedure aims at building the i.i.d. sampleXi , on which all
the statistical analyses are based, by identifying and charac-
terizing the events.

Generally speaking, this procedure does not require the
“over-threshold” concepts per se. One could imagine, for
instance, manually extracting a sample of extreme and in-
dependent events from a historical record of observations.
Garavaglia et al. (2010) introduced the concept of central
rainfall, defined as the rainfall observationZ(t) for which
z(t −1) < z(t) > z(t +1) for declustering the rainfall obser-
vations series.

However, an overview of the literature (see in particu-
lar Lang et al., 1999) shows that the techniques based on
the definition of a threshold to be exceeded spread widely.
Adamowski (2000) claims, moreover, that the choice of the
threshold for declustering is also a critical step in order to se-
lect homogenous events and to avoid merging different pop-
ulations of observations (this is the concept of identical dis-
tribution mentioned above).

Following such an approach, the clusters (events) are usu-
ally defined as the series of consecutive values ofZ(t) above
a given threshold, which is called hereup, for physical
threshold. Note that this approach was often called partial du-
ration series sampling in the past (Cunnane, 1973; Rosbjerg,
1985; Rosbjerg et al., 1992; Madsen and Rosbjerg, 1997).

As mentioned in Sect. 2.1, the event-describing variable
X could be any transformation of the values ofZ within the
cluster. For example, a temporal integration of the consec-
utive value of river discharge over the physical threshold is
sometimes used in hydrology to characterize the volume of
a flood. However, in most environmental applications, the
maximum value ofZ(t) observed during the clusteri, or
event peakXi , is retained to describe the event. For this rea-
son the name of peak over threshold (POT) spread widely in
the literature for this sampling technique.

It has been stressed above that the physical declustering
must not only identify the events, but also guarantee their
independence. As a consequence, the actual definition of a
cluster (event) generally relies upon two different families
of parameters: on the one hand, the physical thresholdup,
whose value is expressed in the same units asZ(t) (but not
necessarily asXi , e.g. the volume of a flood); on the other
hand, one or several parameters needed for ensuring the in-
dependence of the different clusters.

Several physically based criteria are available in the liter-
ature for the definition of the physical threshold and for the
characterization of the independence of the clusters.
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3.1.2 Physical threshold

The choice of the thresholdup is a key step for the identifica-
tion of events. Several approaches were proposed in the past
for the definition of the physical threshold.

First, and quite simply, the choice of the physical thresh-
old can be defined by an expert prior knowledge. Expert
prior knowledge can be based, in a heuristic approach, on the
practical consequences for the phenomenon to cross a given
threshold value. For example, Bonazzi et al. (2012) define a
wind velocity threshold corresponding to the level at which
damage to buildings is likely to occur. Perception threshold,
defined by expert estimation, is used to perform OTM for his-
torical and non-systematic observation, (Ouarda et al., 1998;
Barriendos et al., 2003; Payrastre et al., 2005, 2011; Hamdi
et al., 2013).

For threshold selection, Lang et al. (1999) defined the
mean number of events per year,λT = NT/K, whereK is the
total duration of the time series, in years, andNT is the num-
ber of physical events to be selected (and also the sample size
of theXi). Then they discussed the evolution ofλT when the
threshold increases and they identified four domains. First,
the threshold is below the minimum of the time series: thus
the entire time series is considered as an event, though it has
no physical sense. Second, as the threshold value raises be-
tween the minimum and (roughly) the mean value of the se-
ries λT increases: the higher the threshold, the more events
there are. This actually means that just shortfalls below a low
threshold are identified. Third,λT reaches a maximum (when
the threshold is close to the mean of the series) and begins to
decrease. Fourth, when the threshold is larger than the maxi-
mum of the series, no more exceedances can be extracted and
λT = 0. The authors require thatλT be in the third domain,
though far from both the lower and upper limits of the do-
main. In the proposed conceptual framework, it can be stated
that events (as defined above) are identified in the third do-
main. However, though this recommendation is relevant, it is
easily fulfilled and is not specific enough to be really useful
in practical applications.

Another widely used approach relies on the idea thatup
can be tuned in order to obtain a physically reasonable value
of λT. More generally, the choice of the actual numberλT
is based on expert knowledge of the physics and the dynam-
ics of the process. For example, in hydrological applications
it is suggested to chooseλT < 5, which is a large number
of floods to observe, for a given site, on average, per year.
Obviously, this number should depend on an on-site hydro-
logical regime. Working on skew surges, in a regional anal-
ysis framework, (Bernardara et al., 2011) suggested to set
up so thatλT = 1, while for local analysis Walton (2000)
fixed λT = 3. Analyzing significant wave heights, (Mazas
and Hamm, 2011) suggested that the value ofλT should be
roughly between 5 and 10, also depending on the value of the
time series duration (closer to 5 for long time series, closer to
10 for short ones). Tawn and Vassie (1989) suggested a value

of λT around 5 for extreme sea surge. Floris et al. (2010) an-
alyzedλT in a framework of extreme rainfall analysis.

Some authors set the threshold using a given quantile of
the time seriesZ(t). Ruggiero et al. (2010) set it to the 99.5th
percentile of the data, working with wave heights. Rosbjerg
et al. (1992) suggest calculating the physical threshold as the
mean value of the observed series plus three standard devia-
tions. Notice that, though it looks like a statistical approach,
there is no optimization process in it.

These criteria for the selection of the relevant physical
threshold were compared and simultaneously used in the
past, for instance Ntegeka and Willems (2008) stated that “an
extreme event can be selected based on frequency, intensity,
threshold exceedances or physical expected impacts”.

3.1.3 Parameters for ensuring the independence
of the events

In order to ensure the independence of the selected events,
many physically based criteria have been developed. Several
of these criteria are recurrent in the literature and will be pre-
sented here.

The most common techniques consist in setting temporal
parameters, most of the time based on the minimal time lag
between two events. The idea is quite simple: after a given
period of time, the autocorrelation between the observations
becomes negligible and two events can be safely considered
independent. The definition of this time lag is directly de-
rived from the physics of the natural phenomenon: it should
be longer than the typical duration of the physical processes
(usually meteorological ones) generating the events. Thus
it can be set by an expert prior knowledge. However, the
time lag should not be too long in order to avoid discarding
independent events and thus missing valuable information.
For instance, in north-eastern Europe, extreme wave heights
may be generated by successive storms moving along the
storm track every 24 h or so; therefore setting the time lag to
48–72 h could lead to miss information. Many applications
of this approach are available in the literature: Egozcue et
al. (2005) studied wave height hazards along the Mediter-
ranean coast of Spain and set the time lag to 4 days; Haigh
et al. (2010) studied the extreme sea levels along the En-
glish Channel and required the surge peaks to be separated
by 30 h at least; USWRC (1976), Cunnane (1979) and Lang
et al. (1999) imposes that successive river flood events be
separated by at least as many days as five plus the natural
logarithm of square miles of the basin area. Willems (2000)
required that two rainfall events are separated by at least a
12 h lag.

The time lag can also be defined using the autocorrelation
function of the time seriesZ(t). For extreme wave heights,
Mathiesen et al. (1994), propose requiring that it cannot
be longer than the time interval for which the autocorrela-
tion function of the series drops under 0.3–0.5. In a similar
way, while studying storm surge extremes along the US East
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640 P. Bernardara et al.: A two-step framework for over-threshold modelling of environmental extremes

Coast, Walton (2000) established the typical duration of an
event via the autocorrelation of the surge series and found
that the drop off of the autocorrelation function to a noise
level value close to zero was on the order of 24–72 h. Note
that some authors define the time lag between the end of an
event and the beginning of another while others define it be-
tween two peaks.

In general, both physical and statistical methods aim at the
definition of the correlation length, thus they should naturally
converge.

Other temporal parameters can be used; for instance, in
their atlas of waves along the Italian coasts, (Franco et al.,
2004) allowed short fluctuations of the time series below the
thresholdup up to a maximal duration (6 h) and also set a
minimal storm duration (12 h). This last parameter may be
useful for some applications; for instance, waves generated
by a very short storm will not cause damage to a breakwater.
In the sea wave analysis field, (Takvor and Panagiota, 2001)
extracted independent the sea state by looking at wave en-
ergy reductions between consecutive time steps. In contrast,
(Smith, 1988) examined the typical duration of extreme wave
conditions and did not see any rationale for using such a pa-
rameter.

Another technique consists in using a secondary thresh-
old: in this approach, two events are considered independent
when the signalZ(t) falls below this value. In particular, this
secondary threshold may be defined as a fraction of the phys-
ical thresholdup (in this case the value of this fraction can
indeed be considered as the parameter to set) or as a frac-
tion of the peak value of one of these events. For instance,
(USWRC, 1976) requires (among other criteria) that the in-
termediate flows between two consecutive flood peaks must
drop below 75 % of the lowest of these two peaks, while
(Cunnane, 1979) imposes that the flow must drop below 2/3
of the first peak value.

The independence of the selected events (or more gen-
erally the independence of the selected clusters) has been
checked in the past via the analysis of the probability distri-
bution of the occurrences of the events for a given time inter-
val. In fact, the Poisson distribution (Haight, 1967) is a dis-
crete probability distribution that expresses the probability of
a given number of events occurring in a fixed interval of time
if these events occur with a known average rate and indepen-
dently. Thus, if the number of occurrences of events follows
a Poisson distribution, the events are supposed to be inde-
pendent (Cunnane, 1979; Rosbjerg et al., 1992; Lang et al.,
1999). Some authors, (e.g. Ashkar and Ouarda, 1996, Silva
et al., 2011) selected the physical threshold corresponding
to the best adaptation of the number of occurrences to the
Poisson distribution and checked the independence hypothe-
sis looking at the uniform distribution of the arrival time of
events depending on the observation period support.

Note that for several of these parameters, their value
should be somehow dependent on the value ofup. For in-
stance, if the time lag between two events is defined between

the end of the first and the beginning of the second one, or
if a fraction of up is used to ensure the independency, the
values to be considered could be different ifup is rather low
or rather high. This is particularly true for the minimal event
duration or the maximal duration of fluctuations belowup,
even though these parameters are quite scarcely used.

3.2 Methods for statistical optimization (Step 2)

Once the sample of the i.i.d. dataXi is built, the statistical
optimization consists in choosing the relevant value of the
statistical thresholdus to take into account for the estima-
tion of the GPD model on the observations exceeding the
threshold, toward which the sample is supposed to converge
(Beirlant et al., 1996).

The threshold selection criteria here are statistically based
and they aim at meeting the EVT hypothesis and the best
compromise between bias and variance. In this step, the ques-
tion is which ones of these events are extreme from a statis-
tical point of view?

A first class of such methods is based on the maximization
of the goodness of fit between the probability distribution and
the data or the minimization of the asymptotic mean square
error of the estimators. Several authors suggested choosing
the value ofus providing the best GPD adaptation to the em-
pirical data. That can be done through the optimization ofχ2

or the Kolmogorov–Smirnov test. For instance, (Bernardara
et al., 2011) used this approach for fitting a regional surge
probability distribution. Anderson–Darling (AD) goodness-
of-fit test is suggested and employed by Choulakian and
Stephens (2001) and Haylock (2011). The adaptation of GPD
to empirical data above the threshold could also be checked
via the L-moments. In particular, for GPD the relation be-
tween L-moments of order 3 and 4 is known and L-moments
plot technique can be used (Hosking and Wallis, 1997).

A similar class of methods are based on the minimization
of the variance estimation of the Hill semi-parametric esti-
mator of the tail index, (Hill, 1975; Hall, 1982; De Haan and
Peng, 1998). (Beirlant et al., 1996) and (Willems 1998) intro-
duced a systematic methodology based on these principles.
In (Willems, 2000) an application to rainfall observations is
given. (Neves and Fraga Alves, 2004) give a short review on
these methods and they propose an automatic selection pro-
cedure.

A well-known property of the GPD is that the shape and
modified scale parameters will remain constant when the
threshold increases. Following this property, (Davison and
Smith, 1990; Lang et al., 1999; Egozcue et al., 2005) sug-
gested choosing the threshold so that the mean of the ex-
ceedances above the threshold,E(X − us), is a linear func-
tion of the threshold value, indicating a range where the GPD
parameters are not depending on the threshold selection. This
technique is also known as MRL (Mean Residual Life) plot,
(Coles, 2001). In this framework, (Beguéria, 2005) chose the
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value ofus in maximizing the fit of a linear function on the
mean excess function.

(Coles, 2001) also proposed the STM (stability method)
consisting in defining an optimum where the shape parameter
of the GPD distribution is approximately constant for small
threshold changes. (Mazas and Hamm, 2011) performed a
sensitivity analysis of shape and modified scale parameters
with respect to the (statistical) threshold in order to identify
domains of stability. Then they selected the lowest thresh-
old (minimization of variance) of the highest domain of sta-
bility (minimization of bias). (Thompson et al., 2009) used
the property of stability of the GPD modified scale param-
eter to introduce a procedure for automatizing the threshold
selection. They define 100 equally spaced threshold values
between the median of the time seriesZ(t) and its 98th per-
centile. For each value, the stability of the modified scale pa-
rameter is tested by the Pearson normality tests. The first (i.e.
lowest) value satisfying the test is retained as the statistical
threshold.

The stability of some relevant quantiles of the GPD distri-
bution has been used in the past for the selection of the opti-
mal us value, for instance by Rosbjerg et al. (1992), among
many others.

3.3 Review discussion

The concept of the exceedances over a given threshold was
used both for physical declustering and statistical optimiza-
tion (Smith, 1984; Lang et al., 1999; Parent and Bernier,
2003).

This is explained by the fact that this concept is, on the
one hand, useful for defining events as independent clusters
of observations and, on the other hand, is also consistent with
the EVT concepts of GPD convergence.

However, the use of the same concept of “exceedances
over a threshold” for the two different steps of the analyses
led to some incoherencies and confusions.

First of all, as pointed out in the previous section, it should
be highlighted that the domains of application of the two
steps are different. The declustering procedure applies to
highly correlated data, such as the environmental time series
of observations and it was studied mainly by earth scientists
in the past. The statistical threshold optimization applies to
a large number of statistical problems as it was treated in
the past mainly by the statistical community. That leads to
some incoherencies on the vocabulary used and on the con-
cepts definition. For example, (Takvor and Panagiota, 2001),
in a review of declustering techniques, called the physical
declustering “statistical pre-processing”, a definition that can
confuse the reader. In a similar way, the concept of “POT
method” often includes the whole methodology for the deter-
mination of the probability of occurrence of the extremes val-
ues, including the GPD model, while it should be restricted to
the declustering step. The same comment holds for the “par-
tial duration series” definition which refers to the first part

of physical declustering but it was used in the past to indi-
cate the whole analysis. Also, note that following the EVT
vocabulary, the word “extreme” is restricted to the values
exceeding the thresholdus while the full sample of theXi

represent the whole i.i.d. population describing the different
events. However, in practice, theXi are often arbitrarily con-
sidered as an “extreme” population, which may be confusing.

Another example of incoherencies can be found in the
number of data to be selected. As explained in section 3.1,
(Lang et al., 1999) pointed out that the number of peaks over
the threshold,Xi can decrease but also increase when the
thresholdup increases. This is logical in a physical point of
view, because the sample of theXi completely changes de-
pending on the value ofup. However, for the statistical op-
timization thresholdus the number of exceedances over the
thresholdYi must decrease when the thresholdus increases.
Introducing the concept of physical event to be identified in
the time series is thus much relevant for understanding such
a behaviour.

Note also that, following the statistical theory (Pickands,
1975), the EVT requires choosing all the values over a given
threshold,us, and not only some of them, as in the case of
physical declustering using the peaks overup.

Moreover, the EVT states that theYi sample converges to-
wards a GPD distribution, while theXi sample, representing
a whole population of i.i.d. events could be described by any
statistical model. Indeed, several authors (Goda, 1988, 2010,
2011; Mathiesen et al., 1994; Goda et al., 2010) considered
other distributions than the GPD (or GPD family).

In practice, another strong rationale arises for separating
both steps. As shown by the literature review in Sect. 3.2,
most of the methods for determining the statistical thresh-
old require testing many values ofus. If the physical declus-
tering has not been performed prior to this, it will have to
be done as many times as there are tested values ofus, in-
stead of just once. If one keeps in mind that the declustering
of time series, whose size can be up to several hundreds of
thousands of data, can be quite computer intensive, the inter-
est of running this step once for all instead of 10 to 100 times
is obvious. Furthermore, it has been shown in Sect. 3.1 that
during the declustering process, the parameters ensuring the
independence of the events may depend on theup threshold
value, or be relevant for a small range ofup values only. Then
there is much interest in setting them accurately with regard
to the value ofup once and for all, instead of repeating this
many times. This will be illustrated in the second case study
in Sect. 4.3.

Note that the clusters population, namely the structure of
the events, described by the clusters ofZ(t) overup, present
an interest in itself. It is important, for some application to
calculate some statistics such as the probability distribution
of the event size or duration, the internal correlation or the
shape characteristics of a general event. This shows again the
interest in separating the two steps.
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Fig. 2.Swell significant wave height time series off Marseille.

Even though the methodological framework was not yet
clarified, in the past few authors highlighted some points
which direct attention to the different meaning and applica-
tion of the two steps. A very good illustration is provided
by Cruise and Arora (1990) who noticed that the threshold
level for physical declustering often had to be raised signifi-
cantly to meet exponentially based tests on the POT distribu-
tion (Lang et al., 1999).

Some other authors in the past proposed extreme value
analyses in which the two steps are well distinguished. For
example (Dupuis, 1998; Egozcue et al., 2005; Bardet et al.,
2011; Bernardara et al., 2011; Mazas and Hamm, 2011) ap-
plied two different thresholds, one for the physical declus-
tering, the other for the statistical optimization. (Garavaglia
et al., 2010) used the central rainfall concept for physical
declustering and arbitrarily fixed theus at the 70 % quantile
of the distribution, without any optimization. (Bernardara et
al., 2008) used classical declustering criteria for daily dis-
charge series and a specific optimization for the shape pa-
rameter of the GPD distribution.

However, the theoretical framework distinguishing two
steps was not clearly defined. Hence, as a conclusion of this
review effort, we deem that the lack of the concept of event is
a major cause of the confusion observed in the past. It is use-
ful for the understanding of EVT analyses of auto-correlated
time series and it has a sound physical basis.

4 Applications to environmental variables

4.1 The double threshold approach

In order to illustrate the proposed framework, and in coher-
ence with the literature, we propose here to provide both
physical declustering and statistical optimization through a
threshold approach.

This approach is applied to two case studies, a wave height
study and an extreme discharge study, in order to illustrate

Table 1.Summary of parameters for the two case studies.

Wave heights, Discharge/flood
Marseille volume, Rieutord

K [yr] 13 19.33
1t 3 h 1 day
n 38 005 7062
up 1.4 m 10 m3 s−1

λ [events yr−1] 10 3.6
NT 130 70
us 1.87 m 6.48 Mm3

N 43 25

that the methodological framework is valid in different fields
of natural hazard estimation.

It is shown that this approach allows selecting the correct
techniques and carrying out a complete analysis, extracting
all the relevant information.

4.2 Wave heights

We consider in this first illustrative example a time se-
ries of simulated three-hourly significant wave heightsHs
offshore Marseille, France (5.3104◦ W, 43.3460◦ N; water
depth: 34 m). The duration of the data isK = 13 yr, and the
size of the time series isn = 38,005 data. In order to en-
sure the homogeneity of the data, a decomposition of the sea
states have been performed and only the swell component
have been retained. TheHs time series is plotted in Fig. 2.

In this case study,Z is a three-hourly significant wave
height of the swell component (in metres), the events to be
identified are swell storms and they are classically described
by the random variableX “storm peak” (in metres), that is,
the maximum value within the cluster. A physical threshold
has been set in order to obtain a sample ofλT = 10 storms
per year in average, which is a physically sounding num-
ber of extreme events per year for the region. The physical
threshold is thus set toup = 1.4 m. The declustering has been
performed by using a minimal duration of 24 h between two
storms to ensure their independence. Furthermore, a mini-
mal storm duration of 6 h has been set (because very short
events do not cause important damage to coastal structures)
and fluctuations below the threshold within a same storm
have been allowed for less than 12 h. These parameters can
be considered relevant for the chosen physical threshold but
it would not be the case for a higher or lower threshold. It
is important to notice that this first step allowed defining a
population of events which can be analyzed to extract rele-
vant statistics. In particular, the extraction yieldsNT = 130
events, the mean storm duration of the events is around 15 h.
In all, 96 % of the events last less than 36 h, which is consis-
tent with the physics. Unsurprisingly, a strong seasonality is
observed: 28 storms in fall, 38 in winter, 23 in spring and 4
in summer.

Nat. Hazards Earth Syst. Sci., 14, 635–647, 2014 www.nat-hazards-earth-syst-sci.net/14/635/2014/



P. Bernardara et al.: A two-step framework for over-threshold modelling of environmental extremes 643

Fig. 3. Stability of shape parameter and modified scale parameter
for Marseille series of swell waves.

Fig. 4.GPD fit for the swell off Marseille.

The statistical optimization is then performed on the sam-
ple Xi . Note that in this case,Z and X have the same
dimension; sinceXi ≥ up it can thus be written thatup ≤ us
(meaning that testing values ofus < up would be useless).
The stability of the GPD shape parameterk and modified
scale parameterσ ∗

= σ − ku with respect to the statistical
thresholdus is illustrated in Fig. 3, along with the associ-
ated 95 % confidence intervals computed by the asymptotic
method. A first “domain of stability” can be seen between
roughly 1.5 and 1.8 m, then a second one between 1.87 and
2.2 m. Afterwards the sample size is too short and the param-
eter uncertainty is too great. The bias minimization requires
to choose the highest domain of stability while the vari-
ance minimization needs as much data as possible; conse-
quently, the statistical threshold is set tous = 1.87 m, yield-
ing N = 43. Note that, hereus = up+0.47 m and the number
of observation has been reduced fromn = 38,005 toN = 43.

The GPD parameters are estimated by the L-moments es-
timator (Hosking and Wallis, 1997). The fit is illustrated in
Fig. 4. A summary of the parameters estimate for this case
study is given in Table 1.

Fig. 5.Discharge series of the Loire river at Rieutord.

Fig. 6. Stability of shape and modified scale parameters of Loire
river sample.

4.3 Discharge and flood volumes

The selected time series is the Loire river discharge daily
series at Rieutord, from 01/09/1983 to 31/12/2002. The du-
ration of the data isK = 19.33 yr, and the size of the time
series isn = 7062 data. The discharge series is plotted in
Fig. 5. The local modulus of the river is estimated around
2.7 m3 s−1. A physical threshold ofup = 10 m3/s based on
an expert judgment has been applied. The inter-event dura-
tion has been set to 10 days. That leads to an average num-
ber of flood events per yearλT = 3.6, which is physically
acceptable and coherent with expert prior knowledge based
on physical characteristics of the discharge phenomenon.
NT = 70 flood events are thus retained. Their mean duration
is around 103 h. 50 % of the flood peaks last only one day,
while 9 % last two days and 14 % last three days. A strong
seasonality can be observed, with 27 flood peaks in fall, 23
in winter, 19 in spring and only one in summer.

It is decided to describe these flood events by their volume:
X is the temporal integration of the discharge over the flood
duration. In particular, the physical threshold is assumed to
define completely the flood, allowing the computation of its
volume. In this case study,Z is a daily discharge in m3 s−1,
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Table 2.Evolution of the size of the upper part of theXi sample with respect toup.

Number of events whose peak is above

up 5 m3 s−1 10 m3 s−1 15 m3 s−1 20 m3 s−1 25 m3 s−1

5 m3 s−1 75 52 37 33 26
10 m3 s−1 – 70 47 40 32
15 m3 s−1 – – 49 41 33
20 m3 s−1 – – – 42 34
25 m3 s−1 – – – – 34

Fig. 7. Mean residual life plot for the flood volumes of Loire river
sample.

an event is a flood andX is the volume of the flood, in Mm3.
This is of course a very rough estimate of the flood volume:
in a genuine hydrological study, it should be computed based
on the hydrogram of each flood. This application is for illus-
trative purpose.

The stability of GPD parameters with respect to the statis-
tical thresholdus is given in Fig. 6. The shape (resp. modi-
fied scale) parameter slowly decreases (resp. increases) from
about 1 Mm3 to 6.48 Mm3, then remains remarkably con-
stant. This result is confirmed by MRL Plot, Fig. 7.L mo-
ment analysis depending on the statistical thresholdus is
shown in Fig. 8. Here it is found that the threshold value
of 6.48 Mm3 is the only one for which theL moments are
almost lying on the theoretical GPD curve. Thus the statis-
tical threshold is set tous = 6.48 Mm3, yielding a sample
of N = 25 flood volume exceedancesYi . In Fig. 9, the cor-
responding GPD calibration is shown, along with the 90 %
confidence interval. A summary of the parameters estimate
for this case study is given in Table 1.

In this case study, the inter-event duration is defined be-
tween the end of an event and the beginning of another. As

Fig. 8.L-moments plot for the flood volumes of the Loire river sam-
ple.

has been stressed in Sect. 3.1.3, a consequence is that not
only the lower part but also the upper part of theXi sample,
and thus ultimately of theYi sample to be fit, may vary when
a broad range ofup values is tested while the independence
criteria remain constant. This is the case for this declustering
procedure on this sample. Different values ofup have been
tested: 5, 10, 15, 20 and 25 m3 s−1. For each value, a number
of events are identified. Then, for each of theseXi samples
(the events are here described by the discharge peaks), the
number of events exceeding a higher value than the thresh-
old is counted. The results are given in the Table 2. For in-
stance, if the physical threshold is set to 5 m3 s−1, the num-
ber of peaks exceeding 25 m3 s−1 is 26, while, if the phys-
ical threshold is set to 25 m3 s−1, their number increase to
34. This illustrates that one should be careful when choosing
or tuning the independence criteria and this is an additional
reason for separating the physical declustering step from the
statistical optimization step, all the more since the latter one
often requires investigating a wide range of threshold values.

Nat. Hazards Earth Syst. Sci., 14, 635–647, 2014 www.nat-hazards-earth-syst-sci.net/14/635/2014/



P. Bernardara et al.: A two-step framework for over-threshold modelling of environmental extremes 645

Fig. 9.GPD fit for the flood volumes of the Loire river at Rieutord.

5 Conclusions

This paper clarifies the general framework for “over the
threshold” exceedance modelling, distinguishing in partic-
ular the physical declustering procedure to the statistical
optimization. The two steps have a very different meaning
and very different techniques have been proposed in the
past for the application of these two steps. The literature
is wide and an effort of review of the existing methods for
both steps is done. It allows choosing the most appropriate
methods for each step. In particular, we highlighted that
declustering techniques are mostly based on the analysis and
on the characterization of the physics of the phenomenon,
while statistical optimization is a purely statistical problem.
A consequence is the importance of the notion of physical
event. It was often underlying in the literature, but we deem
it most important to make it explicit. From our point of view,
the distinction between the auto-correlated observations, at
a regular time step, of the time series and the independent
and self-consistent physical events should become central
in the extreme value analysis of environmental variables.
We also claim that fully apprehending both the difference
and complementarity of these two steps allows a clearer
understanding of the meaning of the different available tools
and of the parameters needed for the rest of the analysis (i.e.
the independence criteria parameters) and thus, ultimately,
the appropriate application of the existing threshold selection
methods. Through two simple practical examples, we show
that each step has a clearly distinct role. It is also worthy to
note that this discussion is relevant for several domains of
natural hazard estimation, and even more generally to any
EVT analysis of auto-correlated time series.

Edited by: T. Glade
Reviewed by: P. Jonathan and one anonymous referee
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