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Abstract. Quantitative precipitation estimates are obtained
with more uncertainty under the influence of changing cli-
mate variability and complex topography from numerical
weather prediction (NWP) models. On the other hand, hy-
drologic model simulations depend heavily on the availabil-
ity of reliable precipitation estimates. Difficulties in estimat-
ing precipitation impose an important limitation on the pos-
sibility and reliability of hydrologic forecasting and early
warning systems. This study examines the performance of
the Weather Research and Forecasting (WRF) model and the
Multi Precipitation Estimates (MPE) algorithm in produc-
ing the temporal and spatial characteristics of the number of
extreme precipitation events observed in the western Black
Sea region of Turkey. Precipitation derived from WRF model
with and without the three-dimensional variational (3DVAR)
data assimilation scheme and MPE algorithm at high spa-
tial resolution (5 km) are compared with gauge precipita-
tion. WRF-derived precipitation showed capabilities in cap-
turing the timing of precipitation extremes and to some extent
the spatial distribution and magnitude of the heavy rainfall
events, whereas MPE showed relatively weak skills in these
aspects. WRF skills in estimating such precipitation char-
acteristics are enhanced with the application of the 3DVAR
scheme. Direct impact of data assimilation on WRF precipi-
tation reached up to 12 % and at some points there is a quan-
titative match for heavy rainfall events, which are critical for
hydrological forecasts.

1 Introduction

Influences of global warming and climate change are becom-
ing more dominant with increasing numbers of catastrophic
events observed around the world. With global warming, ma-
jor changes in rain and water cycles are being observed, fre-
quency of meteorological disasters such as heavy rainfalls
are increasing continuously, consequently resulting in high
drought and flood risks. For example, the study of precipita-
tion amounts during the last 50 years on land shows that the
percentage of extreme precipitation compared to total precip-
itation has increased (Trenberth et al., 2007). As it occurs and
is evident in several geographical regions on the earth, these
types of extreme events are also being observed throughout
regions more prone to flooding in semiarid environments.
Also, in regions having complex topography, extreme events
show significant temporal and spatial variations and generate
extensive amounts of precipitation in short durations.

Flood forecasting systems are becoming more widespread
for emergency cases where life and property are concerned.
Such systems help to predict hazardous events and allow suf-
ficient time for action. Ideally, they should not only produce
accurate and reliable forecasts, but also provide long enough
lead times for appropriate action to be taken. To achieve a
reasonably long lead time, which enables timely issuance
of flood warnings, quantitative precipitation forecasts with
a spatial resolution compatible with that of the flow fore-
casting model are frequently required. Prediction of severe
convective rainfalls is one of the many challenging problems
in meteorology; at the same time, it is very important for
many agencies engaged in disaster preparedness and mitiga-
tion to issue early flood warning in a timely fashion. Weather
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forecasting has been a highly challenging task for more than
half a century. Traditionally, weather forecasting has been
based mainly on numerical weather prediction (NWP) mod-
els and they are the most reliable source for atmospheric
forecasts with a large spatial coverage and high temporal
resolution (Liu et al., 1997). Mesoscale NWP models have
played an important role in operational as well as severe
weather forecasting. High-resolution mesoscale models can
contribute to localized weather forecasting, particularly in ar-
eas where the topography and land-use heterogeneity modu-
late synoptic-scale weather. The verification studies of these
mesoscale models, which are essential in terms of model pre-
dictability, have been gaining interest in recent years. A num-
ber of studies, such as those by Colle et al. (2003a, b), Kim
and Lee (2006), Lin and Colle (2009), Shi et al. (2010), have
verified the predictability of mesoscale models and gener-
ally focused on quantitative precipitation forecasts/estimates
(QPF/QPE) and evaluated various statistical techniques for
improved QPF/QPE.

However, accurate precipitation calculations from NWP
models are still a challenge. With appropriate initial and
lateral-boundary conditions, high-resolution mesoscale mod-
els offer great potential for improved QPF/QPE because
models with this resolution can have skill in predicting the
initiation and organizational mode of convective systems
(Done et al., 2004). A study from Weisman et al. (1997)
showed that 4 km grid spacing appears to be sufficient in
resolving the dominant circulations in organized convective
systems. NWP models provide an accessible tool for better
understanding and improving the predictability of complex
weather phenomena such as heavy rainfall events, while they
are performed to add to the insufficient observational data for
identifying extreme precipitation events. Because of the in-
sufficient enforcement of initial- and boundary data to iden-
tify storms, the initiation of mesoscale systems in real cases
was difficult to simulate well (Choi et al., 2011). Therefore,
many studies have suggested that data assimilation is a use-
ful tool in order to improve the initial conditions for simu-
lations (Liu et al., 2005; Yu, 2007; Choi et al., 2011) and
the three-dimensional variational assimilation (3DVAR) has
become a predominant method for providing initial model
data in these studies and others (e.g., Lee et al., 2010). How-
ever, the 3DVAR assimilation technique is yet to be success-
fully applied for severe weather estimations, especially for
the amount of heavy rainfall in Turkey. Therefore, it is im-
perative to conduct mesoscale model tests and verify the re-
sults to provide a direction for the improvement of model
forecasts.

Heavy precipitation events are serious weather hazards in
the eastern Mediterranean and Black Sea region. Although
the number of previous studies (e.g., Borga et al., 2007;
Nikolopoulos et al., 2013) focused on the prediction efforts
of these rainfall events in the eastern Mediterranean, the stud-
ies are significantly limited in Black Sea region. The Gen-
eral Directorate of Meteorology (GDM) in Turkey uses its

operational NWP models over this region, but the verifica-
tion studies of NWP results for heavy rainfall events ob-
served in the western Black Sea region of Turkey have been
lacking so far. Therefore, this study marks an effort to evalu-
ate the Weather Research and Forecasting (WRF) model that
is also being used as an operational model at the GDM. It
includes a 3DVAR assimilation scheme for its performance
and error statistics, notably in the western Black Sea region
which experiences multiple flood threats, especially during
spring and summer seasons. As a result, this study aims to
improve the ability of the WRF model to estimate heavy-
rain-producing systems and the associated QPE and evaluate
the forecast impacts of the 3DVAR data assimilation system
and the performance of mesoscale WRF model at 4 km res-
olution. Nonconventional observations, such as meteorolog-
ical satellites, provide additional and sufficient information
for heavy rainfall events at high spatial (5 km) and tempo-
ral resolution (15 min) and therefore, precipitation derived
from the Multi-sensor Precipitation Estimates (MPE) algo-
rithm (Heinemann et al., 2002) are also used in comparison
when WRF model with and without assimilation is evaluated
against observations.

2 Methodology

2.1 Study area and data

Shown are the study area together with nested the configura-
tion of WRF domains at 12 km and 4 km resolutions (Fig. 1a)
and a detailed view of fine domain together with rain gauge
locations and city provinces in the western Black Sea Re-
gion of Turkey (Fig. 1b). The study area is impacted by po-
lar air masses with continental origin of cold Siberian High,
and maritime origin of Iceland Low in the winter and by
subtropical air-masses (Azores High and part of Pakistan
Low) in the summer. When the Siberian High crosses the
Black Sea and approaches the northern coasts of Turkey, cold
and dry air turn into a maritime continental air mass due
to the acquired moisture content. The diversity of the geo-
graphic structure, extension of the mountains and effects of
the seas in the vicinity of the land determine the climate types
of the region. Mountains, which lie parallel to the shore-
line and have an elevation of up to 2065 m, restrict transfer
of precipitation to the inland zones, where temperature and
precipitation decrease and the effects of continental climate
are observed. Therefore, mean annual precipitations in the
coastal zones vary between 700 and 1050 mm, higher than
the mean annual value of Turkey (approximately 650 mm),
whereas this value becomes as low as about 400 mm south
of mountains. The number of rainy days in a year is about
130 in coastal zones, but it decreases to 70 days in the in-
land regions, while most of the precipitation is observed in
fall and winter (Sensoy et al., 2008). The western Black
Sea region of Turkey is prone to having multiple extreme
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Fig. 1. The study area with WRF model configuration of two nested domains at 12 km and 4 km resolutions is shown in(a) and the detailed
view of 4 km domain with the locations of rain gauge stations used in comparison as well as the border of city provinces in the region
are shown in(b). Numbers 1 and 2, located at the center point of coarse- and fine-resolution domains, identify 12 km and 4 km domains,
respectively.

Table 1.Studied events and their occurrence periods with the rainfall peak locations are given.

Event no. Start date End date Peak observation locations

1 02-06-00 07-06-00 Bartın
2 04-08-02 12-08-02 Kastamonu (Devrekani)
3 16-08-02 23-08-02 Kastamonu (Devrekani)
4 11-08-04 16-08-04 Zonguldak (Ereğli)
5 14-08-04 19-08-04 Bartın, Kastamonu
6 23-08-04 28-08-04 Bartın
7 28-04-05 05-05-05 Bartın, Bolu, Düzce
8 02-07-05 09-07-05 Bartın
9 13-07-05 18-07-05 Bartın, Zonguldak
10 05-06-07 15-06-07 Kastamonu (Cide), Zonguldak (Devrek)
11 30-07-07 04-08-07 Zonguldak
12 20-09-07 25-09-07 Zonguldak, Düzce (Akçakoca)
13 27-09-08 02-10-08 Kastamonu (İnebolu, Bozkurt)
14 12-07-09 17-07-09 Bartın, Kastamonu (Devrekani)
15 26-07-09 29-07-09 Kastamonu (Cide,İnebolu)
16 06-09-09 12-09-09 Sakarya, Bolu
17 19-09-09 25-09-09 Bartın
18 25-06-10 02-07-10 Bartın, Bolu, Kastamonu (Devrekani)
19 06-07-10 11-07-10 Çankırı (Ilgaz), Bolu
20 31-08-10 04-09-10 Bartın
21 13-09-10 16-09-10 Bartın
22 01-10-10 04-10-10 Kastamonu (Bozkurt)
23 07-10-10 12-10-10 Bartın, Kastamonu (Bozkurt)
24 25-05-11 05-06-11 Kastamonu (Devrekani), Karabük (Yenice)
25 09-06-11 14-06-11 Bartın, Zonguldak (Ereğli, Devrek)

rainfall events and associated flood threats, especially dur-
ing spring and summer seasons. GDM develops the record
of extraordinary meteorological events that occur through-
out Turkey each year. As the main criteria, GDM considers
any damage due to these events when selecting and record-
ing. The number of heavy rain and associated flood events
has been observed and marked in these records within this
study region. According to these GDM records, the 25 spe-
cific “heavy rain and flooding”-tagged hydrometeorological
events between the years 2000 and 2011 are selected for this

study. They are shown in Table 1 with their event number,
rainfall maxima locations and event durations. For each pre-
cipitation event shown in Table 1, the hourly rainfall data ob-
tained from 34 rain gauges from GDM’s automated weather
stations are used for statistical evaluation with the WRF- and
MPE-derived precipitation. Table 2 shows the name, altitude,
latitude and longitude of these stations together with their as-
sociated numbers, which are also displayed within the study
area in Fig. 1b. Information such as sensor specifications, ob-
servation period, etc. about the rain gauges used in this study
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Table 2.The name, elevation, latitude, and longitude of automated
rain gauge stations of MGM used in this study.

Station
no. Station type Elevation (m) Latitude (◦) Longitude (◦)

1 Akcakoca 10.0 41.083 31.167
2 Bartin 33.0 41.633 32.333
3 Zonguldak 136.0 41.450 31.800
4 Inebolu 64.0 41.983 33.783
5 Sinop 32.0 42.033 35.167
6 Kocaeli 76.0 40.767 29.933
7 Sakarya 31.0 40.683 30.417
8 Bolu 743.0 40.733 31.600
9 Duzce 146.0 40.833 31.167
10 Kastamonu 800.0 41.367 33.783
11 Cankiri 751.0 40.617 33.617
12 Amasra 73.0 41.750 32.383
13 Cide 36.0 41.883 33.000
14 Bozkurt 167.0 41.950 34.017
15 Devrekani 1050.0 41.583 33.833
16 Cerkes 1126.0 40.817 32.900
17 Ilgaz 885.0 40.917 33.633
18 Tosya 870.0 41.017 34.033
19 Devrek 100.0 40.517 30.300
20 Acisu-radar 1112.0 41.181 31.799
21 Eregli 191.0 41.283 31.417
22 Geyve 100.0 41.217 31.950
23 Ulus 162.0 41.582 32.637
24 Yenice 140.0 41.200 32.333
25 Boyabat 350.0 41.467 34.767
26 Caycuma 50.0 41.400 32.083
27 Arac 650.0 41.250 33.333
28 Gerede 1270.0 40.800 32.200
29 Seben 757.0 40.417 31.583
30 Kıbriscik 1025.0 40.417 31.850
31 Catalzeytin 75.0 41.950 34.217
32 Boludagi 948.0 40.717 31.417
33 Eskipazar 757.0 40.967 32.533
34 Goynuk 780.0 40.400 30.783

can be found in the reference of Sönmez (2013). Quality con-
trol tests applied to these rain gauge data are also described in
this reference. When comparing the data between the WRF-
and MPE-derived rainfall to rain gauges the point compari-
son method is used, in which 4 km WRF and 5 km satellite
pixels encompass each gauge measurement.

2.2 WRF modeling system

The Weather Research and Forecasting (WRF) model (Ska-
marock et al., 2005) of mesoscale NWP system that incor-
porates advanced numeric and data assimilation techniques
(3DVAR), a multiple nesting capability, and numerous state-
of-the-art physics options is suitable for extreme weather
applications in this study. Development and verification of
WRF have been carried out in many applications, including
Lee et al. (2010) and Flesch and Reuter (2012), which are the
most recent studies focused on heavy rainfall predictions at
high spatial resolution. The WRF was employed in a nested
configuration with grid points at 12 km and 4 km resolutions,

with its fine-sized domain covering the western Black Sea re-
gion in the northwest of Turkey (see Fig. 1). The model was
initiated, and time-varying lateral boundaries for the coarse
domain then nudged every 3 h, using 25 km analysis fields
from the European Centre for Medium-Range Weather Fore-
casts (ECMWF). The WRF model is initiated at least a day
earlier from the starting of the event to give the model some
spin-up time. A high-resolution (30 s) data set was used to
characterize modeled land surface across the fine-grid do-
main, while the modeled atmosphere was described at 23
levels (up to level slightly higher than stratopause), these
being stretched in the lower levels to ensure that resolu-
tion in the boundary layer is adequate for use of the plane-
tary boundary layer scheme. As the lowest boundary of the
WRF model, Noah land surface model calculates the soil–
vegetation–atmosphere interactions between surface and at-
mosphere. Microphysical and cumulus schemes were kept
active to calculate convective and non-convective precipita-
tion processes on both domains. Convective tendencies are
usually resolved within a 1- to 4 km grid scale and therefore
the 4 km grid of model inner domain is found to be appro-
priate in simulating heavy rainfall events in this study. Only
precipitation from a fine-resolution domain at an hourly time
step is used in analyses.

2.2.1 3DVAR setting

Errors in deriving initial and boundary conditions can cause
large variations in model estimates. Liang et al. (2004) found
that large uncertainties in boundary conditions, mostly over
oceans and other areas lacking complete data, contributed
greatly to model error. Model initiation is important because
of the inability of most NWP models to accurately forecast
beyond several days. WRF model is therefore implemented
with a 3DVAR assimilation scheme that introduces conven-
tional meteorological observations including the surface and
upper-air measurements of pressure, temperature, humidity
and wind speed into the initial stage of the model and adjust
boundary conditions to improve the performance of short-
term simulations of heavy rainfall events. With 3DVAR,
WRF is run by a new initial analysis, which is obtained by
a generalized inverse operator applied on observation. In as-
similation processes, in addition to the two primary sources
of input data (observations and a previous ECMWF back-
ground forecast), estimates of observation and background
error are required to compute the new analysis. In 3DVAR,
the background error covariance matrix, which is aimed to
have weights to adjust errors in features of the ECMWF
background field, is approximated via the NMC-method of
Parrish and Derber (1992) that averages forecast differences
of WRF simulations in 12-hourly periods for 3 days. Since
background errors vary between each application, a recal-
culation of background error is considered for each event
shown in Table 1 where the background field changes. Fi-
nally, new initial data sets to be used in WRF are defined and
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Fig. 2.The distribution of initial surface temperature, contours of sea level pressure and wind vectors for coarse domain on 25 October 2008
at 00:00 UTC(a) for WRF without assimilation (control) and(b) for WRF with assimilation.

with respect to new analyses, and model boundary conditions
are updated. As an example, Fig. 2 shows the distribution
of initial surface temperature, contours of sea level pressure
and wind vectors for coarse domain on 25 October 2008 at
00:00 UTC in panel (a) for WRF without assimilation (con-
trol), and in panel (b) for WRF with assimilation. The differ-
ence in these fields is significantly traceable, hence the effect
of assimilation becomes clear. Assimilation initial condition
over land is colder, while over sea it is warmer and associated
changes in wind and pressure are observable for this particu-
lar case.

WRF model simulations with and without assimilation are
performed for the duration of each event shown in Table 1.
Hereafter, the control WRF simulation and the WRF simula-
tion with a 3DVAR scheme will be referred to as WRF NOAS
and WRF AS, respectively.

2.2.2 Parameterization testing

Several options for physics parameterizations that are ac-
tual model representations of sub-grid scale processes are
available in the WRF system. Note that only radiation, land
surface and boundary layer physics in Table 3 were cho-
sen as standards from available literature. The implemen-
tation of various physics schemes, as well as their interac-
tions, cause a large variation in the forecast output (Zhang
et al., 2006), especially the choice of cumulus scheme and

microphysics. The particular skill of a cumulus and micro-
physics scheme in simulating rainfall is dependent upon the
region and storm being modeled (Giorgi and Mearns, 1999).
Therefore, key parameterization of cumulus convection and
microphysics in the WRF model was tested to yield an opti-
mal configuration that would give reasonably good precipita-
tion simulation for heavy rainfall events. All these tests with
WRF AS and WRF NOAS were performed on a particularly
heavy rainfall event that was recorded on 12–17 July 2009,
identified by event number 14 in Table 1. Table 3 lists the
four combinations of cumulus and microphysics parameter-
izations; namely“mp14cp1”, “mp2cp1”, “mp2cp5”, and
“mp14cp5” as well as other standard physics options (radi-
ation, land surface layer, and boundary layer) used in WRF
model.

Bias, root mean square error (RMSE) and false alarm rate
(FAR) statistics for 3-hourly rainfall are calculated for each
combination after running the WRF AS and WRF NOAS
with the specified combination for event number 14. The
results are shown in Fig. 3a for bias, panel (b) for RMSE,
and panel (c) for FAR. The best statistics are obtained with
the combination ofmp14cp1for WRF-AS and WRF-NOAS
simulations. This combination set consistently yields lowest
bias, RMSE and FAR values for both AS and NOAS simu-
lations. The worse combination is obtained bymp2cp5be-
cause of the choice of the Grell cumulus (cp = 5) scheme
in this study region. It should also be noted that the highest
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Fig. 3. Bias, RMSE, and false alarm rate (FAR) are shown in(a), (b), and(c), respectively, for different microphysics and cumulus options
when WRF model is simulated with assimilation (AS) and without assimilation (NOAS) on 12–17 July 2009.

Table 3.Combinations of microphysics and cumulus parameterizations for optimal configuration as well as other physics used in the WRF
model. mp and cp stand for microphysics and cumulus schemes, respectively, which are used with options 2 and 14 for mp and 1 and 5 for
cp available in WRF model.

Combination mp14cp1 mp2cp1 mp2cp5 mp14cp5

Microphysics (mp) Lim and Hong (2010) Lin et al. (1983) Lin et al. (1983) Lim and Hong (2010)
Cumulus (cp) Kain and Fritsch (1992) Kain and Fritsch (1992) Grell et al. (1995) Grell et al. (1995)
Radiation Dudhia (1989) Dudhia (1989) Dudhia (1989) Dudhia (1989)
Land surface layer Chen and Dudhia (2001) Chen and Dudhia (2001) Chen and Dudhia (2001) Chen and Dudhia (2001)
Boundary layer Hong and Pan (1996) Hong and Pan (1996) Hong and Pan (1996) Hong and Pan (1996)

sensitivity is to the choice of convective treatment rather than
microphysics. On the other hand, WRF skill is improved with
AS according to statistics between AS and NOAS. After test-
ing the combinations of these schemes, the resulting optimal
physics configuration is Lim and Hong (2010) (microphysics
scheme) and Kain and Fritsch (1992) (cumulus convection).

2.3 Satellite rainfall algorithm

The MPE is an instantaneous rain-rate product, which is de-
rived from 10.7 µm brightness temperatures of Infrared (IR)-
data of geo-stationary EUMETSAT satellites by continuous
recalibration of the algorithm with rain-rate data from po-
lar orbiting microwave sensors (Heinemann et al., 2002).
The MPE provides precipitation data with high spatial res-
olution at 3 km at sub-satellite points and 5 km in the study
area, while temporal resolution is 15 min. The algorithm
provides better results in convective cases than the strati-
form cases. Frontal precipitation, especially at warm fronts
is very often wrongly located and overestimated. MPE data
in this study are obtained from GDM for the whole disc area
(3712×3712) in a 15 min period for heavy rainfall events ob-
served after 2005 in Table 1. Since comparison analyses are
performed in hourly time intervals, the hourly MPE amounts
are obtained by aggregating the four 15 min instantaneous
rain rates within an hour.

Fig. 4. Area-averaged time series of WRF AS, WRF NOAS, and
MPE against observations are shown in(a) for event number 13
and(b) for event number 23.

3 Results

3.1 General analyses

Area-averaged time series of WRF AS, WRF NOAS, and
MPE against observations are shown for event 13 and 23
in Fig. 4a and b, respectively. These two events are se-
lected among 25 cases because they are the most repre-
sentative of showing data assimilation impact on a tempo-
ral dimension during an event. For both events, assimilated
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Fig. 5. Scatter diagrams of all data at 3 h intervals are shown in(a) between WRF with assimilation and observation,(b) between WRF
without assimilation and observation, and(c) between MPE and observation.

WRF model better follows observed temporal fluctuations
than non-assimilated WRF and MPE, except during the sec-
ond peak of rainfall event 13, where MPE is in agreement
with the ground observation. Assimilation provided a very
good match with observation for event 23 by reducing the
rainfall amount produced by WRF NOAS in the late after-
noon of 9 October 2010 in Fig. 4b. However, MPE com-
pletely misses the peak of this event. The scatter analyses of
WRF AS/NOAS and MPE against observations using data
from all 25 rainfall events are performed in order to inspect
their degree of association. The levels of scattering between
data pairs as well as overestimation and underestimation ten-
dencies against observations are determined from these anal-
yses. Figure 5 shows the scatter plots in panel (a) between
WRF AS and observation, panel (b) between WRF NOAS
and observation, and panel (c) between MPE and observa-
tion for 3-hourly rainfalls. The linear trend lines of data pairs
are also shown in this figure. WRF AS shows less scatter
than WRF NOAS, hence it produces a better degree of as-
sociation with observation. Compared to WRF AS, a some-
what higher level of scattering is inspected in WRF NOAS
that is mainly attributed to extreme overestimation and un-
derestimation data points tends to be modified by WRF AS
through data assimilation. MPE gives slightly higher corre-
lation values than WRF with and without assimilation as it
releases less extreme rainfall amounts and tends to underes-
timate heavy rainfall events.

RMSE, bias and correlation coefficient (R) of WRF AS,
WRF NOAS and MPE are calculated for 1-, 3-, 6-, and 24-
hourly rainfalls and the results with regular and conditional
precipitation (only non-zero observed precipitation cases) are
given in Table 4. According to results, the assimilation shows
a consistent improvement on WRF precipitation at all time
intervals. With WRF AS the lower RMSE, bias values and
higher correlation coefficients compared to WRF NOAS are
obtained. Correlation coefficients increase with increasing
time intervals from 1 to 24 h. Negative biases at all time inter-
vals with MPE indicate persistent underestimation features in
regular and conditional rains and this feature becomes more
significant than latter. However, WRF with and without data
assimilation shows the underestimation only with conditional

rain. When compared to the WRF model, MPE shows better
statistics in 1-, 3-, and 6-hourly rains but it shows a lower
correlation than WRF for daily rains because of a more pro-
nounced effect of high negative biases at this interval. It
should be pointed out that the lower RMSE values with MPE
are largely due to lower average rainfall intensity and are not
necessarily indicative of greater accuracy. With conditional
rains, statistical performances of WRF and MPE decrease
further with higher RMSE and biases, and lower correla-
tion when only observed rainy periods are considered. Higher
negative biases with conditional rains of the WRF model in-
dicate the fact that assimilation generally tends to reduce the
precipitation amount in WRF. Across the study area, the er-
ror is reduced by 2.53 % in 1 h, 3.59 % in 3 h, 3.13 % in 6 h,
and 2.66 % in 24 h intervals with regular rain analysis and
by 0.94 % in 1 h, 2.45 % in 3 h, 3.96 % in 6 h, and 2.63 % in
24 h intervals with conditional rain analysis with the addition
of the 3DVAR scheme in the WRF model. Precipitation with
3 h interval in regular analysis and 6 h interval in conditional
analysis showed the highest improvement.

The skills of the WRF and MPE algorithm are evaluated
further by calculating the equitable threat score (ETS) and
its bias (ETS Bias) for daily rainfall as functions of different
daily precipitation threshold values.

These scores are defined (Lee et al., 2004) as follows:

ETS= (A − H)/(A + B + C − H),

H = (A + B)(A + C)/(A + B + C + D),

ETS Bias= (A + B)/(A + C),

whereA is the number of matching precipitation while both
observation and model (WRF and MPE) shows precipita-
tion;B is the number of occurrence where observation shows
precipitation and model shows zero precipitation;C is the
number of occurrence where model shows precipitation and
observation shows zero precipitation; andD is the num-
ber of occurrence where both observation and model shows
zero precipitation. For a perfect algorithm, ETS = 1 and ETS
Bias = 1. For ETS bias, scores greater than 1 show overes-
timation while scores less than 1 indicate underestimation
for the model being evaluated. ETS and ETS Bias scores of
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Table 4. Bias and RMSE in [mm] and correlation coefficient (R) of WRF AS, WRF NOAS, and MPE for regular and conditional rain
amounts at 1, 3, 6 and 24 h intervals are given. Conditional rain represents only non-zero observed precipitation cases.

Obs.
WRF AS WRF NOAS MPE

interval Regular Conditional Regular Conditional Regular Conditional

1 h BIAS 0.0389 −1.0240 0.0493 −1.0048 −0.0885 −1.2968

RMSE 1.6171 3.8412 1.6590 3.8774 1.3200 3.4998

R 0.1088 0.0664 0.1030 0.0615 0.1613 0.1562

3 h BIAS 0.1300 −1.1792 0.1604 −1.1097 −0.2733 −2.1068

RMSE 3.6279 6.6968 3.7630 6.8647 2.9886 6.0921

R 0.1696 0.1296 0.1541 0.1092 0.2016 0.2078

6 h BIAS 0.2581 −1.0870 0.3174 −0.9508 −0.5249 −2.8489

RMSE 5.8472 9.4730 6.0361 9.8639 4.7591 8.4245

R 0.2270 0.1819 0.2114 0.1559 0.2397 0.2450

24 h BIAS 0.8478 −0.2519 1.0530 0.0237 −1.8022 −5.3121

RMSE 13.3393 18.5403 13.7038 19.0404 10.8916 16.3499

R 0.3645 0.2939 0.3605 0.2910 0.2822 0.2038

WRF AS, WRF NOAS, and MPE are shown, respectively,
in Fig. 6a and b for different daily precipitation threshold
values. In Fig. 6a, there is a more gradual decrease in ETS
scores of WRF AS and NOAS than decrease in those of
MPE along with increasing precipitation thresholds. MPE
does not produce any score after an approximate thresh-
old value of 48 mm day−1. Significant discrepancy between
WRF AS/NOAS and MPE scores after about a 3 mm day−1

threshold value explains that MPE shows a roughly 10 %
lower performance than the WRF model on capturing daily
precipitation thresholds. WRF AS and NOAS show a steady
increase in ETS Bias after a threshold value of 15 mm day−1,
while MPE shows a gradual but continuous decrease in ETS
Bias along with threshold range in Fig. 6b. In addition, ETS
Bias values with the WRF always stay above 1, while those
with MPE always stay far below 1. It is notable that the over-
estimation feature of WRF increases gradually up to 40 %,
while the underestimation feature of MPE increases up to
90 % towards higher precipitation thresholds. These behav-
iors in WRF and MPE consequently cause a decreasing trend
in ETS with increased precipitation thresholds. On the other
hand, for both of these skill measures, WRF AS consis-
tently produced better skills than WRF NOAS almost at all
threshold values, while both WRF (AS and NOAS) scores
(ETS and ETS Bias) yielded much better performance than
MPE. The substantial underestimation feature of MPE al-
ready given in Table 4 is consistent with these score analyses
of different precipitation thresholds.

Fig. 6. ETS and ETS Bias scores of WRF AS, WRF NOAS, and
MPE are shown, respectively, in(a) and(b) for different daily pre-
cipitation threshold values.

3.2 Event- and station-based analyses

The performance of WRF and MPE is investigated by the
analysis of precipitation with spatial variation using 34 sta-
tions for each event and temporal variation using 25 events
for each station. A cross validation of the models with a spa-
tial and temporal overview is performed in this way. Bias,
RMSE, and correlation coefficient (R) of WRF AS, WRF
NOAS, and MPE are calculated and shown for 3-hourly rain-
fall for each event in Fig. 7a and for each station in Fig. 7b.
Overall in all events and stations a general decrease in bias,
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Table 5.Mean RMSE in [mm] values of WRF AS, WRF NOAS and MPE at 1, 3, 6, and 24 h intervals are given for event- and station-based
analyses.

Event-based Station-based

WRF AS WRF NOAS MPE WRF AS WRF NOAS MPE

1-hourly 1.641 1.693 1.235 1.453 1.497 1.291
3-hourly 3.559 3.701 2.794 3.256 3.385 2.871
6-hourly 5.765 5.897 4.405 5.21 5.368 4.527
24-hourly 11.973 12.302 9.997 11.783 12.175 10.082

Fig. 7. Bias, RMSE, and correlation coefficient (R) of WRF AS, WRF NOAS, and MPE at 3 h interval are shown in(a) for each event and
(b) for each station.

RMSE and increase in R are observed on WRF AS with
respect to WRF NOAS, while a majority of events (87 %;
13 out of 15 events) and stations (71 %; 24 out of 34 sta-
tions) shows significant negative biases with MPE as this
was the case in previous analyses. The dry bias character of
MPE results in falsely lower RMSE compared to the WRF
in many cases but the correlation coefficient or general pat-
tern of MPE yields better skill than the WRF with and with-
out assimilation in 44 % of the events and 41 % of the sta-
tions. On the other hand, WRF AS yields better performance
than WRF NOAS in 60 % of the events (15 out of 25 events)
and 70 % of the stations (24 out of 34 stations) based on
root mean squared errors, and in 72 % of the events (18 out
of 25 events) and 79 % of the stations (27 out of 34 sta-
tions) based on correlation coefficient values. Improvement
with data assimilation is more evident in station-based anal-
yses than that in event-based analyses, and thereby the tem-
poral effects are better interpreted than spatial effects with

assimilation within the WRF. This can be attributed to the
greater uncertainty of spatial effects than temporal effects, as
the study covers mostly summertime convective precipitation
events. Furthermore, in both event- and station-based anal-
yses, the correlation coefficient inspection releases higher
number and more traceable improvement with assimilation
than root mean squared error. This is an indication of high
impact of assimilation on the track of a precipitation pattern
rather than its magnitude.

Mean RMSE values of 1-, 3-, 6-, and 24-hourly precipita-
tion obtained from WRF AS, WRF NOAS, and MPE are cal-
culated for event- and station-based data, and their summary
is given in Table 5. The WRF model with assimilation pro-
duced lower mean errors compared to no assimilation at all
time intervals. Temporal effects described by station-based
analysis is better resolved by the WRF model as this analysis
releases lower errors compared to those in the event-based
analysis. NWP models in general have high uncertainty in
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Table 6.Error improvements in [%] with the use of 3DVAR in WRF are given at 1 h, 3 h, 6 h, and 24 h intervals for event- and station-based
analyses. These improvements are provided for all data and partial data after excluding chaotic values with data assimilation.

Hourly time period
Analysis type Data type 1-hourly 3-hourly 6-hourly 24-hourly

Event-based All 4.31 5.13 3.72 4.21

Analysis Excluding chaotic values 7.80 9.19 9.29 10.12

Station-based All 2.79 4.29 3.81 4.08

Analysis Excluding chaotic values 8.99 11.39 11.46 11.20

parameterizing convective activities, hence they yield poor
skill for precipitation resulting from convective types of sys-
tems. However, this situation is reversed with the MPE, as
its rainfall character shows great variability inter events per
station. To point out the impact of assimilation on the WRF-
derived precipitation amount, the mean error reduction rate
or improvement rate in precipitation is computed for both
event- and station-based analyses at each rainfall interval,
and their results are shown in Table 6. In both event- and
station-based analyses, 3-hourly rain intervals showed the
highest improvement rates, with 5.13 % in event-based and
4.29 % in station-based when data assimilation is used in
the WRF model. In some cases, shown in Fig. 7a and b, the
assimilation degrades precipitation against observations be-
cause of the chaotic processes available in the model. These
processes, influenced by boundary conditions in the model,
destroy the agreement between modeled and observed fields
after data assimilation. These cases showed better agreement
with observed rainfall when WRF was used without data as-
similation. By excluding such cases from error analyses, the
direct impact of assimilation on precipitation is more isolated
and it enhances the error reduction rates further, as seen in
Table 6. In this case, for example, the mean improvement rate
is increased up to 11.39 % for 3 h intervals. Liu et al. (2013)
showed the impact of 3DVAR with 16 % improvement on
a 10 km single grid of 24 h accumulative rainfall when they
used WRF with 3DVAR and traditional meteorological ob-
servations at the initial state to simulate a rainfall storm.

While the improvements provided by assimilation were
given per event and per station basis in previous analy-
ses, probability of detection (POD), FAR, and critical suc-
cess index (CSI) values (Kidd et al., 2011) are evaluated to-
gether to trace the change in precipitation performance of
WRF with and without assimilation and MPE. For example,
Fig. 8 shows these score values in panel (a) for 1 h inter-
vals, panel (b) for 3 h intervals, panel (c) for 6 h intervals, and
panel (d) for 24 h intervals for each of the 25 events, while
Fig. 9a, b, c, and d show the equivalent diagrams for each of
the 34 stations. As both event and station charts, along with
1- to 24-hourly intervals, are examined in these figures, the
MPE shows substantially higher FAR, slightly higher POD
and lower CSI than those of the WRF model at all time

intervals. Also, as the time interval aggregates from 1 h to
24 h, the desired pattern of significant increase in POD and
decrease in FAR is witnessed. Thus, the CSI value, which
is a function of both POD and FAR, converges towards 1,
shown within contours. FAR is the least improved parameter
of MPE, along with time intervals, and this finding confirms
the existence of a systematic problem in MPE that makes the
algorithm persistently underestimate precipitation. In Fig. 8,
a few stations show consistently low FAR values at all inter-
vals in contrast to the rest of the stations with MPE, as the
algorithm shows some ability to capture the track of storms
from different events at these stations. Inter-event variability
(see Fig. 8) on these statistical parameters is much more evi-
dent than the variability appears among stations (see Fig. 9).

4 Summary and conclusions

In this study, QPE from the MPE rainfall algorithm and WRF
model with and without data assimilation were evaluated
against the network of 34 rain gauges installed in the par-
tially mountainous region of the western Black Sea in Turkey
during 25 different spring/summer/fall heavy rainfall event
periods selected from 2000 to 2011. The study provides a
comprehensive validation of the characteristics of WRF- and
satellite-estimated precipitation to examine their abilities to
accurately reproduce heavy rainfall events. In an effort to fur-
ther improve the developed QPF by WRF model, the WRF
model was also applied with a 3DVAR data assimilation
scheme, and its potential in producing QPF for heavy rainfall
events and for flood forecasting purposes was shown. Com-
parisons indicate a promising potential of the WRF model
in producing heavy rainfall events and with the use of data
assimilation in WRF, the results are further improved with
a better model performance. However, with an MPE algo-
rithm some systematic bias structures exist that need to be
addressed. The primary conclusions of the present research
are summarized as follows:

– The Kain–Fritsch cumulus and The Lim and Hong mi-
crophysics schemes produced more accurate rainfall
across the study area for a single heavy rainfall event

Nat. Hazards Earth Syst. Sci., 14, 611–624, 2014 www.nat-hazards-earth-syst-sci.net/14/611/2014/



I. Yucel and A. Onen: Evaluating a mesoscale atmosphere model 621

Fig. 8. POD, FAR and CSI statistics of WRF AS, WRF NOAS and MPE are shown together for each of the 25 events at 1, 3, 6, and 24 h
intervals in(a), (b), (c), and(d), respectively. Contours represent CSI values.

Fig. 9. POD, FAR and CSI statistics of WRF AS, WRF NOAS and MPE are shown together for each of the 34 stations at 1, 3, 6, and 24 h
intervals in(a), (b), (c), and(d), respectively.
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for both assimilation and no assimilation. Also, pre-
cipitation is found to be most sensitive to the cumu-
lus scheme rather than the microphysics scheme, ac-
cording to experimental design of determining the op-
timum parameterization in WRF, as this agrees with
the results of Lowrey and Yang (2008).

– Overall, the WRF model with and without assimila-
tion generates an overestimation trend against observa-
tions, while MPE substantially underestimates the pre-
cipitation. However, when only conditional rains are
considered WRF model also shows some underestima-
tion.

– On mean areal time series, assimilated WRF model
especially managed to match temporal observation
trends and rain amounts up to some extent. While tem-
poral consistence shows variance for each event, in
some events this consistency is observed much more
significantly. The MPE manages weakly to match
dense local rain gradients observed on WRF because
of its underestimation behavior.

– WRF with assimilation greatly improved precipitation
with respect to no assimilation at all time intervals and
the improvement was the highest with 3-hourly pre-
cipitation. Error statistics shows that across the net-
work, the assimilation improved the rainfall by 4 %
in various time intervals, but mostly over the 3 h in-
terval for regular and conditional rainfall. Assimila-
tion tends to trim the precipitation amount in WRF
according to the area-averaged conditional rain anal-
yses across the events. WRF with and without assim-
ilation showed substantially better performance than
MPE with threshold analysis while AS yielded better
skill than NOAS at almost all threshold values.

– Improvement of data assimilation was more evident
in station-based analyses than event-based analyses,
whereas MPE acted reversely by releasing smaller
mean error in event-based analysis. For both analyses,
the 3-hourly mean error is reduced roughly by about
5 % with data assimilation, and when the chaotic cases
are not included in analyses, the mean error reduction
rate is improved to 10 % for event-based and 12 % for
station-based analyses. Assimilation shows a tendency
of higher impact on precipitation trend than its magni-
tude.

– Time aggregation from 1- to 24 h make the POD, FAR
and CSI converge towards their high success values. In
both event- and station-based charts, MPE values show
overwhelmingly higher FAR and somewhat lower CSI
trends, while showing POD values close to WRFs; this
feature persists at all time intervals. Mean variability
among stations is clearly less than among events ac-
cording to POD, FAR, CSI combinations.

The study showed that WRF was often able to detect heavy
rainfall signals based on 25 events. Though it may not sim-
ulate both the occurrence time and the rainfall magnitudes
accurately, it manages to simulate them satisfactorily. Data
assimilation has a significant role in this satisfactory perfor-
mance of WRF systems. In addition, as a beneficiary point of
data assimilation used in this study, Liu et al. (2013) found
that obvious improvement can be observed regarding both
the rainfall cumulative curve and the 24 h rainfall total af-
ter assimilating the traditional observations via 3DVAR in
WRF. They also stated the improvement of radar data assim-
ilation through 3DVAR is negligibly small when compared
with the assimilation of the traditional meteorological obser-
vations. The local-scale improvement of convective storms,
which is apparently provided by data assimilation in this
study, benefits flood warning issues performed at fine-scale
locations. The capability of modeling systems is quite cru-
cial, particularly as an advisory tool, for taking flood early
warning measures. The heavy rainfall signals could be de-
tected well in advance by WRF, which is very useful for
flood advisory, particularly for locations showing very short
hydrologic response times for the heavy rain events. On the
other hand, although the MPE provides realistic precipita-
tion in a few cases and is a good supplement for WRF, it
requires modifications for its substantial underestimation be-
havior that was mostly evident in this study. Contrary to this,
for example, the operational hydro estimator (HE) rainfall
algorithm of the National Oceanic and Atmospheric Admin-
istration (NOAA), which is infrared-based algorithm similar
to MPE, shows a tendency to overestimate precipitation with
heavy rainfall events occurring during larger, more organized
convective storms (Yucel et al., 2011). Perhaps the bias struc-
ture suggests that the MPE may have a decreased sensitivity
to deep convection, which weakly generates heavy precipi-
tation in many events in this study. Also, it is suggested that
the calibration equation that is used to modify IR-based rain-
fall estimates with microwave data requires tuning in MPE
algorithm.
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