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Abstract. Drought is considered as one of the major nat-
ural hazards with a significant impact on agriculture, envi-
ronment, society and economy. Droughts affect sustainabil-
ity of agriculture and may result in environmental degra-
dation of a region, which is one of the factors contribut-
ing to the vulnerability of agriculture. This paper addresses
agrometeorological or agricultural drought within the risk
management framework. Risk management consists of risk
assessment, as well as a feedback on the adopted risk re-
duction measures. And risk assessment comprises three dis-
tinct steps, namely risk identification, risk estimation and risk
evaluation. This paper deals with risk identification of agri-
cultural drought, which involves drought quantification and
monitoring, as well as statistical inference. For the quantita-
tive assessment of agricultural drought, as well as the com-
putation of spatiotemporal features, one of the most reli-
able and widely used indices is applied, namely the vege-
tation health index (VHI). The computation of VHI is based
on satellite data of temperature and the normalized differ-
ence vegetation index (NDVI). The spatiotemporal features
of drought, which are extracted from VHI, are areal extent,
onset and end time, duration and severity. In this paper, a 20-
year (1981–2001) time series of the National Oceanic and
Atmospheric Administration/advanced very high resolution
radiometer (NOAA/AVHRR) satellite data is used, where
monthly images of VHI are extracted. Application is imple-
mented in Thessaly, which is the major agricultural drought-
prone region of Greece, characterized by vulnerable agricul-
ture. The results show that agricultural drought appears ev-
ery year during the warm season in the region. The severity

of drought is increasing from mild to extreme throughout the
warm season, with peaks appearing in the summer. Similarly,
the areal extent of drought is also increasing during the warm
season, whereas the number of extreme drought pixels is
much less than those of mild to moderate drought throughout
the warm season. Finally, the areas with diachronic drought
persistence can be located. Drought early warning is de-
veloped using empirical functional relationships of sever-
ity and areal extent. In particular, two second-order polyno-
mials are fitted, one for low and the other for high sever-
ity drought classes, respectively. The two fitted curves offer
a forecasting tool on a monthly basis from May to Octo-
ber. The results of this drought risk identification effort are
considered quite satisfactory offering a prognostic potential.
The adopted remote-sensing data and methods have proven
very effective in delineating spatial variability and features in
drought quantification and monitoring.

1 Introduction

Agriculture faces many challenges over the coming years,
such as international competition and further liberalization
of trade policy. Moreover, agricultural production is highly
dependent on climate, and is adversely affected by anthro-
pogenic climate change and increasing climate variability
leading to increases in climate extremes (Sivakumar et al.,
2005). Under a changing climate, the role of agriculture as
provider of environmental and ecosystem services will gain
further importance. On the other hand, natural disasters play
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a major role in agricultural development, and the economic
cost associated with all natural disasters has increased sig-
nificantly (Salinger et al., 2005). Current scientific projec-
tions point to changes, among others, in climate extremes,
such as heatwaves, heavy rainfall and droughts, in many ar-
eas including southern Europe. In fact, the entire Mediter-
ranean basin is characterized as a vulnerable area affecting
agriculture due to the combined effect of reduced precipita-
tion and temperature increases in areas already coping with
water scarcity. Agricultural production risks could become
an issue in southern Europe, as mainly droughts and heat-
waves are likely to increase the incidence of crop failure. As
yield variability increases, the food supply is at increasing
risk.

Environmental degradation is one of the major factors con-
tributing to the vulnerability of agriculture, because it di-
rectly magnifies the risk of natural disasters. Vulnerability of
agriculture can be reduced through adaptation measures and
tools to increasing climate variability (EU, 2007). In order to
ensure sustainability in agricultural production, a better un-
derstanding of the natural disasters that impact agriculture,
in particular droughts, is essential. Drought is considered as
one of the major natural hazards with a significant impact
on the environment, society, agriculture and economy. By
considering drought as a hazard, drought types are classi-
fied into three categories, namely meteorological or climato-
logical drought, agrometeorological or agricultural drought
and hydrological drought, and as a fourth class, the socioe-
conomic drought impacts can also be considered (Keyantash
and Dracup, 2002). Indeed, mainly agricultural droughts af-
fect sustainability of agriculture and may result in environ-
mental degradation of a region, which is one of the factors
contributing to the vulnerability of agriculture, as already
mentioned above. A comprehensive assessment of the im-
pacts of droughts on agriculture requires a multidisciplinary,
multi-sectoral and integral approach involving, among other
factors, the understanding of the physical and biological fac-
tors contributing to droughts. Moreover, the improvement of
drought prediction and early warning methods, as well as dis-
semination of warnings, requires a continuous effort, which
needs to be expanded and intensified. Needless to say, the
emphasis should remain on vulnerability and drought im-
pact assessment techniques and preparedness and mitigation
strategies.

From the beginning of 21st century, there is an awareness
of risk in the environment, along with a growing concern for
the continuing potential damage caused by hazards (Tarquis
et al., 2013). Gradually, a more integrated approach to envi-
ronmental hazards, including droughts, has been attempted
using common methodologies, such as risk analysis, which
involves risk management and risk assessment (Peng et al.,
2009; Shahid and Behrawan, 2008; Wu and Wilhite, 2004).
Indeed, risk management means reducing the threats posed
by known hazards, whilst at the same time accepting un-
manageable risks and maximizing any related benefits. Risk

assessment constitutes the first part within the risk manage-
ment framework and involves evaluating the importance of
a risk, either quantitatively or qualitatively. Risk assessment
consists of three steps (Smith, 2001), namely risk identifi-
cation, risk estimation and risk evaluation. Nevertheless, the
risk management framework also includes a fourth step, i.e.
the need for a feedback of all the risk assessment undertak-
ings. However, there is a lack of such feedback, which con-
stitutes a serious deficiency in the reduction of environmental
hazards at the present time.

There is an increasing trend for the use of remote sensing
in drought assessment, mainly due to the growing number
and efficiency of earth-observation satellite systems, along
with the increasing reliability of remote-sensing methods
(Dalezios et al., 2012a; Kanellou et al., 2012). Specifically,
remote-sensing data and methods can be employed in several
aspects of drought, such as vulnerability, damage assessment
and warning. Remote-sensing contributions can be focused
on relief and, possibly, preparedness or warning (Foot, 1993),
although, in many cases, remote sensing can also contribute
to disaster prevention, where frequency of observation is not
such a prohibitive limitation. This is why a major consid-
eration for remote sensing use in drought assessment and
disaster reduction is the extent to which operational users
can rely on a continued supply of data (McVicar and Jupp,
1998; Thenkabail et al., 2004). Indeed, satellite systems pro-
vide temporally and spatially continuous data over the globe
and, thus, they are potentially better and relatively inexpen-
sive tools for regional applications, such as monitoring vege-
tation conditions, agricultural drought and crop yield assess-
ment than conventional weather data (Domenikiotis et al.,
2004). For these types of applications, appropriate remote-
sensing systems are those that provide low spatial and high
temporal resolution data, since daily coverage and data ac-
quisition are necessary. The series of geosynchronous, polar-
orbiting meteorological satellites National Oceanic and At-
mospheric Administration/advanced very high resolution ra-
diometer (NOAA/AVHRR) fulfill the above requirements,
and there are already long series of databases.

In addition, remote sensing is a useful tool to analyse
the vegetation dynamics on local, regional or global scales
(Kogan, 2001), to assess the vegetative stress and to de-
termine the impact of climate on vegetation (Wang et al.,
2003). Satellite-derived vegetation indices have been exten-
sively used for identifying periods of vegetative stress in
crops, which represents an indication of agricultural drought,
or generally vegetation (Dalezios et al., 2012b; Kogan, 2001;
Domenikiotis et al., 2002). Specifically, the NOAA/AVHRR
derived normalized difference vegetation index (NDVI) has
been used in drought detection and mapping (Kogan, 1995;
Tucker and Choudhuri, 1987). NDVI is a quick and effi-
cient way for the estimation of vivid vegetation. Furthermore,
NDVI is indicative of the level of photosynthetic activity in
vegetation and, during vegetative stress periods, results in
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significant reduction in NDVI values, corresponding occa-
sionally to a complete lack of chlorophyll elements.

Agricultural drought is described in terms of crop failure
and exists when soil moisture is depleted so that crop yield
is considerably reduced. Indeed, crop growth and yield are
largely dependent on water availability (Heim, 2002). This
paper deals with the quantitative risk assessment of agricul-
tural drought affecting agriculture and its sustainability. For
clarification purposes, in this paper, the term “agricultural
drought” is used, which is already an established term in in-
ternational literature. The objective of the paper consists of
considering and analysing the risk identification component
of agricultural drought within the risk management frame-
work. Risk identification of agricultural drought involves
drought quantification, monitoring including early warning,
as well as statistical inference. For the quantitative assess-
ment of agricultural drought, as well as the computation of
spatiotemporal features, one of the most reliable and widely
used indices is applied, namely the vegetation health index
(VHI). The VHI is a combination of the vegetation condi-
tion index (VCI) and the temperature condition index (TCI)
derived from NOAA/AVHRR satellite data (Kogan, 2001).
In Greece, VCI and TCI, as well as the adjusted VHI, have
proven to be useful tools for the detection of agricultural
drought and for monitoring agricultural crops (Dalezios et
al., 2012b; Domenikiotis et al., 2002; Tsiros et al., 2004).
The paper is organized as follows: in Sect. 2, drought types
are defined and the concept of drought risk assessment is
presented. In Sect. 3, the risk identification methodology of
agricultural drought is developed, including quantification,
monitoring and features of drought, along with the remote-
sensing potential, as well as the study area and database. Fi-
nally, in Sect. 4, results are analysed and discussed.

2 Conceptualizing drought and drought risk

Droughts are part of nature’s climate variability. Droughts
originate from a deficiency of precipitation over an extended
period of time resulting in a water shortage for some activity,
group or environmental sector. Droughts differ from other
environmental hazards due to several unique characteristics,
such as its slow onset (often characterized as a creeping phe-
nomenon), the absence of a precise and universal definition
leading to inaction, and its non-structural impacts, which can
be local or regional and can last for a long time or a very
short time (Wu and Wilhite, 2004). Moreover, the impacts of
droughts on agriculture may be severe and are neither imme-
diate nor easily measured. All of these make assessment and
response difficult and mitigation actions less obvious, result-
ing into slow progress on drought preparedness.

2.1 Drought types and definitions

By considering drought as a hazard, there is a tendency
to define and classify droughts into different types. Defini-
tions of drought can be categorized into two types: concep-
tual and operational. Conceptual definitions are general and
help the public to understand the concept of drought. Opera-
tional definitions help in identifying the duration and sever-
ity of drought and are more useful in recognizing and plan-
ning for drought. Three operational definitions are presented,
namely meteorological or climatological, agrometeorologi-
cal or agricultural and hydrological drought. With the excep-
tion of meteorological drought, the other types of drought,
such as agricultural and hydrological, emphasize the human
or social aspects of drought, in terms of the interaction be-
tween the natural characteristics of meteorological drought
and human activities that depend on precipitation to provide
adequate water supplies to meet societal and environmental
demands. Figure 1 presents the temporal development of the
sequence of the different drought types, as proposed by the
US National Drought Center at the University of Nebraska
(Wilhite et al., 2000).

Meteorological drought is a region-specific natural event,
due to the regional nature of atmospheric phenomena, result-
ing from multiple causes. It is defined as the degree of dry-
ness that is specified by deficiencies of precipitation and the
dry period duration. Agricultural drought refers to the agri-
cultural impacts resulting from deficiencies in water avail-
ability for agricultural use. Indeed, agricultural drought is
defined by the availability of soil water to support crop and
forage growth, and there is no direct relationship between
precipitation and infiltration of precipitation into the soil. In-
deed, infiltration depends on antecedent moisture conditions,
soil type, slope and precipitation intensity. Soils with low
water-holding capacity are typical of drought-prone areas,
which are more vulnerable to agricultural drought. Hydro-
logical drought is normally defined by the departure of sur-
face and subsurface water from some average conditions over
a long time period resulting from meteorological drought.
Like agricultural drought, there is no direct relationship be-
tween precipitation amounts and the status of surface and
subsurface water supplies. There is also significant time lag
between departures of precipitation and the appearance of
these deficiencies in surface and subsurface components of
the hydrological system (Sivakumar et al., 2010). All these
drought types along with the temporal sequence of proce-
dures are shown schematically in Fig. 1 (Wilhite et al., 2000).
Finally, socioeconomic drought refers to the gap between
supply and demand of economic goods brought on by the
three other types of drought described earlier, such as water,
food, raw materials, transportation and hydroelectric power,
as a result of a weather-related shortfall in water supply. So-
cioeconomic drought is different from other types of drought,
since its occurrence depends on the spatiotemporal processes
of supply and demand.
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Table 1.Conventional and satellite data-based drought indices (from Kanellou et al., 2009b).

Conventional drought indices Satellite data-based drought indices

1. Percent of normal 1. Normalized difference vegetation index
2. Discrete and cumulative precipitation anomalies 2. DeviationNDVI index
3. Rainfall deciles 3. Enhanced vegetation index
4. Drought area index 4. Vegetation condition index
5. Rainfall anomaly index 5. Monthly vegetation condition index
6. Standardized precipitation index 6. Temperature condition index
7. Effective drought index 7. Vegetation health index
8. Palmer drought indices 8. Normalized difference temperature index
9. Crop moisture index 9. Crop water stress index
10. Bhalme–Mooley drought index 10. Drought severity index
11. Surface water supply index 11. Temperature-vegetation dryness index
12. Reclamation drought index 12. Normalized difference water index
13. Total water deficit
14. Cumulative streamflow anomaly
15. Computed soil moisture
16. Soil moisture anomaly index
17. Agro-hydro potential
18. Drought indices derived from flow data
19. Standardized water-level index
20. Reconnaissance drought index

Figure 1. Drought types and temporal sequential procedure (from
US National Drought Center, University of Nebraska).

Droughts result in several significant impacts, which can
be defined as direct and indirect. Direct drought impacts in-
clude reduced cropland, forest and rangeland productivity,
reduced water levels, increased fire hazards, livestock and
wildlife mortality rates, as well as damage to wildlife and
fish habitat. The consequences of these direct impacts are
considered as indirect impacts. Moreover, drought impacts
can also be classified by the affected sector, leading to envi-
ronmental, economic or social types of impact. Specifically,

environmental impacts refer to the losses resulted as a direct
consequence of drought or indirectly, such as wildfire dam-
age to plant and animal species. Similarly, many economic
impacts affect agriculture and related sectors. Finally, social
impacts refer to public safety, health, quality of life issues,
water-use conflicts and regional inequities in relief and im-
pacts distribution.

Quantification of drought is accomplished through
drought indicators, which are variables describing drought
features, such as magnitude, duration, severity, areal extent,
onset and end time (Dalezios et al., 2000). Primary data for
meteorological, agricultural or hydrological drought indica-
tors are climate variables, such as temperature and precipi-
tation, streamflows, soil moisture, reservoir storage, ground-
water levels, snow pack and vegetation. Data analysis, inter-
pretation and aggregation leads to drought indicators, where
several of them can be synthesized into a single indicator on
a quantitative scale, often called a drought index. There are
questions about the scientific and operational validity of an
index, i.e. how each indicator is combined and weighted in
the index and how an index value is related to geophysical
and statistical characteristics of drought (Steinemann et al.,
2005). Nevertheless, drought indices can provide ease of im-
plementation and are extensively used in drought quantifica-
tion and risk assessment (Farrell et al., 2010).

There are several review studies on the use of drought
indices based on conventional and/or remotely sensed data
(Mishra and Singh, 2010; Kanellou et al., 2009a; Heim,
2002). Table 1 presents a number of commonly used drought
indices based on both conventional (ground) and satellite
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data (Kanellou et al., 2009b). In order to assess and monitor
drought episodes and to alleviate the impacts of droughts it is
necessary to detect several spatiotemporal drought features,
as mentioned above, and to link drought variability to cli-
mate and its variability (Piechota and Dracup, 1996). More-
over, remote sensing has gradually become an important tool
for the detection of the spatial and temporal distribution and
characteristics of drought at different scales (Steven and Jag-
gard, 1995). At the present time, the growing number and
efficiency of earth observation satellite systems, along with
the increasing reliability of remote-sensing methodologies,
provide a range of new capabilities in monitoring drought
and assessing its effect. In this paper, the remote-sensing po-
tential is explored in terms of data and methods in order to
quantify agricultural drought and assess several drought fea-
tures and characteristics.

2.2 Drought risk concepts

It is significant and very useful to address and clarify basic
terms of risk analysis. Firstly, hazard is an inescapable part
of life. Indeed, hazard is best viewed as a naturally occur-
ring or human-induced process or event, with the potential
to create loss, i.e. a general source of future danger. On the
other hand, risk is sometimes taken as synonymous with haz-
ard, but risk has the additional implication of the chance of a
particular hazard actually occurring. In fact, risk is the actual
exposure of something of human value to a hazard and is of-
ten regarded as the product of probability and loss. Based on
the above, hazard (or cause) may be defined as “a potential
threat to humans and their welfare” and risk (or consequence)
as “the probability of a hazard occurring and creating loss”
(Smith, 2001). Unlike hazard and risk, a disaster is an actual
happening, rather than a potential threat, thus, a disaster may
be defined as “the realization of hazard”. The term environ-
mental hazard has the advantage of including a wide variety
of hazard types ranging from “natural” (geophysical) events,
through “technological” (man-made) events to “social” (hu-
man behaviour) events.

The concept of vulnerability, like hazard and risk, indi-
cates a possible future state. It implies a measure of risk
combined with a relative inability to cope with the result-
ing stress. Vulnerability can be assessed by the adverse reac-
tion of a system, or part of a system to the occurrence of a
hazardous event (Salinger et al., 2005). United Nations Inter-
national Strategy for Disaster Reduction (UNISDR) (2005)
reached the following definition: “the conditions determined
by physical, social, economic and environmental factors or
processes, which increase the susceptibility of a commu-
nity to the impact of hazards”. Most approaches to reduce
system-scale vulnerability can be viewed as expressions of
either resilience or reliability. Moreover, vulnerability refers
to the characteristics of populations, activities and the envi-
ronment that make the population susceptible to the effects
of a drought, and is measured by the ability to anticipate,

to deal with, to resist and recover from drought. Vulnerabil-
ity assessment provides a framework for identifying or pre-
dicting the underlying causes of drought impacts. As drought
hazard is a potential threat, it is important to assess the risk
associated with the drought hazard based on an assumed ex-
posure and coping capacity of the system. Thus, vulnerability
of the system with regards to the hazard implies the lack of
the system’s capacity to cope with the hazard and its conse-
quences. The vulnerability of a system towards drought can
be decomposed into the vulnerability of each element of the
system. Indeed, vulnerability is dependent on several factors,
such as the state of the system, the magnitude of the phe-
nomenon, the social factor and the exposure of an element or
a system to a certain hazard and is expressed as a function of
the above factors or variables.

Besides physical protection, a synthesis of anti-hazard
measures starts being considered, including land use man-
agement, better planning for response and recovery and
emergency warnings. The recent (2012) special report on
managing the risks of extreme events and disasters to ad-
vance climate change adaptation (SREX) from the IPCC (In-
tergovernmental Panel for Climate Change) focuses on the
relationship between climate change and extreme weather
and climate events, the impacts of such events, and the strate-
gies of managing the associated risks (IPCC, 2012). Under-
standing of extreme events and disasters is a prerequisite for
the development of adaptation strategies in the context of cli-
mate change and risk reduction within the disaster risk man-
agement framework. Extreme events and disasters, such as
droughts, are expected to have greater impacts on sectors
with closer links to climate, such as agriculture and food se-
curity.

For the calculation of risk for each drought episode, the
impacts and implications on the system have to be estimated.
Specifically, if water shortage and impact assessment ad-
dressed jointly, this leads to the estimation of vulnerability
and risk. Indeed, agricultural drought can be directly asso-
ciated to these impacts. In order to reduce the drought risk,
vulnerability of the affected system can be reduced by im-
proving its conditions through decreasing the magnitude of
the water shortage and its consequences and through improv-
ing the public capacity. In fact, the vulnerability reduction of
a system is the most important step for reducing the drought
risk. This can be achieved by a well-structured preparedness
plan, which has to be developed with the participation also of
stakeholders and long before any expected drought episodes
(Dalezios et al., 2009). Risk can be computed as a functional
relationship of hazard and vulnerability, shown in Fig. 2. Fur-
thermore, Fig. 3 presents a list of the components of drought
risk management framework, which include risk assessment
and risk governance.

The subject of risk analysis, as already mentioned, in-
volves risk management and risk assessment in order to in-
vestigate and better understand the problem of drought haz-
ard with the objective to develop proactive measures and
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Figure 2. Definition of Risk Concept.

procedures before a crisis. In turn, it is stated that risk
management covers the risk assessment component either
quantitatively or qualitatively, along with risk governance,
which involves a feedback by all the affected parties. More-
over, quantitative risk assessment consists of three compo-
nents, namely risk identification, risk estimation and risk
evaluation (Smith, 2001). Specifically, risk identification in-
volves hazard quantification and their interactions, event
monitoring and hazard modelling, statistical inference, as
well as the development of a database, which is based on
recorded historical environmental data of the study area.
This is where historical information on drought and its ef-
fect is analysed. Similarly, risk estimation involves the risk
of such events, i.e. event probabilities, as well as magnitude–
duration–frequency and areal extent relationships for hazard
assessment. Finally, risk evaluation includes environmental
impact assessment, cost-benefit analysis of adaptation op-
tions for the development of mitigation measures.

3 Risk identification of agricultural drought

This section covers the development of risk identification for
agricultural drought, which is a component of drought risk
assessment within the risk management framework. As al-
ready mentioned, drought risk identification involves quan-
tification and modelling of agricultural drought, and drought
monitoring, including early warning, statistical inference and
the development of a database. At first, the study area is de-

Figure 3. Components of drought risk management.

scribed showing the need for vulnerability assessment, which
affects agriculture and its sustainability. Then, the database is
presented, which consists of satellite and conventional data
and is based on recorded historical environmental data of
the study area. For the quantification of agricultural drought,
one of the most reliable and widely used indices is applied,
namely the VHI. The spatiotemporal features of drought are
then described, which are extracted from the VHI, and are
the areal extent, onset and end time, duration and severity
of drought. For monitoring of agricultural drought, empirical
models, which relate drought severity to areal extent based
on VHI values during the growing season, and provide a
prognostic ability for potential drought occurrence during the
warm season are also developed, based on satellite data.

3.1 Study area and database

3.1.1 Study area

Thessaly is located in the central part of Greece and has a
total area of 14 036 km2, which roughly represents 10.6 % of
the whole country. Moreover, in Thessaly, 36 % of the land is
flat and 17.1 % is semi-mountainous, whereas the remaining
44.9 % is mountainous. The region of Thessaly is character-
ized by a highly variable landscape, and the terrain is such
that high mountains surround the plain, which is the largest in
the country (Fig. 4). The plain of Thessaly is crossed by Pin-
ios river with several tributaries, namely Titarisios, Malakasi-
otikos, Litheos, Portaikos, Pamisos and Farsaliotis. Thessaly
water district is divided into three watersheds: the main one
is called the Pinios watershed with a size of 9500 km2; the
east watershed is 1050 km2 in size; the remaining basins and
sub-basins cover an area of 2827 km2. The main part of the
Pinios watershed includes a mountainous terrain with alti-
tudes higher than 2000 m, as in the historically known Olym-
pus (north) and Pindos (west), and agricultural plains, such
as the Thessalic plain and urban areas with a mean elevation
of 285 m.
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Figure 4. Geophysical map of Thessaly region.

The climate of the east part of Thessaly is a typical
Mediterranean climate. In the west part of Thessaly, the cli-
mate is considered continental with cold winters, hot sum-
mers and a large seasonal temperature range. Indeed, sum-
mers are usually hot and dry with temperatures occasionally
reaching 40◦C in July and August. Mean annual precipita-
tion over Thessaly is about 700 mm, unevenly distributed in
space and time, varying from about 400 mm at the central
plain to more than 1850 mm at the western mountain peaks.
The mountain areas receive significant amounts of snow dur-
ing winter months. At the Thessalic plain, around Larissa and
Karla watersheds, the mean annual precipitation has been re-
duced over the last 30 years by about 20 % (Dalezios, 2011)
and ranges between 250 to 500 mm.

The Thessalic plain constitutes the main agricultural area
of the country, with cotton still being the major crop.
However, wheat, sugar beets, maize, barley, horticulture,
fruits, olive trees and, recently, energy crops are also cul-
tivated in the region. Since rainfall is, in general, rare
from June to August, the resulted water deficit is replaced
by irrigation in order to satisfy agricultural water needs.
At the present time, in practical terms, the annual water
availability is about 1023 million m3, consisting of surface
(623 million m3) and groundwater (400 million m3), whereas
the annual water needs amount to 1836 million m3. There
is, thus, an annual water deficit of 813 million m3. Part of it
(about 600 million m3) is expected to be covered from stor-
age in a reservoir, known as Sykia Dam on the river Ache-
loos, which is under construction. Moreover, the amount of
water used for irrigation purposes accounts for about 96 %
of the total water consumption. The irrigated areas have sig-
nificantly increased over the last decades and are expected
to further increase in Thessaly. Thus, future water needs
are also expected to increase despite scheduled crop restruc-
turing programmes. Thessaly is characterized by vulnerable
agriculture, since extreme hydrometeorological events, such
as floods, hail and droughts are quite common in the catch-
ment, but also due to the existing water deficit for agriculture.
Thessaly is considered as one of the most important agri-
cultural regions in the country and drought episodes could
have environmental and socioeconomic impacts. Droughts
occur mainly due to reduced precipitation causing lack of

soil moisture, increased evapotranspiration, increased vege-
tative stress, runoff reduction, decrease in streamflow levels
in rivers, lakes and dams, lowering of the groundwater table,
and thus resulting in water deficit for agriculture. The subject
of this paper is agricultural drought and several drought fea-
tures are explored through remote sensing, and analysed and
presented in subsequent sections.

3.1.2 Database

For the VHI estimation, the following data are utilized. A
time series of 10-day brightness temperature (BT) images ex-
tracted from channels 4 and 5 for 20 consecutive hydrologi-
cal years (October 1981–September 2001) with a resolution
of 8× 8 km2 provided by NOAA. Similarly, a time series of
a 10-day NDVI extracted from channels 1 and 2 for 20 con-
secutive hydrological years (October 1981–September 2001)
with a resolution of 8× 82 provided by NOAA.

A database is developed for drought risk analysis and ex-
pected to be used in several components within the risk man-
agement framework. This database is based on recorded his-
torical environmental data of the study area and consists of
the following components. Digital information is collected
on environmental factors, such as geology, geomorphology,
soil, topography, agronomy, land use, land cover, geographic
information system (GIS) and similar topics, which are used
in susceptibility assessment. Information is also collected on
triggering factors leading to drought, such as meteorologi-
cal and hydrological parameters, e.g. rainfall and tempera-
ture, which are used in drought assessment. Also, a drought
inventory is developed based on recorded historical drought
episodes affecting agriculture. This drought inventory is used
in susceptibility and hazard assessments. Finally, the exposed
elements at risk are identified and recorded, such as crops,
production, environmental degradation, farms, soil and simi-
lar aspects, which are used in exposure analysis and vulnera-
bility assessment.

3.2 Quantification of agricultural drought

The estimation of VHI from remotely sensed data on a
monthly basis follows certain steps. At first, preprocessing
of satellite images is implemented, which includes geometric
and atmospheric correction of all images, as well as certain
filters for smoothing the data, which constitute an innovation
of the procedure resulting in the improvement of VHI’s per-
formance (Domenikiotis et al., 2002). Then, the computation
of the VHI is implemented and monthly VHI images of Thes-
saly are produced on a pixel basis. A brief description of the
developed methodology follows.

3.2.1 Preprocessing of satellite data

All satellite data are obtained online from NASA archives.
NDVI maps are 10-day maximum value composite (MVC)
images produced from the original CH1 and CH2 images,
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visible and near infrared, respectively, of NOAA/AVHRR.
Similarly, CH4 and CH5 images are converted to BT im-
ages using the equation provided by the information file of
the data set. Using the 10-day images, NDVI and BT im-
ages are composed over a monthly period using the MVC
and the mean pixel value, respectively. Missing data due to
cloud cover or sensor’s technical problems are filled up us-
ing monthly climatic values from time series of images with
no blunders. Before using NDVI and BT images, fluctuations
induced by noise must be removed. The combination of fil-
tering and the MVC can significantly reduce the noise from
residual clouds, fluctuating transparency of the atmosphere,
target/sensor geometry, and satellite orbital drift (Goward et
al., 1991). Other noise can be related to processing, data er-
rors, or simple random noise (Kogan, 1995). In the present
study, a “4253 compound twice” median filter (Van Dijk et
al., 1987) is applied to NDVI images, whereas a “condi-
tional” statistical mean spatial filter (window size ranging
from 3× 3 to 7× 7, according to image needs) has been used
for smoothing the BT series (Tsiros et al., 2009). The BT se-
ries presented continuous spatial fluctuations, and thus, a spa-
tial filter (statistical mean) has been preferred for smoothing
channel 4 and channel 5 BTs. The term “conditional” means
that the filter is applied only to the pixels that present errors.

3.2.2 Computation of VHI

The computation of VHI is based on satellite data of tem-
perature and the NDVI. The VHI is a combination of the
VCI and the TCI, both derived from NOAA/AVHRR satel-
lite data (Kogan, 2001). VCI and TCI, as well as VHI, as
properly adjusted, have been successfully applied to Greece
for the detection of agricultural drought and for monitoring
agricultural crops (Dalezios et al., 2012b; Domenikiotis et
al., 2002; Tsiros et al., 2004). A description of both VCI and
TCI is presented followed by the computation of VHI.

The VCI is based on, and is an extension of, the NDVI.
VCI scales the NDVI response of one image to the range
of NDVI responses and, this way, quantifies the potential of
regional responses (Kogan, 1995, 1997). VCI is related to the
long-term minimum and maximum NDVI (Kogan, 2001) and
is expressed by the following equation:

VCI = 100×
NDVI − NDVImin

NDVImax− NDVImin
, (1)

where NDVI, NDVImax and NDVImin are the smoothed 10-
day NDVI, its multi-year maximum and its multi-year mini-
mum, respectively, for each pixel in a given area. VCI values
vary from 0 (for extremely unfavourable conditions) to 100
(for optimal conditions). The maximum amount of vegeta-
tion is developed in years with optimal weather conditions.
Conversely, minimum vegetation amount develops in years
with extremely unfavourable weather (mostly dry and hot).
Thus, higher VCI values represent healthy and unstressed
vegetation. VCI separates the short-term weather signal in

the NDVI data from the long-term ecological signal (Ko-
gan, 1997). VCI has excellent ability to detect drought and
to measure the time of its onset and its severity, duration
and impact on vegetation. The drought-monitoring VCI algo-
rithm was developed and tested in several areas of the world
with different environmental and economic resource (Kogan,
1995; Domenikiotis et al., 2002).

TCI is based on the same concept as VCI. Similarly,
maximum amount of vegetation is developed in years with
optimal weather conditions, whereas minimum vegetation
amount develops in years with extremely unfavourable
weather (mostly dry and hot). Therefore, the absolute maxi-
mum and minimum of BT, calculated for several years, con-
tains the extreme weather events (drought and no drought
conditions). The resulted maximum and minimum values can
be used as criteria for quantifying the environmental poten-
tial of a region (Kogan, 1995, 1997). TCI is expressed by the
following equation:

TCI = 100×
BTmax− BT

BTmax− BTmin
, (2)

where BT, BTmax and BTmin are the smoothed 10-day radiant
temperature, its multi-year maximum and its multi-year min-
imum, respectively, for each pixel in a given area. Similar to
the VCI, TCI varies from 0, for extremely unfavourable con-
ditions, to 100, for optimal conditions, and higher TCI values
represent healthy and unstressed vegetation.

Kogan (2001) proposed the VHI, which represents overall
vegetation health and is used for drought mapping and crop
yield assessment. The five classes of VHI that represent agri-
cultural drought, as well as no drought conditions (Bhuiyan
et al. 2006), are illustrated in Table 2. Specifically, in Table 2,
it is evident that drought severity is decreasing with increas-
ing VHI values, i.e. class 1 refers to extreme drought with
VHI values less than 10, whereas, for VHI values greater than
40, there is no drought. VHI is expressed by the equation:

VHI = 0.5 × (VCI) + 0.5 × (TCI). (3)

In VHI computation, an equal weight has been assumed for
both VCI and TCI, since moisture and temperature contribu-
tion during the vegetation cycle is currently not known. VCI
and TCI vary from 0, for extremely unfavourable conditions,
to 100, for optimal conditions.

VCI and TCI characterize the moisture and thermal con-
ditions of vegetation, respectively (Kogan, 1995, 2001;
Bhuiyan et al., 2006). Thermal conditions are especially im-
portant when moisture shortage is accompanied by high tem-
perature, increasing the severity of agricultural drought and
having a direct impact to vegetation health. In many parts of
the world, TCI, along with VCI, has proven to be a useful
tool for the detection of agricultural drought (Kogan, 2001;
Bhuiyan et al., 2006; Tsiros et al., 2004).
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Table 2.VHI drought classification scheme (Kogan, 2001).

VHI values Vegetative drought classes
drought class numbers

< 10 Extreme drought 1
< 20 Severe drought 2
< 30 Moderate drought 3
< 40 Mild drought 4
> 40 No drought

3.3 Agricultural drought features

As already mentioned, in order to assess and monitor
drought, it is necessary to detect several drought features.
Indeed, remote-sensing data and methods can delineate the
spatial and temporal variability of several drought features
in quantitative terms (Dalezios et al., 2012a). A description
of some key features follows. Severity: severity or intensity
of drought is defined as escalation of the phenomenon into
classes from mild, moderate, severe and extreme. The sever-
ity is usually determined through drought indicators and in-
dices, which include the above-mentioned classes. Duration:
duration of a drought episode is defined as the time interval
from the start and end time, usually in months. Since drought
is a complex phenomenon, the assessment of start and end
time is a complicated technical subject. Onset: the beginning
of a drought is determined by the occurrence of a drought
episode. The beginning of a drought is assessed through indi-
cators or indices reaching certain threshold value. End time:
end time of a drought episode signifies the termination of
drought based, again, on threshold values of indicators or in-
dices. Areal extent: areal extent of drought is considered the
spatial coverage of the phenomenon as is quantified in classes
by indicators or indices. Areal extent varies in time and re-
mote sensing has contributed significantly in the delineation
of this parameter by counting the number of pixels in each
class.

4 Analysis and discussion of results

The results consist of quantification of drought through VHI
estimation on a monthly basis for a period of 20 years (1981–
2001) using satellite data. The analysis of results, besides
quantification, also involves extraction of several drought
features from VHI images, which lead to useful inferences.
Moreover, the analysis of results includes evaluation and val-
idation of the remotely sensed fitted monthly VHI series, in
order to assess its accuracy and prognostic potential.

The results are presented in Table 3 (categories 1 and 2)
and Table 4 (categories 3 and 4) and Figs. 5, 6, 7 and 8,
respectively. At first, it should be mentioned that there is
an on-going research effort on droughts in the study area
of Thessaly. In a recent study on hydrological drought us-

ing the reconnaissance drought index (RDI) based on satel-
lite and conventional data (Dalezios et al., 2012a), there
are eight detected drought periods lasting 12 months each
within the same 20-year study period. However, in this pa-
per, which deals with agricultural drought using VHI, and
for the same period, drought occurs every year during the
warm season, namely from May to October. This is shown in
Tables 3 and 4, which present the cumulative areal extent of
monthly VHI values throughout the warm season in number
of pixels per severity class for the 20-year period, respec-
tively. The above findings indicate that it would be advisable
to jointly consider, at a later stage, the two different types of
drought by merging RDI and VHI values, respectively, on a
pixel basis for a holistic delineation of drought in the study
area.

As already mentioned, the quantification of agricultural
drought by using VHI has resulted into Tables 3 and 4. In-
deed, the initial four VHI severity classes of the analysis have
been merged into two in Table 3, namely extreme (class 1)
and severe (class 2) drought into one class, and moderate
(class 3) and mild (class 4) drought into another class (Ta-
ble 4), respectively. The reason for merging classes is the
small number of pixels in each class in order to develop a
sizeable data set for fitting models. Tables 3 and 4 also show
the monthly total and the average for the merged classes. The
majority of pixels are accumulated between mild to moder-
ate drought severity classes, indicating a significant decrease
in the number of pixels from mild to extreme drought classes
for all the months. Similarly, in Tables 3 and 4, it can be
noted that the total seasonal extent in Thessaly for all of the
years ranges in the same order of magnitude. Tables 3 and 4
also show the same increasing trend throughout each warm
season. Furthermore, Table 3 indicates that there are years
with very small areal extent at the beginning of the warm sea-
son, reaching small total areal extent at the end of the warm
season. Similarly, Table 4 indicates that there are years with
large areal extent at the beginning, reaching equally large to-
tal areal extent at the end of the warm season.

Figure 5 shows the histogram of the cumulative average
monthly areal extent of the first two merged severity classes,
namely extreme (class 1) and severe (class 2). Similarly,
Fig. 6 shows the histogram of the other two merged sever-
ity classes, namely moderate (class 3) and mild (class 4)
class. Figures 5 and 6 also indicate that most of the pixels
are accumulated between mild to moderate severity classes
with the peaks of severity and areal extent, respectively,
appearing mainly towards the end of the summer. More-
over, Figure 7 shows the plotting of Figures 5 and 6 in one
graph. Indeed, Figure 7 presents the cumulative monthly
areal extent curves of the two merged classes, which cor-
respond to the four VHI severity classes of agricultural
drought. Furthermore, curve fitting is conducted for each of
these curves, resulting in the following polynomials, namely
Eq. (4) for high-severity areal extent drought and Eq. (5) for
low-severity areal extent drought, respectively, both with a
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Table 3.Cumulative Areal Extent (number of pixels) of Monthly Drought VHI values (sum of severity classes 1 and 2).

Cummulative May Jun Jul Aug Sep Oct Sum

1981 0 0 19 38 65 66 188
1982 0 1 14 28 31 31 105
1983 0 9 10 13 17 17 66
198 0 1 6 10 10 10 37
1985 0 12 30 58 71 71 242
1986 0 3 13 25 33 33 107
1987 0 0 7 8 17 17 49
1988 0 10 24 36 40 40 150
1989 1 19 36 43 53 53 205
1990 3 39 57 69 69 69 306
1991 0 0 1 2 2 2 7
1992 0 2 3 5 5 5 20
1993 0 1 2 10 10 10 33
1994 0 0 0 0 0 0 0
1995 0 0 17 20 20 20 77
1996 1 13 18 19 19 19 89
1997 0 0 2 2 3 3 10
1998 0 2 3 11 12 12 40
1999 0 6 6 7 7 7 33
2000 1 2 12 17 18 18 68
2001 0 7 15 15 15 52

6 127 295 436 517 503

Average 0.2857143 6.047619 14.047619 20.761905 24.619048 23.952381
SD 0.7171372 9.265399 13.843685 18.683963 22.44655 23.010924
Min 0 0 0 0 0 0

high coefficient of determination.

y = 0.0905x2
+ 4.3574x(R2

= 0.9168) (4)

y = −3.7413x3
+ 34.977x2

− 6.8352x(R2
= 0.9998) (5)

It is worth noting that the two curves of Fig. 7, namely the cu-
mulative monthly areal extent curve of high severity classes
(Eq. 4) and the corresponding curve of low severity classes
(Eq. 5), respectively, delineate the range of values that agri-
cultural drought may show every year during the warm sea-
son. Specifically, the curve of high severity classes (Eq. 4)
shows, on average, 0.3 pixels in May with a maximum of 3
pixels, whereas in October, the curve shows an average of 24
pixels with a maximum of 71 pixels. Similarly, the curve of
low severity classes shows an average of 25 pixels in May
with a maximum of 84 pixels, whereas in October, the curve
shows an average of 391 pixels with a maximum of 568 pix-
els. Indeed, at the beginning of the warm season in May, the
low severity drought may start with average 25 pixels and
may extend to 391 pixels in October, on average. On the other
hand, the high-severity drought starts in May with an average
of 0.3 pixels reaching 24 pixels in October, on average. These
findings signify the possibility of using the fitted curves for
monitoring and assessing drought in any region by imple-
menting the described methodology in the previous section,

where the actual VHI values may be different for different
regions. In particular, for the study area of Thessaly, if at the
beginning of the warm season in May there are close to 25
pixels or close to 0 pixels, this indicates that a low-severity or
a high-severity drought, respectively, may be expected during
the warm season.

In summary, the curves of Fig. 7 are fitted to the aver-
age values of data in Tables 3 and 4 and the corresponding
Eqs. (4) and (5), respectively. Indeed, it seems that the av-
erage values of data support the curve fitting of the above
Eqs. (4) and (5), respectively. Thus, the fitted curves of Fig. 7,
along with the corresponding Eqs. (4) and (5), respectively,
can be used for first-guess drought prognostic and monitoring
assessment leading to early warning. Moreover, every year,
new satellite images should be added to the database for the
re-calculation of Eqs. (4) and (5), respectively. Also, with an
increasing database, other options could also be considered,
such as medians and modes, besides average values, as well
as ground-truthing validation, in an effort to possibly im-
prove drought prognostic potential and early warnings. Nev-
ertheless, the developed curve fitting is a data-driven method-
ology, which is a standard remote-sensing approach. How-
ever, it is based on a large database of 20 years of satel-
lite data with a high coefficient of determination. The analy-
sis of results has indicated that this approach could be used

Nat. Hazards Earth Syst. Sci., 14, 2435–2448, 2014 www.nat-hazards-earth-syst-sci.net/14/2435/2014/



N. R. Dalezios et al.: Risk identification of agricultural drought 2445

Table 4.Cumulative areal extent (number of pixels) of monthly drought VHI values (sum of severity classes 3 and 4).

Cummulative: May Jun Jul Aug Sep Oct SUM

1981 0 0 123 252 343 418 1136
1982 8 74 193 321 416 431 1443
1983 36 142 228 331 433 464 1634
198 6 72 173 266 308 332 1157
1985 23 134 240 361 494 568 1820
1986 45 139 249 350 471 513 1767
1987 9 71 204 287 405 418 1394
1988 19 108 243 359 467 541 1737
1989 18 107 211 315 408 474 1533
1990 84 169 298 422 511 561 2045
1991 0 38 129 203 266 306 942
1992 16 103 174 265 323 374 1255
1993 12 94 173 260 310 352 1201
1994 9 60 101 154 213 236 773
1995 4 44 146 215 278 318 1005
1996 49 148 237 309 338 347 1428
1997 27 124 228 291 358 379 1407
1998 25 106 196 284 336 365 1312
1999 40 145 227 305 357 376 1450
2000 43 129 243 337 421 431 1604
2001 45 141 229 299 345 1059

518 2148 4245 6186 7801 8204

Average 24.666667 102.28571 202.14286 294.57143 371.47619 390.66667
SD 21 43 49 60 79 89
Min 0
Max 84 169 298 422 511 568
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Figure 5. Histogram of cumulative areal extent (number of pixels)
of average monthly drought VHI values (sum of severity classes 1
and 2).

operationally on a monthly basis every year starting in May
as a drought early warning indicator with sufficient confi-
dence.
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Figure 6. Histogram of cumulative areal extent (number of pixels)
of average monthly drought VHI values (sum of severity classes 3
and 4).

It is felt that it should also be mentioned that irrigation is
a common agricultural practice during the warm season in
the study area, which may affect drought analysis. Indeed,
the purpose of the approach presented in this paper is to
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Figure 7. Fitted models of cumulative areal extent (number of pix-
els) of average monthly drought VHI values for the two sums of
severity classes.
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Figure 8. VHI map of Thessaly for six months (April  - Sep 1985) (from Kanellou et al, 
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Figure 8. VHI map of Thessaly for 6 months (April–September
1985) (from Kanellou et al., 2009)(a) April 1985, (b) May 1985,
(c) June 1985,(d) July 1985,(e)August 1985,(f) September 1985.

develop a remote-sensing methodology under conditions of
existing agricultural practice, including irrigation, and the re-
sults have shown consistency, which has also been achieved
in similar recent studies in the study area (Dalezios et al.,
2012a; Kanellou et al., 2009a, 2012).

Finally, for illustrative purposes, Fig. 8 presents VHI
drought severity mapping of Thessaly for six months, namely
from April to September 1985 (Kanellou et al., 2009a). In
Fig. 8, it is evident that drought starts occurring in May with
increasing severity and areal extent throughout the warm sea-
son with the maximum occuring towards the end of the sum-
mer, as expected. Figure 8 also shows the spatial variability
of drought severity and extent within Thessaly, as well as de-
lineating the areas of drought persistence.

5 Conclusions

In this paper, VHI is developed based on remote-sensing and
GIS data and techniques. VHI monitors agricultural drought
and is estimated on a monthly basis. The data set covers a pe-
riod of 20 hydrological years, from October 1981 to Septem-
ber 2001. The study area is the region of Thessaly, in central
Greece, which is a drought-prone agricultural region char-
acterized by vulnerable agriculture. The results indicate that
drought occurs every year during the warm season, starting
in May, with increasing severity and areal extent throughout
the warm season with the maximum occurring in Septem-
ber. The results also show that, mostly, in central, northwest
and southeast parts of Thessaly (Fig. 8), drought occurrence
persists. Fitted models of drought cumulative areal extent for
different severity classes based on VHI values are used for
quantitative drought assessment with a very high coefficient
of determination.

It is clear that remote sensing has indicated some new
capabilities in assessing and monitoring the spatiotemporal
variability of drought. Several drought features are analysed
from the monthly VHI images, namely severity, duration,
areal extent, onset and end time. The majority of pixels is ac-
cumulated between mild to moderate drought severity classes
indicating a significant decrease in the number of pixels from
mild to extreme drought classes for all the months. Similarly,
in Table 3, it is noted that the total areal extent in Thessaly
for all of the years ranges in the same order of magnitude.
Moreover, there is no significant increase in the areal extent
from class 1 to class 4. Tables 3 and 4 also show the same
increasing trend throughout each warm season. There is also
an increase in the areal extent of drought during each drought
period with the maximum usually occurring towards the end
of the summer. Finally, the fitted curves of Fig. 7, along with
the corresponding Eqs. (4) and (5), respectively, can be used
for first-guess drought prognostic and monitoring assessment
leading to early warning systems.
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