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Abstract. It has been suggested that climate change might
modify the occurrence rate and magnitude of large ocean-
wave and wind storms. The hypothesised reason is the in-
crease of available energy in the atmosphere–ocean system.
Forecasting models are commonly used to assess these ef-
fects, given that good-quality data series are often too short.
However, forecasting systems are often tuned to reproduce
the average behaviour, and there are concerns on their rel-
evance for extremal regimes. We present a methodology of
simultaneous analysis of observed and hindcast data with
the aim of extracting potential time drifts as well as sys-
tematic regime discrepancies between the two data sources.
The method is based on the peak-over-threshold (POT) ap-
proach and the generalized Pareto distribution (GPD) within
a Bayesian estimation framework. In this context, storm
events are considered points in time, and modelled as a Pois-
son process. Storm magnitude over a reference threshold is
modelled with a GPD, a flexible model that captures the tail
behaviour of the magnitude distribution.

All model parameters, i.e. shape and location of the mag-
nitude GPD and the Poisson occurrence rate, are affected by
a trend in time. Moreover, a systematic difference between
parameters of hindcast and observed series is considered. Fi-
nally, the posterior joint distribution of all these trend pa-
rameters is studied using a conventional Gibbs sampler. This
method is applied to compare hindcast and observed series
of average wind speed at a deep buoy location off the Cata-
lan coast (NE Spain, western Mediterranean; buoy data from
2001; REMO wind hindcasting from 1958 on). Appropriate
scale and domain of attraction are discussed, and the reliabil-
ity of trends in time is addressed.

1 Introduction

Interest on natural hazard prevention, prediction and mitiga-
tion has increased along the last decades: strong wind storms,
extreme wind gusts, hurricanes and tornados are not an ex-
ception. The dangers, that a climate change might induce,
add an additional challenge to the statistical analysis of ex-
treme wind data as possible trends in extremal winds might
occur, increasing the inherent difficulties of extremal analy-
sis. Performing extremal analysis requires long records span-
ning decades, even centuries, to characterise the rarest events.
This need is exacerbated when the data series are potentially
affected by a trend in time. Indeed, whichever model is fitted,
the uncertainty of the estimates is large when only data series
with few events are available.

Bayesian methods were introduced in the field of natural
hazards two decades ago and they have succeeded as a flex-
ible and consistent way of controlling uncertainty (Sánchez-
Arcilla et al., 2008a; Coles and Tawn, 1996; Gelman et al.,
1995). Simultaneously, the models for analysing extremal
events have evolved. The models known asexcesses over
threshold or peak over threshold (POT) are nowadays in
common use for natural hazards and, particularly, in wind
hazard modelling (Walshaw, 1994; Palutikof et al., 1999;
Della-Marta et al., 2009; Coles, 2001). However, trend anal-
yses require non-stationary models while the standard POT
models are based on the assumption of stationarity of the
time process. Non-stationary POT models are available, with
applications in different frameworks (Beguería et al., 2011;
Hundecha et al., 2008; Tramblay et al., 2011).
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An obvious way of reducing the uncertainty of the esti-
mates of both extremal parameters and their trends consists
in analysing data spanning a longer time period. As direct
observations cannot be extended beyond the availability of
measuring devices at the site of interest, hindcast, forecast
or satellite data series may offer an alternative source of in-
formation (Winterfeldt et al., 2010; Izaguirre et al., 2010).
However, it is known that hindcast wind data seldom fit ex-
actly the directly observed wind (Bolaños et al., 2004). There
are several reasons for the misfit: possible mis-calibration of
models; the fact that models actually aim at giving a kind
of energy average, not quasi-instantaneous (e.g. 10 min av-
erage) winds; etc. However, when interest is focused in cli-
matic features as extreme event statistics, hindcast data infor-
mation is very valuable. Nevertheless, the joint use of directly
observed and hindcast data introduces further complication
in the models to be used, as a kind of conciliation between
the two types of data must be considered. Some authors have
assessed this compatibility between types of data in order
to assess extremal characteristics. Different approaches have
been used, combining information from different buoy net-
works and hindcast models in different areas: the North At-
lantic (Forte et al., 2012; Winterfeldt et al., 2010) and the
Mediterranean (Cañellas et al., 2007; Izaguirre et al., 2010),
among others.

This contribution aims at the joint analysis of non-
overlapping hindcast wind data and data coming from di-
rect measurements. This analysis evaluates the differences
between both types of observations and checks for (linear)
trends in the extremal parameters. The procedure is based
on a non-stationary POT model which is analysed using
Bayesian techniques. The illustration series in this contribu-
tion shows no overlap between model hindcast and measured
data, and therefore the proposed model does not account for
it. An analogous model for overlapping series was presented
by Ortego et al.(2012), where it was shown that the results
are not significantly altered when accounting for overlap, al-
beit for significant wave height data.

Section2 describes the data and the site briefly. Section3
presents the model and the estimation methods. Finally, re-
sults are presented in Sect.4.

2 Wind data

The statistical properties of a hindcast model and a series of
observations are compared. A series of wind speed has been
constructed, joining actual data measured at a deep buoy
location (10 min average) (Bolaños et al., 2009) and hind-
cast data provided by a REMO model within the HIPOCAS
project (hourly average at 10 m height) (Sotillo et al., 2005;
Guedes Soares et al., 2002). Wind speeds at the Tarrag-
ona deep buoy (XIOM network, longitude 40.68◦ N, latitude
1.47◦ E) are intermittently available between the years 2004
and 2012, totalling 7 years and 158 days with observations.

The series of wind speed at the nearest HIPOCAS grid point
(longitude 40.50◦ N, latitude 1.50◦ E) is available for the pe-
riod 3 January 1958 to 31 December 2001. Both locations are
shown in Fig.1. Admitting that the statistical parameters of
the model may evolve over time, it is possible to assess ev-
idence of differences between series (h for hindcast REMO
and b for buoy) as well as evidence of linear trends for the
parameters.

The criteria to define a wind event have been chosen
to meet three hypotheses which are used in the proposed
methodology. The first and second ones assume that wind
events are conditionally independent both in time occurrence
and in size, i.e. once the parameters of the model are fixed
the occurrence and size are independent from event to event.
These two assumptions are difficult to test using limited time
series, but obvious autocorrelations should be avoided. The
third assumption is that events are punctual in time. This is
not true as wind events can be characterised by a duration
over a threshold and a definition of punctual event is then
required. Events have been defined in the following man-
ner: an event starts when the recorded average wind speed
in the reference time series is greater than 15 m s−1. It fin-
ishes when the recorded average wind speed is less than
15 m s−1 and remains at this level for at least 3 days. There-
fore, the minimum gap between events is 3 days and we en-
sure that events are approximately independent. It is debat-
able whether 3 days separation between events is enough for
approximate independence from event to event. For instance,
the so-called twin storms observed on the east coast of the
Iberian Peninsula (Jiménez et al., 1997) are candidates to vi-
olate the assumed independence. However, recent studies on
these phenomena are not conclusive in this respect (Sánchez-
Arcilla et al., 2008b; Wojtanowicz, 2010). The magnitude of
the event is defined as the maximum average wind speed
recorded during the event, and the corresponding time of
occurrence as the instant of recording of this value. The
h0 = 15 m s−1 threshold ensures that the excesses have ap-
proximately a generalized Pareto distribution (GPD) distri-
bution. As wind speed measurements may have a ratio (rela-
tive) scale, the studied magnitude is log wind speed (Egozcue
et al., 2006). The data set is displayed in Fig.2. Gaps in the
buoy segment represent a loss of information but do not rep-
resent an inconvenience for the methodology. However, we
are not considering the distribution of events within a year
and gaps covering only one season may cause small incre-
ments/decrements of the number of events or a distortion of
their magnitude.

3 Methods

3.1 The peak over threshold model

Models of excesses over a threshold, often named peak
over threshold (POT;Embrechts et al., 1997), have been
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Figure 1. Site of the data series: buoy, circle; REMO grid point,
cross.

extensively used in hazard analysis of natural phenomena
(Davison and Smith, 1990; Egozcue and Ramis, 2001; Coles
et al., 2003; Egozcue et al., 2006; Leadbetter, 1991). In-
dependently of the specific estimation method, the POT
framework consists of a system of modelling assumptions.
The standard assumptions for stationary process (Embrechts
et al., 1997) can be summarised as follows:

– events are identified as points occurring in time;

– the elapsed times between consecutive events are ran-
dom, identically distributed and mutually independent;

– each event has an associated random magnitude;

– excesses of magnitudes over a given threshold are iden-
tically distributed and mutually independent;

– elapsed times and magnitude excesses are mutually in-
dependent.

In this study of wind events we adopt a slightly modified POT
model in order to cope with non-stationarity. The assumption
of identically distributed elapsed times and magnitude ex-
cesses is changed: both random variables have distributions
in a family which parameters can change with time and with
the data source, buoy or hindcast. Also the statements of in-
dependence are modified to conditional independence – i.e.
for fixed parameters of the distribution of elapsed times and
magnitude excesses, random observations are independent.

In the stationary case the elapsed times are usually as-
sumed to be exponentially distributed, thus the number of
excesses over the selected threshold of magnitude is an ho-
mogeneous Poisson process. Also, a common approach is to
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Figure 2. Data series: REMO (brown) and buoy (orange) events.

assume that excesses over the threshold have a generalized
Pareto distribution (GPD), as proposed inDavison and Smith
(1990) or in Embrechts et al.(1997). In the present approach,
the occurrence of events with magnitude over the threshold is
assumed to be an inhomogeneous Poisson process. Excesses
over the threshold are modelled by a GPD, although con-
sidering that its parameters might depend on time and data
source.

3.2 Occurrence of wind events

Wind events were defined in Sect.2 and their wind speed is
assumed to be larger than the threshold 15 m s−1. The main
assumption is that their occurrence in time corresponds to
an inhomogeneous Poisson process (Grandell, 1997; Coles,
2001). In a homogeneous Poisson process the parameter is
the Poisson rate, interpreted as the mean number of events
per year. When this mean is not constant, the Poisson rate
is replaced by the Poisson intensityλ(t). If T is the random
time from an origin to the next event, and (t , t + dt) denotes
a short enough time interval, thenλ(t) is

λ(t)dt ' Pr[t < T ≤ t + dt |T > t ]

=
FT (t + dt) − FT (t)

1− FT (t)
, (1)

for t > 0, whereFT is the cumulative distribution function
(CDF) ofT . Therefore,λ(t)dt is the probability of the event
occurring in (t , t + dt ], conditional to the event not occur-
ring beforet . As a consequence of Eq. (1), the CDF and
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probability density function (PDF) ofT , for t > 0, are

FT (t) = 1− exp

−

t∫
0

λ(s)ds

 ,

fT (t) = λ(t)exp

−

t∫
0

λ(s)ds

 ,

respectively. The Poisson intensity is modelled as depending
on time in two ways. First, we assume a linear trend on time
of the Poisson rate, in order to discuss evidence in favour or
against the presence of a trend in time. On the other hand,
wind events come from two different sources, REMO hind-
casts and observations on a buoy. The Poisson intensity cor-
responding to the two sources might differ. This possibility
is modelled as a systematic difference, which can be viewed
as a step function on time or as an indicator function of the
data source.

Suppose that wind events detected by REMO took place at
times t0, t1, . . . , tn, and those observed by the buoy at times
τ0, τ1, . . . , τm, with tn < τ0. The available data are the elapsed
times between consecutive events, i.e.ti−ti−1, i = 1,2, . . . ,n

(REMO events) andτi − τi−1, i = 1,2, . . . ,m (buoy events).
Then, the whole time interval covered by observations is (t0,
τm). The Poisson intensity can be written as

λ(t) = λh +
αλ

τm − t0
t + δλIb, t0 ≤ t ≤ τm,

whereλh is the Poisson intensity at the first event att0 which
corresponds to a REMO observation andδλ is the increment
of Poisson intensity due to the fact that the observation comes
from the buoy. The symbolIb is an indicator with value equal
to 1 for event times in which events are recorded by the buoy,
and 0 otherwise. The parameterαλ is the total increase of the
Poisson intensity fromt0 to τm due to the linear trend of the
Poisson intensity irrespective to the type of observation.

In order to proceed to a Bayesian estimation of the param-
eters the likelihood function of (λh, αλ, δλ) given the elapsed
times is required. Since the elapsed times are assumed inde-
pendent, given the parameters, the required likelihood is

LT

(
λh,αλ,δλ|{ti}, {τj }

)
=

n∏
i=1

λ(ti) exp

−

ti∫
ti−1

λ(s)ds


·

m∏
j=1

λ(τj )exp

−

τj∫
τj−1

λ(s)ds

 , (2)

where, for simplicity,{ti}, {τj } represents all available data
on elapsed times between consecutive events. When inter-
ruptions of observations are present, as is the case in the
buoy data set, some time differencesτj − τj−1 do not cor-
respond to elapsed times between consecutive events; these

time intervals are ignored in the likelihood (see further de-
tails in Ortego et al., 2012), i.e. the likelihood (Eq.2) is valid
when there are no interruptions in the observations. After
grouping integrals within the exponentials, the log-likelihood
`T = logLT is reduced to

`T

(
λh,αλ,δλ|{ti}, {τj }

)
=

n∑
i=1

log

(
λh +

αλ (ti − t0)

τm − t0

)

+

m∑
j=1

log

(
λh + δλ +

αλ

(
τj − t0

)
τm − t0

)
− λh (tn − t0) − (λh + δλ)(τm − τ0)

−
αλ

2(τm − t0)

(
t2
n − t2

0 + τ2
m − τ2

0

)
. (3)

The log-likelihood in Eq. (3) is essentially that proposed in
Ortego et al.(2012) for ocean waves, although a bit simpler
due to the fact that in the present data set there is no overlap-
ping in time between the hindcast and buoy observations.

Once the model for occurrences in time is specified, its
capabilities and limitations can be discussed. The main abil-
ity of the model is to capture larger (smaller) concentrations
of wind events along the observation period. As the change
of Poisson intensity is considered linear, what is controlled
is only the long-term change of the mean number of events
per year. Annual or few-year periodic changes are not repre-
sented by the model. Moreover, occurrence of events is as-
sumed to be independent of the size of the events in the in-
homogeneous Poisson process. As a consequence, possible
changes in the Poisson intensityλ(t) along the observation
time do not also tell us about possible changes in the size of
events. For instance, an increasing linear trend ofλ(t) would
imply a larger mean number of events per year, but, in the
model, this is not related to the possibility of changes of the
size of the events.

3.3 Event magnitude model

The wind magnitude associated with each event can be se-
lected in different ways. Traditionally, wind speed magni-
tude is taken as velocity in m s−1 without any additional con-
sideration. However, the natural scale and domain of wind
speed should be taken into account. Large wind speeds do
rather behave in a ratio scale (also known as relative scale),
as shown by the thresholds chosen for most cyclone classifi-
cation systems and the Beaufort scale levels of 7 or more. In
fact, the absolute scale is near to be meaningless: a difference
of 1 m s−1 on a reference wind speed of 2 m s−1 represents
a factor 3/2, whereas the same difference on a reference wind
speed of 20 m s−1 is considered almost irrelevant. A simple
way of considering these issues of scale is to take logarithms
on wind speeds, and thus consider that the magnitude asso-
ciated with events is the logarithm of the maximum average
wind speed. Accordingly, the magnitude of a wind event is
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herein taken as the natural logarithm of the measured wind
speed in m s−1.

As we consider that events occur following a non-
homogeneous Poisson process, magnitudes are assumed to
be conditionally independent from event to event. In or-
der to model magnitude excesses over a threshold ofh0 =

log(15 m s−1), we assume that they follow a generalized
Pareto distribution (GPD). The GPD provides a suitable
asymptotic model for excesses over a high enough thresh-
old (Pickands III, 1975; Davison and Smith, 1990; Dupuis,
1998). Furthermore, we also consider that excesses overh0
must be GPD in the Weibull domain of attraction, i.e. the sup-
port of the excesses has an unknown finite upper limit. This
assumption is based on the fact that, on Planet Earth, wind
speed is physically limited and, accordingly, the existence of
such upper bound is granted, even though the limit itself is
not known. This assumption has been successfully applied
in the extremal analysis of other weather magnitudes, such
as rainfall and ocean-wave heights (Pawlowsky-Glahn et al.,
2005; Egozcue et al., 2005, 2006; Sánchez-Arcilla et al.,
2008a).

For a magnitudeX, denote the excess byY = X−h0 con-
ditional onX > h0. One of the standard parameterisations of
the GPD is (Embrechts et al., 1997)

FY (y) = 1−

(
1+

ξy

β

)−1/ξ

, 0 < y < ysup, (4)

whereβ > 0 is a scale parameter,ξ is a shape parameter,
andysup is the upper limit of the distribution support. When
ξ ≥ 0, the GPD has an unlimited tail, i.e.ysup= +∞, and be-
longs to the Fréchet domain of attraction of maxima (ξ > 0);
for ξ = 0, the GPD is in the Gumbel domain of attraction.
Under the assumption that the GPD has an upper bound, the
shape parameter must beξ < 0 (Weibull domain of attrac-
tion). In order to take into account the restrictionξ < 0, other
parameterisations of GPD in the Weibull domain of attraction
have been proposed (Ortego et al., 2010, 2012); we adopt
here the parameterisation inOrtego et al.(2012). We use

µ = log
(
ysup

)
= log(−β/ξ) ; ν = log(−ξ) ,

instead of the classical parametersξ , β, given that the GPD
distribution is in the Weibull domain of attraction (ξ < 0).
The old parametersβ and ξ < 0 can be obtained from the
new ones as−ξ = exp(ν) andβ = exp(ν)/exp(µ). Introduc-
ing these parameters in Eq. (4), the CDF and the correspond-
ing PDF are

FY (y|µ,ν) = 1−

(
1−

1

exp(µ)
y

)exp(−ν)

, (5)

fY (y|µ,ν) =
1

exp(ν)exp(µ)

[
1− exp(−µ)y

] 1−exp(ν)
exp(ν) , (6)

for 0 ≤ y < ysup, respectively.

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

raw 10min Windspeed average [m/s]

ξ

β

−1.0 −0.5 0.0 0.5 1.0

0
1

2
3

4

log−transf 10min Windspeed average

ξ

β

−1.0 −0.5 0.0 0.5 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Figure 3. Joint likelihood contours for the (ξ,β) parameters of the classical parametrisation of the GPD
distribution for the raw data (left) and for the log-transformed data (right). Orange contours for buoy;
brown contours for REMO.

25

Figure 3. Joint likelihood contours for the (ξ , β) parameters of the
classical parameterisation of the GPD distribution for the raw data
(left) and for the log-transformed data (right). Orange contours for
buoy; brown contours for REMO.

Table 1. Probability of GPD belonging to the Weibull attraction
domain,ξ < 0, for the buoy and REMO series, for raw (in m s−1)
and log-transformed data.

Class/scale Raw Log

Hindcast 0.40 0.83
Buoy 0.89 0.94

We have introduced two assumptions – namely that the
magnitude to be treated is the log-wind speed and that the ex-
cesses overh0 must have a limited distribution in the Weibull
domain of attraction. The compatibility of both assumptions
can be checked on the available data. Figure3 shows the like-
lihood contours of raw and log-transformed wind speed for
both data series.

In both data sources, the likelihood corresponding to the
raw data cover a substantial region withξ > 0 (Fréchet do-
main of attraction), whereas for log-transformed data the
coverage is considerably shifted towards values ofξ < 0
(Weibull domain of attraction). Table1 shows the probabil-
ities of the Weibull domain of attraction for raw and log-
transformed wind speed at the location for both data series.

Buoy data are likely to correspond to a GPD withξ < 0
both in the raw and log scales, but this is not the case for hind-
cast data. In a raw scale, the Fréchet domain of attraction is
more likely for this second data series. These results suggest
that after taking logarithms both series are likely to corre-
spond to the Weibull domain of attraction, a further argument
in favour of considering a ratio scale for large wind speeds.
Figures4 and5 show the Q–Q plots of the HIPOCAS/buoy
data using the GPD with median values ofξ , β as reference.
This approach is quite restrictive because the GPD param-
eters are assumed to be uncertain and possibly changing in
time. The figures show that GPD is a suitable model for both
data series.

The upper bound parameterµ = logysup is so large that it
only depends on universal physical laws and geometric as-
pects of the Earth. We consider that human-scale climatic
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values ofξ andβ as reference. This approach is quite restrictive be-
cause the GPD parameters are assumed to be uncertain and possibly
changing in time. GPD is a suitable model for this data series. Green
lines are 0.05-significance contours for Kolmogorov–Smirnov test
of goodness of fit.

changes cannot change it, and it is therefore constant over
time (Ortego et al., 2012). We also assume thatµ may be
different for hindcast data and data observed at the buoy. The
proposed model forµ is then

µ(t) = µh + δµ · Ib, (7)

where the differenceδµ represents systematic regime differ-
ences between buoy observations and the hindcast data.

On the other hand, the GPD parameterν might be affected
by a (linear) trend in time, apart from the possible systematic
regime differences between the buoy and the REMO series.
Accordingly, the model proposed is

ν(t) = νh + δν · Ib + αν · t, 0 < t ≤ tN − t0, (8)

whereδν is the difference inν between the series h (hindcast
REMO) and b (buoy). The parameterαν is the total drift ofν
from t0 to tN , from the start of the hindcast series to the end
of buoy observations.

The excess magnitudeY has been recorded for each event,
for both series h and b. The data set of pairs of occurrence
times and excesses is{(ti,yi), i = 1, . . . ,N}. It is not neces-
sary to consider the distinction of occurrence times of series h
and b. Times are generically denoted asti and the notation in
Sect.3.2 is no longer necessary:N = n + m and theτi are
a subset of theti in the present section. The likelihood of the
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cause the GPD parameters are assumed to be uncertain and possibly
changing in time. GPD is a suitable model for this data series. Green
lines are 0.05-significance contours for Kolmogorov–Smirnov test
of goodness of fit.

model parameters, given the sample, is

L
(
µ0,δµ,ν0,δν,αν |{(ti,yi)}

)
=

N∏
i=1

fY (yi |µ(ti),ν(ti))

=

N∏
i=1

1

exp
(
ν(ti)

)
exp(µ(ti))[

1− exp
(
−µ(ti)

)
yi

] 1−exp(ν(ti ))

exp(ν(ti )) . (9)

The corresponding log-likelihood, for 0< yi < ysup, is

`
(
µ0,δµ,ν0,δν,αν |{(ti,yi)}

)
= −

N∑
i=1

(ν(ti) + µ(ti))

+

(
1− exp[ν(ti)]

exp[ν(ti)]

) N∑
i=1

log
[
1− exp(−µ(ti))yi

]
, (10)

which will be used in the Bayesian estimation of the param-
eters.

3.4 Bayesian estimation

Bayesian methods (e.g.Gelman et al., 1995) are very useful
in contexts where data are scarce, such as hazard assessment
problems. Bayesian methods allow us to assess the uncer-
tainty of the estimates of parameters, usually large in these
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Figure 6. Kernel estimate of the predictive posterior density of the
upper limit of the GPD distribution for hindcast and buoy observa-
tions. Orange contours for buoy; brown contours for REMO. The
curves are reproduced in a reduced scale in order to show the mode
of the velocity upper limit.

situations. Parameters are assumed to be random variables,
and uncertainty is described through their distribution.

A prior distribution is established for all parameters. This
distribution encodes our knowledge about their likely val-
ues. As a priori assumption, parameters of the event mag-
nitude distribution and parameters of the occurrence model
are taken as independent in this analysis, i.e. parameters
θ = (µ0,ν0,δµ,δν,αν) and φ = (λh,λb,αλ) are indepen-
dent. Therefore, the prior joint density of (φ, θ ) is π0(θ) ×

π0(φ).
The likelihood of the parameters given the data,φ, θ , fac-

torises into two terms depending only onφ and θ respec-
tively: L(θ |D) × L(φ|D), whereD denotes the sample of
occurrence times and excess magnitudes for the two series h
and b.

The posterior distribution of the parameters is proportional
to the product of the prior and the likelihood:

π(φ,θ) ∝ π0(θ) × π0(φ) × L(θ |D) × L(φ|D). (11)

The likelihood of the parameters is concentrated in a finite
range (mainly because of the assumption of a GPD model
with an upper bound). An improper uniform prior has been
assumed for both sets of parameters, according to this finite-
range concentration feature (Box and Tiao, 1973, p. 21). The
prior density for the occurrence parameters,π0(φ) has been
assumed to be (improper) uniformly distributed onλh > 0,
λb > 0, λh + αλ > 0, λb + αλ > 0. The prior density for the

magnitude parameters,π0(θ), has been assumed to be uni-
formly distributed onµ0, δµ, ν0, δν , αν .

The whole shape of the posterior density gives an assess-
ment of the uncertainty in the estimation procedure. The pos-
teriorπ(φ, θ) may also be used to derive a point estimate, e.g.
the most likely value (posterior mode) or the expected value.

The posterior in Eq. (11) has a quite complex form when
considering all parameters simultaneously. A first simplifi-
cation comes from the factorisation of the posterior density
into terms containing the occurrence parametersφ and the
excesses parametersθ . Therefore, the estimation ofφ and
θ can be carried out separately. For both terms in the pos-
terior density, fixing all but one of the involved parameters,
the conditional log-posterior density becomes a tractable uni-
variate log-density, which can be satisfactorily sampled using
a Gibbs sampler (Robert and Casella, 2000).

4 Results and discussion

The wind data set described in Sect.2 has been modelled us-
ing the POT-GPD framework defined in Sects.3.2 and3.3.
A sample of the posterior density in Eq. (11) has been ob-
tained using a Gibbs sampling algorithm, with three chains,
10000 draws and a thinning ratio of 1: 10. A burn-in of 50 %
has been applied. The convergence of the joint chain has been
assessed using the Gelman criterion (Gelman et al., 1995).

The log wind speed magnitude (excesses over
log15 m s−1) has been modelled using a GPD with the
proposed (ν, µ) parameterisation. Figures4 and5 show that
the hypothesis of a GPD (Weibull domain of attraction) is
not rejected at 0.05 significance for both series. The presence
of time trends and differences between REMO and deep
buoy data can be assessed using Figs.7 and8.

Figure 7 shows the joint posterior PDF ofδν and αν

(lower-left panel). This joint PDF is characterised by its large
dispersion thus pointing out the need of larger records to re-
liably estimate possible time trends in the shape of the GPD
and the differences between the two data series. The marginal
and conditional mode ofαν (lower-right panel) differ sub-
stantially from 0. But a criterion based on Bayesian discrep-
ancyp value has been used (Gelman et al., 1996) and the
value αν = 0 is placed on the central part of the posterior
marginal, thus making the possible positive trend inν non-
significant. We can conclude that there is some evidence of
positive trend in the shape parameter but it should consid-
ered doubtful as there is no strong evidence against no trend
during the observed time interval. Similarly, the change in
ν from hindcast data to buoy data has the mode placed at
a positive value near to 1 (upper panel), pointing out differ-
ences between the GPD shape for the two series. However,
the valueδν = 0 is fairly centred in the posterior marginal
distribution ofδν , thus meaning that the change inν is not
significant and should be considered carefully.
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Figure 7. Lower-left panel shows the joint posterior density for (δν ,
αν ), the difference between the two data series and the total drift
along the observed time interval for the shape parameterν (lower-
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tograms for the two parameters and their PDF conditional on the
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Figure 9. Lower-left panel shows the joint posterior density for
(λb − λh), the difference on Poisson intensity for both signals, and
αλ), the total drift of the Poisson intensity (lower-left panel). The
upper and lower-right panels show the marginal histograms for the
two parameters and their PDF conditional on the posterior joint
mode.

These results are consistent with the decrease in the size of
the extreme events during the buoy period observed in Fig.2.
The trend inν (αν) is positive but not significant, and the dif-
ference between the REMO and buoy periods (δν) is negative
but non-significant. Altogether this leads to smaller values of
ν for the buoy period than for hindcast. In the classical pa-
rameterisation this would mean a smallerξ parameter for the
buoy period than for the REMO. The upper limit of the GPD
distribution in the classical parameterisation is−β/ξ . If the
β parameters were the same for both periods, this would lead
to a lower upper limit of the GPD distribution for buoy period
than for REMO.

In the proposed parameterisation,δµ accounts for the dif-
ference between the upper limit of the distribution of both
periods. Figure8 (lower-left panel) shows the posterior joint
PDF of total drift in the parameterµ, αµ and the difference
in µ corresponding to the two series. The valueδµ = 0, al-
though not centred with respect to the marginal PDF (up-
per panel), is in a 90 % credible interval. The hypothesis of
no difference between REMO and buoy data is plausible.
The mode of the posterior marginal ofδµ is negative. There-
fore, there is only a weak evidence against the upper limit
of the wind speed being the same for hindcast and buoy ob-
servations. With regard toµ0, the posterior median estimate
for µ0 is about 0.53 (lower-right panel) which corresponds
to aboutysup= 82 m s−1. Theµ0 density conditional to the
mode ofδµ, µ0) (red line, lower-right panel) approximately
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corresponds toµ0 = 0.82, i.e. an upper limit of wind speed
of 145 m s−1. Figure6 shows a kernel estimate of the predic-
tive posterior density of the upper limit of the distribution for
hindcast and buoy observations.

Figure9 shows the estimated posterior density for the in-
tensity differenceλb − λh and the linear trend parameterαλ

which is the total drift ofλ along the observation time. The
marginal histograms for these parameters are shown in the
upper and lower-right panels. The equality of initial Pois-
son intensities for REMO and buoy series is assessed graph-
ically by means of the lineλb − λh = 0. The line lies in the
lower tail of the posterior PDF, leading to a small Bayesian
p value when testing for the equality of both values, i.e.
the difference of the reference Poisson intensities is signifi-
cant. The deep buoy series predicts about two events per year
more than those hindcast by the REMO model. Regarding the
trend,αλ, its histogram (lower-left panel) is approximately
centred at 0. This provides a Bayesianp value near 0.5 when
testing no linear trend in the Poisson intensity. Therefore,
there is a non-significant trend in the intensity of the Pois-
son process.

It is still a matter of debate to what extent the frequency
and intensity of windstorms may change as a consequence
of the hypothetical climate change in the future. The results
obtained forλ(t) are non-contradictory with other author’s
works, mainly devoted to investigating the changes in ex-
treme winds, with methods based on global or regional cli-
mate models (e.g.Bolaños et al., 2004; Rockel and Woth,
2007). The slight and non-significant positive time trend ob-
served forλ(t), corresponding to an increase of events, is
in agreement to the hypothesis of climate change considered
in IPCC reports (IPCC, 2007). However, the consistency of
the locally obtained results with IPCC projections should be
considered carefully, since these IPCC projections are global
and are not necessarily coincident with local ones such as
the ones considered in the paper. Actually, any assessment of
single series cannot be expected to deliver any sensible result
about global/regional climate change effects. The simultane-
ous analysis of many of these series of different nature and
data quality may be needed for that.

We consider that the hindcast model may have a stronger
inertia than the buoy measurements; actually, model data (be-
ing hourly averages) must exhibit less variability, i.e. have
more “inertia” (in a figurative sense), than buoy data (10 min
averages). Under steady, non-extremal stormy conditions,
hindcast winds would have more energy than true winds,
leading to an overestimation of winds. However, after the
analysis of this data set, no significant change of either upper
limit or shape of wind speed excesses distribution has been
detected. The lack of overlap between buoy and hindcast se-
ries is not a major problem for this methodology – as shown
by Ortego et al.(2012), the Bayesian estimation procedure
makes it unnecessary to have overlapping series, though of
course the obtained estimates show less uncertainty if the se-
ries are larger, and are better if they overlap.

5 Conclusions

A wind speed time series (REMO) has been analysed, to-
gether with a wind speed data set registered in a deep buoy in
front of the Tarragona coast. A non-stationary Poisson/GPD
model accounting for linear time trends and differences be-
tween the hindcast and buoy series has been assessed. The
wind speed was log-transformed to deal with its ratio scale.
The parameterisation of GPD of excesses over 15 m s−1 has
been adopted to restrict distributions to be have finite tail, i.e.
to be within the Weibull domain of attraction of maxima. The
model was fitted using a Bayesian procedure.

The results confirm that the joint analysis of hindcast and
directly observed wind speeds is useful to enlarge existing
records used in extremal analysis. No significant time trends
have been detected in occurrence rates of events and shape
parameter of GPD. Importantly, there was no evidence in
favour of the existence of differences in shape and upper limit
of the GPD for excesses between the two sources of infor-
mation, thus supporting the idea of using hindcast data for
extremal analysis. Nonetheless, there were significant differ-
ences in the rate of occurrence of wind events recorded by
hindcast and directly observable events, the latter being sub-
stantially higher, at about two events a year.

Although the total time of observation has been substan-
tially increased by incorporating hindcast data, the uncer-
tainty of the estimates is too large to attain conclusive re-
sults. This is the case of the time trend on the shape of GPD,
represented by the parameterαν , with a marginal distribu-
tion suggesting a positive trend, but without a clear statistical
significance.
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