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Abstract. Heavy convective rainfall incidents that occurred
over western coastal Greece and led to flash floods are ana-
lyzed with respect to mesoscale analysis for the period from
January 2006 to June 2011. The synoptic scale circulation
is examined throughout the troposphere along with satellite
images, lightning data and synoptic observations of weather
stations. Well-known instability indices are calculated and
tested against synoptic observations. Taking into account the
severity of the incidents, the performance of the indices was
not as good as expected. Further detailed analysis resulted
in the development of a new index that incorporates formal-
ized experience of local weather and modeled knowledge of
mechanisms of severe thunderstorms. The proposed index
named Local Instability Index (LII), is then evaluated and
its performance is found to be quite satisfactory.

1 Introduction

Thunderstorms accompanied by heavy rainfall often lead to
flash flood events with disastrous consequences on the econ-
omy, the environment and, in some cases, have resulted in fa-
talities. Although the performance of the numerical weather
prediction models have been improved (Kelley and Käl-
lén, 2013), further study is always challenging due to their
impacts.

One of the fundamental conditions for a thunderstorm
initiation is the existence of an unstable atmosphere. In
order to estimate the instability, thermodynamic indices
have been created by combining related meteorological pa-
rameters (Showalter, 1953; George, 1960; Boyden, 1963;

Jefferson, 1963a; Jefferson, 1963b; Miller , 1967; Litynska et
al., 1976; Peppler, 1988; Peppler and Lamb, 1989; Jacovides
and Yonetani, 1990; Reuter and Aktary, 1993; Tian and Fan,
2013). These indices have not always shown satisfactory re-
sults due to local effects that are not well represented or due
to limited data sets.

Related studies have been carried out for specific regions
of Greece with acceptable results (Dalezios and Papamano-
lis, 1991; Michalopoulou and Karadana, 1996; Sioutas and
Flocas, 2003; Chrysoulakis et al., 2006; Marinaki et al.,
2006). The main challenge of these studies was the avail-
ability and reliability of observation data, as the existing ra-
diosonde network is rather insufficient. It has been shown
that the performance of the indices depends on the season or
even month, the terrain of the area and the type of the thun-
derstorms (Michalopoulou and Jacovides, 1987; Prezerakos,
1989; Dalezios and Papamanolis, 1991; Haklander and Van
Delden, 2003; Tyagi et al., 2011).

Western Peloponnese, being washed by the Ionian Sea, is
an area that is frequently affected by severe thunderstorms
(Maheras and Anagnostopoulou, 2003; Metaxas et al., 1999;
Ziakopoulos, 2009; Xoplaki, 2002). However, relevant stud-
ies have not been performed so far, mainly due to the lack
of radiosondes data. The objective of this study is to exam-
ine the thermodynamic environment of severe thunderstorms
with respect to heavy rainfall occurring in this area for the
period of 1 January 2006 to 30 June 2011. An alternative
methodological tool for developing a useful and practical in-
dex is proposed. This index is going to be used for forecast-
ing these events without employing radiosondes data because
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they are not available for most hydrological basins of magni-
tude 5 and above.

2 Data

The severe thunderstorms with heavy rainfall that occurred
in the examined area of northwestern Peloponnese (see
Fig. 1), more specifically over the hydrological basin de-
fined by the rivers Peiros, Parapeiros, Vergas and Pinios (al-
most 2500 km2) (MEECC, 2012) during 1 January 2006 to
30 June 2011, were considered. For this purpose, a mesoscale
analysis of the atmosphere with a 6 h time step for that period
was performed. Data sets of dry and dew point temperature at
the surface and geopotential height, temperature and humid-
ity at the isobaric surfaces of 850, 700, 500, 300 hPa were
used. The 6-hourly synoptic scale analysis of the atmosphere
derived from the archive of the Hellenic National Meteoro-
logical Service (HNMS) and a re-analysis of 0.125◦ resolu-
tion from the European Centre for Medium-Range Weather
Forecasts (ECMWF) with the same time step were also em-
ployed (Veremei et al., 2013). Additionally, the surface syn-
optic observations (SYNOP) derived from the stations of An-
dravida, Araxos, Pyrgos and Zakynthos (see Fig.1) were
employed and merged into 6 h intervals in order to be com-
patible with the aforementioned time step (i.e., 00:00–06:00,
06:00–12:00, 12:00–18:00, 18:00–24:00 UTC).

Missing merged SYNOP were noticed randomly through-
out the available data set, mainly during night hours, week-
ends and public holidays, representing a percentage of 2.8,
3.1, 51.2, 29.2 % for the stations Andravida, Araxos, Pyrgos
and Zakynthos, respectively.

For the dry temperature, the missing data were classified
into three categories. The first category is characterized by
6 h intervals at Andravida station with no available obser-
vations from the nearby stations. This category consisted of
nine cases. For this category, the Group Method of Data Han-
dling (GMDH) algorithm (Acock and Pachepsky, 2000) was
employed with dependent variables:

– the temperature at 850 hPa at the time of the missing
observation (T8500)

– the 24 h trend ofT850 at the specific time related to
the same time of the previous and the next day (T8500–
T850−24 andT850+24–T8500)

– the dry temperature at the same time of the next (T+24)
and of the previous day (T−24)

– the 24 h trend of the next 6 h dry temperature related to
the corresponding hour of the next day (T+30–T+6)

– the 24 h trend of the previous 6 h dry temperature related
to the corresponding hour of the previous day (T−6–
T−30)

Figure 1. Map of examined area. The locations of the stations are
displayed. The points A, B, C, D define the area of lightning data.

– the 6 h wind runs at the same time, before 24 h and after
24 h.

The accuracy (±1◦C) was found to be as high as 88 %.
The second category consisted of 113 cases, being char-

acterized by available observations at Araxos station at the
referring times of the missing observations at Andravida. In
this case, the GMDH algorithm was also employed with one
more dependent variable, namely the dry temperature of this
nearby station. The accuracy (±1◦C) was found up to 90 %.

The third category was characterized by 2 or more suc-
cessive missing observations, consisting of 106 cases. In this
case, the GMDH algorithm was not selected, but a qualitative
approach was employed instead, with the aid of respective
values from the nearby weather stations when available, the
synoptic analysis and the satellite images from the satellite
Meteosat-9 and more specifically a combination of the SE-
VIRI High Resolution Visible channel and the IR10.8 chan-
nel with the aid of the CineSat application.

For the surface relative humidity, the 228 missing merged
observations were filled with the aid of a qualitative ap-
proach, due to the nature of this parameter. The subjective
estimation was based on succeeding and preceding observa-
tions, on observations of the nearby stations, on the synoptic
analysis and on Meteosat-9 images (a combination of the SE-
VIRI IR3.9, IR10.8 and IR12.0 channels).

The amount of precipitation and the duration of each in-
dividual thunderstorm led to their intensity determination. If
a thunderstorm occurs within a 6 h interval in at least one
of the examined weather stations with intensity greater than
5 mm min−1 for at least 5 min, then this interval is defined as
a 6 h interval of severe thunderstorm.

The lightning data were available for the period
1 June 2008 to 30 June 2011, referring to an area de-
fined by the points with coordinatesA (38.33◦ N, 20.60◦ E),
B (38.33◦ N, 21.90◦ E), C (37.35◦ N, 21.90◦ E) and D

(37.35◦ N, 20.60◦ E) (Fig. 1). Correspondingly, 6 h intervals
being characterized by more than 10 strokes/hour, were con-
sidered as intervals of severe thunderstorms. These records
were merged with the synoptic observations. However, there
were cases with recorded strokes without recorded thunder-
storms from the synoptic observations. The identification
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of these cases was further verified with the aid of satel-
lite images (Meteosat-9) as derived from the channel com-
bination named Convection RGB (WV6.2–WV7.3, IR3.9–
IR10.8, NIR1.6 and the VIS0.6 channels).

This analysis showed 508 6 h intervals with thunder-
storm events over the examined area, including 143 inter-
vals of severe thunderstorms associated with rainfall inten-
sity greater than 5 mm min−1 for at least 5 min duration or
with 10 strokes/hour as detailed above. The specific events
potentially lead to flash floods. The remaining 365 cases refer
either to thunderstorms with no or relatively small amounts
of precipitation or thunderstorms associated with frontal ac-
tivity, and were excluded from the subsequent analysis. The
143 severe cases occurred from May to October and thus our
study became restricted to these.

Due to limited availability of lightning data, two distinct
sub-periods were used. The first period, from 1 May 2006
to 31 October 2007, is characterized by lack of the lightning
data. The second one, from 1 June 2008 to 30 June 2011,
is considered of higher reliability due to the availability of
lightning data. In the first one, 138 6 h intervals of thunder-
storms occurred, including 54 severe thunderstorms. In the
second period 370 events of thunderstorms were observed,
including 89 severe events.

A set of metadata were aggregated from the first period
data, including:

– veering and backing of winds at surface at 850, 700,
500, 300 hPa

– temperature and humidity for 6, 12 and 24 h trends at
surface, 850, 700, 500, 300 hPa (i.e.,1T6h etc.)

– surface pressure for 6, 12 and 24 h trends

– geopotential heights trends at 850, 700, 500, 300 hPa

– thickness for all combinations of the surface levels at
850, 700, 500, 300 hPa

– components that constitute the instability indices KI,
HI, TTI and SWEAT (i.e., (T − Td)Levels or sin(wind
direction500hPa− wind direction850textrmhPa etc.).

3 Methodology

Available data made feasible the calculation of the thermo-
dynamic instability indices KI, HI, TTI and SWEAT. Due
to the fact that these indices refer to a specific geographical
point, the Andravida surface weather station was chosen as
representative of the examined area because this station pre-
sented the smallest number of missing data. Although these
indices are satisfactory in many cases worldwide, the exam-
ined area’s performance, following the HeVeS (Hellenic Ver-
ification Scheme) (Petrou et al., 2009) and the Yule Index
(Marinaki et al., 2006), was found to be poor (Dimitrova et

al., 2009) and thus of no practical value. This performance
could be attributed to the fact that the indices do not take
into account the synoptic scale weather patterns nor the local
flows. Therefore the development of a new instability index
is imperative.

Severe thunderstorms cannot be modeled or, consequently,
predicted either analytically or synthetically (Holton, 2004).
The proposed indices for predicting thunderstorms can be
considered as a tested hypothesis. These tests were per-
formed for a specific period. Consequently, it is always pos-
sible for a proposed index to be rejected if it is applied to or
tested on a different period unsuccessfully. These validation
tests are performed deductively. The proposed index (con-
sisting of the hypothesis) and its application constrains are
considered as prerequisite knowledge for prediction of the
event; if the predicted event is not manifested, the hypothesis
is rejected (Trochim, 2000). From a set of proposed indices,
the index that is tested more strictly is preferred. It is rational
to accept that if there is an effective index, it will be among
those which are robust and hold against criticism and they
have been corroborated.

An index is a successfully tested hypothesis that can be
developed from experience, literature or theory, or a combi-
nation of these (Graham et al., 2010), i.e., combined hypoth-
esis development. The index derives from a rich explicatory
theoretical framework (content), and consequently deductive
hypothesis, incorporates formalized related experience and
has performed successfully through strict validation tests. It
can also be conceived as one that captures the important part
of the event behavior.

In order to state and support the effectiveness of the new
index, using two different sets of data is suggested. The first
is for building the hypothesis, that is, to find the patterns and
the rules that associate the events with the meteorological
parameters for the specific period. The second is for testing
and evaluating the hypothesis according to the Modus Tol-
lens rule (Lakatos, 1963). There was a preference to use the
first sub-period (1 May 2006 to 31 October 2007) for build-
ing the hypothesis and the second sub-period (1 June 2008
to 30 June 2011) for testing and evaluation. The latter sub-
period recorded thunderstorms events more accurately than
the former, as explained in Sect.2, and the testing of the pro-
posed index (hypothesis) is more strict.

The factors responsible for forming the index would be
inferentially derived from the theoretical and empirical anal-
ysis. Data mining and optimization techniques are employed
to determine the critical values of these factors and not the
factors themselves, since this would led to an index with
poor informative content, in other words, relations between
the event and parameters with no meteorological meaning.

In this study the attempt was made to automatically
extract association rules and patterns between the events
and the data and metadata using the software tools MAT-
LAB and ARMADA for MATLAB ( ARMADA , 2011). Data
mining techniques such as principal components analysis,
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association rules and cluster analysis were applied to data
and metadata.

However, no useful result was found, mainly due to the
sparseness of the phenomena in question. The aforemen-
tioned algorithms, when applied to cases with rare phenom-
ena modeled by high dimensional data with sparse features,
such as in this case, lose their effectiveness. In order to over-
come this limitation a lot of effort is necessary, however the
derived results lack of the required precision for this case
(Beyer et al., 1999).

Thus, in this study, using the described methodological
tool of combined hypothesis development was preferred. The
index will have the form of a threshold function that flags
(or not) a warning for an impeded thunderstorm with heavy
rainfall. A value of 100 % for the recall of the index can be
a major constrain due to the severity of the consequences of
the event.

4 Developing the new Local Instability Index (LII)

In this section, the factors accounting for the framework
of the index development are depicted and briefly pre-
sented along with a specific for the examined area synoptic
description.

It is well known that a thunderstorm initiation requires the
presence of three elements, namely, energy, moisture and a
lifting mechanism (Branick, 1993). Using these elements as
a guide, a detailed analysis for the factors that were related
to thunderstorm events associated with heavy rainfall was
conducted.

These mechanisms are closely related with the synop-
tic scale circulation over the examined area. More specifi-
cally, during the period from May to August (5 to 8) polar
air masses arrive over Mediterranean Sea and as they have
crossed the warm continent of Europe, they have become
dry and warm (Xoplaki, 2002). At the same time, the eastern
Mediterranean region is affected by tropical dry and warm air
masses (Rodwell and Hoskins, 2001; Hoskins, 1996). Thus,
heat is transferred from the warm lower atmosphere layers
to the upper layers of the sea, causing the temperature of the
lower atmosphere to be reduced. These conditions enhance
the stability of the atmosphere, often associated with tem-
perature inversion and trapping moisture in the lower layers
(from the surface to 3000–5000 ft), inhibiting conditions of
any cyclogenesis or depressions passes.

In late summer and especially during September the polar
jet stream is shifted to the south. An atmospheric perturbation
may interrupt the equatorial flow of the jet, as part of it usu-
ally moves southwards, causing a northwesterly flow. Conse-
quently, cyclonic conditions are created at the lee side of the
Alps (Aebischer and Schär, 1998; Kljun et al., 2000) and the
geo-dynamic heights are reduced. The southeastern move-
ment of that part of the jet is usually enhanced by the spe-
cific conditions. As the jet gets momentum, it moves further

to the south, resulting in further reduction of the geopoten-
tial heights and cyclonic conditions over the area of boot and
northern Sidra Sea (Trigo et al., 2001). As a consequence,
southwesterly winds gradually prevail over the southern Io-
nian Sea (Brody and Nestor, 1980) enriching even the mid-
dle layers of the atmosphere with moisture and reversing the
temperature inversion that occurs at the low layers. The ex-
amined area is affected by such conditions, as the southwest-
ern stream, in conjunction with local orography, accumulates
further moisture in the lower atmosphere, while in the mean-
time the perturbation has moved eastwards, bringing cold and
dry air mass in the upper layers. The combination of these
conditions can be explosive and cause severe storms.

Throughout September and October (9 to 10) and when
a southwesterly flow prevails in the upper atmosphere, oro-
graphic clouds and precipitation are caused over the western
Peloponnese windward areas. The shift of winds at 850 hPa
to the southwestern sector favors the occurrence of thunder-
storms, occasionally severe.

The factors of energy, moisture and lifting are considered
as the independent variables of a threshold function that con-
stitute the Local Instability Index (LII), requiring a minimum
value for the occurrence of severe thunderstorms.

The analysis was carried out every 6 hours and conse-
quently the index provided warning values every 6 hours last-
ing for the subsequent 12 h. Due to the severity of the phe-
nomena, it is compulsory for the index to predict all or almost
all the phenomena (recall 100 %) and simultaneously main-
tain a high and practicable precision.

In order to determine the critical values of the parame-
ters, the precision of LII was set up as the objective func-
tion which should be maximized. The required parameters
were the changing variables of the objective function con-
strained to rational values. Constrain was also the value of
recall, set up to 100 % as was justified in the previous para-
graph. For this purpose, the linear programming (LP)-based
branch-and-bound algorithm of the optimization toolbox of
MATLAB (R2010a),bintprog , was used (Nemhauser and
Wolsey, 1988).

4.1 Energy term

Instability is a prerequisite for air mass thunderstorms and
can be partially indicated by the Convective Available Po-
tential Energy (CAPE) (Moncrieff and Miller, 1976). Al-
though CAPE is referring to synoptic-scale air mass, it has
been shown that CAPE can be used for smaller-scale, lo-
cal weather diagnosis and prediction (Zverev, 1972). CAPE
practically defines how strong the updraughts within the
thunderstorm potentially are; stronger updraughts result in
heavier rainfalls (Wallace and Hobbs, 2006).
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4.1.1 ACAPE term

Using only the data that are available to operational fore-
casters in their daily duties, the energy term was developed
in order to approximate the CAPE. An algorithm in MAT-
LAB was built that accepts the dry temperatures (T ) and the
dew point (Td) as inputs from the weather stations of An-
dravida, Araxos and Pyrgos and calculates a meanT and
Td (Holton, 2004). The lifted condensation level (LCL) was
computed and after simulating the wet adiabatic, finally com-
puted what the temperature (Tp) of the surface parcel would
have been if it had been raised in the levels of 850, 700,
500 and 300 hPa. The Approximated CAPE (ACAPE) is the
difference of Tp− T and refers to the four pressure levels
(ACAPE850, ACAPE700, ACAPE500 and ACAPE300).

ACAPELevel = TpLevel − TLevel (1)

It should be noted that there are a lot of cases of severe thun-
derstorms with low and sometimes negative CAPE (Curry
and Webster, 1999).

Moreover, in this specific case, it can be stated that large
amounts of negative ACAPE850 are prohibitive for the devel-
opment of thunderstorms with heavy rainfall (Peppler, 1988).
This finding can be modeled by requiring ACAPE850≥ −2.5.
At the level of 700 hPa, the positive energy (ACAPE700> 0)
is a prerequisite, especially for the summer period when the
geopotential heights are higher and more energy is needed
for heavy rainfall to form within the thunderstorm (Bol,
2006). A threshold of 1.5 was noticed for the summer period
(ACAPE700> 1.5). For the upper levels, the smaller values of
ACAPE show that there is a smaller possibility for thunder-
storm development. Thresholds of –2 and –8 were noted for
the levels 500 and 300 hPa, respectively (ACAPE500> −2,
ACAPE300> −8).

4.1.2 Thickness term

The thermal properties of the 850 to 500 hPa atmospheric
layer are often better represented by the thickness rather
than the temperature at a single level (Wallace and Hobbs,
2006). The 850 to 500 hPa thickness is a function of the av-
erage temperature and the average moisture content of the
air through the specific layer, which are two properties as-
sociated with the virtual temperature. Therefore, the specific
thickness (between levelz1 (with pressurep1) and levelz2
(with pressurep2)) is associated with virtual temperature
(Tv), as shown below:

z2 − z1 = −
RdTv

g
· ln

(
p2

p1

)
. (2)

The virtual temperature is used for estimating the available
convective potential energy and its exclusion may lead to
relatively important errors (Doswell and Rasmussen, 1994).

CAPE =

zLFC∫
zEL

g ·

(
Tv,parcel− Tv,env

Tv,env

)
dz, (3)

wherezLFC andzEL are the heights of the levels of free con-
vection and equilibrium, respectively,Tv,parcel is the virtual
temperature of the specific parcel,Tv,env is the virtual tem-
perature of the environment, andg is the acceleration due to
gravity.

Consequently, the 850 to 500 hPa thickness effect on
CAPE led us to include this indicator in the LII forma-
tion. For practical reasons, the thickness seasonality was sub-
tracted using the moving average. It has been demonstrated
that it should be less than 0 for the period from May to
August and less than 40 for September and October. The
ACAPE and the thickness term are represented schematically
in Figs.2 and3.

Thus, the Energy Term (ET) is the conjunction of ACAPE
and thickness term, in other words

ET = ACAPE∧ Thickness Term. (4)

4.2 Moisture term

According to previous studies (Humphreys, 1926; Showalter
and Fulks, 1943; Fawbush et al., 1951; Appleby, 1954;
Whitney and Miller, 1956; Miller , 1967; Schaefer, 1986)
low-level moisture is a prerequisite for thunderstorm initia-
tion and development. Usually, low-level moisture increases
instability as more latent heat is available to the lower atmo-
sphere. On the contrary, when mid-level moisture increases,
the atmospheric instability can decrease because moist air
is less dense and therefore less able to evaporate precipi-
tation than the drier air. The evaporation of precipitation at
or beneath cloud level causes air-cooling inside precipitation
downdrafts, making the air denser and increasing instability,
although the amount of precipitation is usually small.

The minimum amount of moisture that was noticed in the
recorded events, expressed in relative humidity terms, was
60 % at 850 hPA, 40 % at 700 hPA and 120 % for their sum
(see Fig.4). The aforementioned thresholds are insufficient
for heavy rainfall. Although increasing moisture increases
the potentiality for heavy rainfall within the thunderstorm,
the moisture in the upper levels may decrease the instability
(Bol, 2006). This is not taken into account, although it was
found that the values of the upper levels were associated with
the thunderstorms.

4.3 Terrain heating effect and local features

A lifting force is necessary for a rising parcel of air to over-
come the convective inhibition, which occurs when a layer
of warmer air is above a particular region of cooler air, hin-
dering the latter from ascending into the atmosphere (Mapes,
2000). Thus, a temperature inversion is created and therefore
a stable region of air. The lift mechanism pushes the cooler
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Point (Td) as inputs from the weather stations of Andravida,
Araxos and Pyrgos and calculates a mean T and Td (Holton,
2004). The Lifted Condensation Level (LCL) was computed
and simulating the wet adiabatic finally computed the Tem-
perature (Tp) of the surface parcel would have if would be
raised in the levels of 850, 700, 500 and 300 hPa. The Ap-
proximated CAPE (ACAPE) is the difference Tp-T and is
referring to the four pressure levels (ACAPE850, ACAPE700,
ACAPE500 and ACAPE300).

ACAPELevel = TpLevel−TLevel (1)

It should be noted that there are a lot of cases of severe thun-
derstorms with low and sometimes negative CAPE (Curry
and Webster, 1999).360

Moreover, in the specific case, it can be stated that large
amounts of negative ACAPE850 is prohibitive for the devel-
opment of thunderstorm with heavy rainfall (Peppler, 1988).
This finding can be modeled by requiring ACAPE850 ≥
−2.5. At the level of the 700 hPa, the positive energy365

(ACAPE700 > 0) is a prerequisite, especially for the summer
period where the geopotential heights are higher and more
energy is needed for heavy rainfall to form within the thun-
derstorm (Bol, 2006). A threshold of 1.5 was noticed for the
summer period (ACAPE700 > 1.5). For the upper levels, the370

smaller values of ACAPE show that there is a smaller pos-
sibility for thunderstorm development. Thresholds of minus
2 and minus 8 were noted for the levels 500 and 300 hPa
respectively. (ACAPE500 >−2, ACAPE300 >−8).

ACAPE
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Fig. 2. Schematic diagram of ACAPE

Thickness Term375

The thermal properties of the 850 to 500 hPa atmospheric
layer are often better represented by the thickness rather
than the temperature at a single level (Wallace and Hobbs,
2006). The 850 to 500 hPa thickness is a function of the

average temperature and the average moisture content of the
air through the specific layer, which are two properties asso-
ciated with the virtual temperature. Therefore, the specific
thickness (between the level z1 (with pressure p1) and the
level z2 (with pressure p2)) is associated with virtual temper-
ature (Tv), as shown below:

z2−z1 =−RdT̄v

g
∗ ln(

p2

p1
) (2)

The Virtual temperature is used for estimating the available
convective potential energy and its exclusion may lead to rel-
atively important errors (Doswell and Rasmussen, 1994).

CAPE =

zLF C∫
zEL

g∗(
Tv,parcel−Tv,env

Tv,env
)dz (3)

where zLFC and zEL are the heights of the levels of free con-
vection and equilibrium respectively, Tv,parcel is the virtual
temperature of the specific parcel, Tv,env is the virtual tem-
perature of the environment, and g is the acceleration due to
gravity.380

Consequently, the 850 to 500 hPa thickness effect on
CAPE led us to include this indicator in the LII forma-
tion. For practical reasons, the thickness seasonality was sub-
tracted using the moving average. It has been demonstrated
that should be less than 0 for the period from May to August385

and less than 40 for September and October. The ACAPE
and the Thickness Term are represented schematically in the
Fig.2 and Fig.3.

Thickness Term

TH−Seasonality < 0
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TH−Seasonality < 40
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9thor 10thmonth 5thto 8thmonth

Fig. 3. Schematic diagram of the Thickness Term

Thus, the Energy Term (ET) is the conjunction of
ACAPE and Thickness Term, i.e.

ET := ACAPE∧Thickness Term. (4)

4.2 Moisture Term

According to previous studies (Humphreys, 1926; Showal-390

ter and Fulks, 1943; Fawbush et al., 1951; Appleby, 1954;
Whitney and Miller, 1956; Miller, 1967; Schaefer, 1986) the
low level moisture is a prerequisite for the thunderstorm initi-
ation and development. Usually, low level moisture increases
instability as more latent heat is available to the lower atmo-395

sphere. In the opposite, when mid-level moisture increases,

Figure 2. Schematic diagram of ACAPE.
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Point (Td) as inputs from the weather stations of Andravida,
Araxos and Pyrgos and calculates a mean T and Td (Holton,
2004). The Lifted Condensation Level (LCL) was computed
and simulating the wet adiabatic finally computed the Tem-
perature (Tp) of the surface parcel would have if would be
raised in the levels of 850, 700, 500 and 300 hPa. The Ap-
proximated CAPE (ACAPE) is the difference Tp-T and is
referring to the four pressure levels (ACAPE850, ACAPE700,
ACAPE500 and ACAPE300).

ACAPELevel = TpLevel−TLevel (1)

It should be noted that there are a lot of cases of severe thun-
derstorms with low and sometimes negative CAPE (Curry
and Webster, 1999).360

Moreover, in the specific case, it can be stated that large
amounts of negative ACAPE850 is prohibitive for the devel-
opment of thunderstorm with heavy rainfall (Peppler, 1988).
This finding can be modeled by requiring ACAPE850 ≥
−2.5. At the level of the 700 hPa, the positive energy365

(ACAPE700 > 0) is a prerequisite, especially for the summer
period where the geopotential heights are higher and more
energy is needed for heavy rainfall to form within the thun-
derstorm (Bol, 2006). A threshold of 1.5 was noticed for the
summer period (ACAPE700 > 1.5). For the upper levels, the370

smaller values of ACAPE show that there is a smaller pos-
sibility for thunderstorm development. Thresholds of minus
2 and minus 8 were noted for the levels 500 and 300 hPa
respectively. (ACAPE500 >−2, ACAPE300 >−8).

ACAPE
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FALSEACAPE850 >−2.5
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Fig. 2. Schematic diagram of ACAPE

Thickness Term375

The thermal properties of the 850 to 500 hPa atmospheric
layer are often better represented by the thickness rather
than the temperature at a single level (Wallace and Hobbs,
2006). The 850 to 500 hPa thickness is a function of the

average temperature and the average moisture content of the
air through the specific layer, which are two properties asso-
ciated with the virtual temperature. Therefore, the specific
thickness (between the level z1 (with pressure p1) and the
level z2 (with pressure p2)) is associated with virtual temper-
ature (Tv), as shown below:

z2−z1 =−RdT̄v

g
∗ ln(

p2

p1
) (2)

The Virtual temperature is used for estimating the available
convective potential energy and its exclusion may lead to rel-
atively important errors (Doswell and Rasmussen, 1994).

CAPE =

zLF C∫
zEL

g∗(
Tv,parcel−Tv,env

Tv,env
)dz (3)

where zLFC and zEL are the heights of the levels of free con-
vection and equilibrium respectively, Tv,parcel is the virtual
temperature of the specific parcel, Tv,env is the virtual tem-
perature of the environment, and g is the acceleration due to
gravity.380

Consequently, the 850 to 500 hPa thickness effect on
CAPE led us to include this indicator in the LII forma-
tion. For practical reasons, the thickness seasonality was sub-
tracted using the moving average. It has been demonstrated
that should be less than 0 for the period from May to August385

and less than 40 for September and October. The ACAPE
and the Thickness Term are represented schematically in the
Fig.2 and Fig.3.
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TH−Seasonality < 0

FALSETRUE

Yes No

TH−Seasonality < 40
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Yes No

9thor 10thmonth 5thto 8thmonth

Fig. 3. Schematic diagram of the Thickness Term

Thus, the Energy Term (ET) is the conjunction of
ACAPE and Thickness Term, i.e.

ET := ACAPE∧Thickness Term. (4)

4.2 Moisture Term

According to previous studies (Humphreys, 1926; Showal-390

ter and Fulks, 1943; Fawbush et al., 1951; Appleby, 1954;
Whitney and Miller, 1956; Miller, 1967; Schaefer, 1986) the
low level moisture is a prerequisite for the thunderstorm initi-
ation and development. Usually, low level moisture increases
instability as more latent heat is available to the lower atmo-395

sphere. In the opposite, when mid-level moisture increases,

Figure 3. Schematic diagram of the thickness term.

parcel of air over the inversion, contributing to the thunder-
storm development. The main sources of a lift mechanism
are associated with terrain features, heating and sea breeze.

4.3.1 Terrain heating effect term

A cold air mass can be heated from the ground, increasing its
instability and vice versa. If an air mass is cooled from the
terrain, it becomes denser and unfavorable for thunderstorm
development (Kessler, 1983). Taking into account the ter-
rain thermal conductivity with respect to heat storage (terrain

heat capacity) the terrain heating effect is suggested to be
modeled as

TH = T0 −
2T−1 + T−2

3
, (5)

whereT0 is the temperature of the terrain on a specific day,
T−1 is the temperature 1 day prior toT0, andT−2 is the tem-
perature 2 days prior toT0; all temperatures are measured at
the same time. The weight factor forT−1 is set to 2 and for
T−2 it is set to 1. They decrease as the effect decreases with
time.

The threshold was estimated at TH= 2, since greater val-
ues mean reduced instability. In the cases where the current
is southwesterly, and is consequently supplying the area, the
factor TH becomes more ineffective moisture, and this can
be modeled by subtracting 3 degrees (see Fig.5).

4.3.2 Locality term

Apart from the local influences that were modeled within the
aforementioned terms, the dissolving effect of the easterly
downdraft current due to the high mountains on the eastern
part of the area were also examined (see Fig.6).
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the atmospheric instability can decrease because moist air is
less dense and therefore less able to evaporate precipitation
than the drier air. The evaporation of precipitation at or be-
neath cloud level causes the air-cooling inside precipitation400

downdrafts, making the air denser and increases instability
although that the amount of precipitation is usually small.

The minimum amount of moisture that was noticed in the
recorded events, expressed in relative humidity term, was
60% at 850 hPA and 40% at 700 hPA and 120% for their sum405

(see Fig. 4). The aforementioned thresholds are insufficient
for heavy rainfall. Although, increasing moisture increases
the potentiality for heavy rainfall within the thunderstorm,
the moisture in the upper levels may decrease the instabil-
ity (Bol, 2006) and is not taken into account although it was410

found that the values of the upper levels were associated with
the thunderstorms.

Moisture Term

RH700≥ 40

RH850≥ 60

FALSERH700 +RH850≥ 120

FALSETRUE

Yes No

Yes No

FALSE

No Yes

Fig. 4. Schematic diagram of the Moisture Term

4.3 Terrain Heating Effect and Local Features

A lifting force is necessary for a rising parcel of air to over-
come the convective inhibition which occurs when a layer of415

warmer air is above a particular region of air, resulting in the
cooler air parcel to be hindered from ascending into the atmo-
sphere (Mapes, 2000). Thus, a temperature inversion is cre-
ated and therefore a stable region of air. The lift mechanism
pushes the cooler parcel of air over the inversion contributing420

to the thunderstorm development. The main sources of a lift
mechanism are associated with terrain features, heating and
sea breeze.

Terrain Heating Effect Term

A cold air mass with respect to the ground can be heated
from it, increasing its instability and vice versa. If an air mass
is cooling from the terrain is becoming denser and unfavor-
able for thunderstorm development (Kessler, 1983). Taking
into account the terrain thermal conductivity with respect to
heat storage (terrain heat capacity) the terrain heating effect

is suggested to be modeled as :

TH = T0−
2T−1 +T−2

3
(5)

where T0, T−1, T−2 are the temperature of the terrain on the425

specific day, 1 day and 2 days before respectively at the same
time. The weight factor for the previous day temperature is
set to 2 and for the temperature of 2 days before is set to 1.
They are decreasing as the effect decreases with time.

The threshold was estimated to TH = 2 since greater val-430

ues mean reduced instability. In the cases, where the current
is southwesterly, and is consequently supplying to the area ,
the factor TH became more ineffective moisture and this can
be modeled by subtracting three degrees.
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Fig. 5. Schematic diagram of the Terrain Heating Effect Term

Locality Term435

Apart from the local influences that were modeled within
the aforementioned terms, it can be introduced that the dis-
solving effect of the easterly downdraft current due to the
high mountains on the Eastern parts of the area examined.
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Fig. 6. Schematic diagram of the Locality Term

4.4 The Local Instability Index (LII)440

Summarizing the above terms, the LII can be considered
as the conjunction of the ET (Energy Term), MT (Moisture
Term), THET (Terrain Heating Effect Term) and LT (Lo-
cality Term) :

LII := ET ∧MT ∧THET ∧LT (6)

Figure 4. Schematic diagram of the moisture term.
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Summarizing the above terms, the LII can be considered
as the conjunction of the ET (Energy Term), MT (Moisture
Term), THET (Terrain Heating Effect Term) and LT (Lo-
cality Term) :
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Figure 5. Schematic diagram of the terrain heating effect term.

4.4 The Local Instability Index (LII)

Summarizing the above terms, the LII can be considered as
the conjunction of the ET (energy term), MT (moisture term),
THET (terrain heating effect term) and LT (locality term):

LII = ET∧ MT ∧ THET∧ LT. (6)

Table 1. LII: consistency table for the period 1 May 2006 to
31 Ocbober 2007.

Observation

LII 54 (correct result) 34 (unexpected result)
0 (missing result) 1418 (correct absent of result)
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Figure 6. Schematic diagram of the locality term.

5 Calculations, evaluation and discussion

The LII was calculated on the basis of the data of the period
1 May 2006 to 31 October 2007. Overall, 88 severe thunder-
storms events were predicted. It is important to note that the
actual number was 54 and all of them were predicted. Al-
though the importance of 100 % recall is controversial, the
risk of neglecting a severe thunderstorm warning may prove
hazardous, since injuries or fatalities and damages to struc-
tures or to the environment may not be prevented. The LII
predicted 1418 no thunderstorm events and the actual num-
ber was 1452.

The consistency table of LII for the specific period is
shown in the Table1 and its performance is described as
follows:

– Precision (the number of thunderstorms that occurred
from those that had been forecasted/the number of the
latter)= 61 %

– Recall (the number of thunderstorms that were fore-
casted from those that occurred/the number of the lat-
ter)= 100 %

– Fall-out (the number of cases with no thunderstorms
from those that had not been forecasted/the number of
the latter)= 98 %.

The weighted harmonic mean of precision and recall, the
traditionalF measure or balancedF score is

F = 2 ·
Precision· Recall

Precision+ Recall
, (7)

resulting inF = 76 % and the preferable by HNMS (Petrou
et al., 2009) norm for measuring the effectiveness of Indices
in case of severe phenomena, theF1.2-measure which puts
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Table 2. LII: consistency table for the period 1 June 2008 to
30 June 2011.

Observation

LII 89 (correct result) 74 (unexpected result)
0 (missing result) 2165 (correct non-event)

more emphasis on recall than on precision (1.2 times more)
is

F1.2 =

(
1 + 1.22

)
·

Precision· Recall

1.22Precision+ Recall
, (8)

resulting inF1.2 = 79% (total performance).
The LII was then calculated for the second period,

1 June 2008 to 30 June 2011. A total of 163 severe thunder-
storms were predicted. During this period the actual number
was 89 and LII predicted all of them. The LII predicted 2165
no thunderstorm events and the actual number was 2239.
The consistency table of the LII for the specific period is
shown in Table2 and its performance is Precision= 55 %,
Recall= 100 %, and Fall-out= 97 %. The balancedF score
is F = 71 % and the weightedF score, i.e. the total perfor-
mance, isF1.2 = 75 %. The performance of LII per month is
illustrated in Table3.

It is demonstrated that the LII performed very well for the
months May, June, September and October, when unstable
weather conditions are more likely to occur. In these cases,
most of the thunderstorm events took place during noon or
afternoon when the terrain heating effect is stronger. The
lower levels of the atmosphere were moist enough and the
CAPE was suitable. During July and August of the specific
period, only two thunderstorms with heavy rainfall events oc-
curred. This was expected, as the atmosphere in the region
is generally stable for these months, as was previously ex-
plained. Although the performance of LII for July and Au-
gust is rather low, its use is still beneficial, taking into ac-
count the severity of the events and that the recall of the LII
is 100 %.

6 Conclusions

This study presents an alternative methodological tool for the
prediction of severe thunderstorms occurring over a specific
area. Northwestern Peloponnese was chosen to illustrate the
proposed tool, because many thunderstorms with heavy rain-
fall have occurred there with disastrous impacts.

The parameters used were constrained to those that are
easily available to operational forecasters while performing
their everyday duties. The statistical correlations of the pa-
rameters with the observations were examined. In the cases
where correlations were not justified by the relative theory,
the respective parameters were neglected. Then, the Local
Instability Index (LII) was inferentially drawn by using them.

Table 3. LII: monthly performance for the period 1 June 2008 to
30 June 2011.

LII Actual Precision Recall F F1.2

May 17 6 0.35 1.00 0.52 0.57
June 23 7 0.30 1.00 0.47 0.52
July 10 1 0,10 1.00 0.18 0.21
August 11 1 0.09 1.00 0.17 0.20
September 51 34 0.67 1.00 0.80 0.83
October 51 40 0.78 1.00 0.88 0.90

The LII is a threshold function that consists of the low-level
moisture, a practical approximation of the CAPE, the ter-
rain heating effect and a formalized operational experience.
It was found that the LII has satisfactory total performance
(75 %) over the northwestern Peloponnese region for the pe-
riod from 1 June 2008 to 30 June 2011, predicting all the
thunderstorms with heavy rainfall events (recall= 100 %).

The future challenge for further development and opti-
mization of this tool is to experiment with the LII for a longer
period and for hydrological basins all around Greece since in
case of good performance, the LII would be at the disposal
of operational forecasters of HNMC.

Acknowledgements.We would like to thank the HNMC opera-
tional forecasters for their help.

Edited by: P. Nastos
Reviewed by: M. V. S. Sioutas and another anonymous referee

References

Acock, M. C. and Pachepsky, Ya. A.: Estimating Missing Weather
Data for Agricultural Simulations Using Group Method of Data
Handling, J. Appl. Meteorol. Clim., 9, 1176–1184, 2000.

Aebischer, U. and Schär, C.: Low-Level Potential Vorticity and
Cyclogenesis to the Lee of the Alps, J. Atmos. Sci., 55, 186–207,
doi:10.1175/1520-0469(1998)055<0186:LLPVAC>2.0.CO;2,
1998.

Appleby, J. F.: Trajectory method of making short-range forecasts
of differential temperature advection, instability, and moisture,
Mon. Weather Rev., 82, 320–334, 1954.

ARMADA Data Mining Tool version 1.4, available at:
http://www.mathworks.com/matlabcentral/fileexchange/
3016-armada-data-mining-tool-version-1-4, last access:
15 May 2014, updated: 18 February 2011.

Beyer, K., Goldstein, J., Ramakrishnan, R., and Shaft, U.: When
Is “Nearest Neighbor” Meaningful?, in: Int. Conf. on Database
Theory, London, UK, 217–235, 1999.

Brody, L. R. and Nestor, M. J. R.: Regional Forecasting Aids
for the Mediterranean Basin, Handbook for Forecasters in the
Mediterranean, Part 2, Naval Research Laboratory, Monterey,
USA, 1980.

Nat. Hazards Earth Syst. Sci., 14, 2205–2214, 2014 www.nat-hazards-earth-syst-sci.net/14/2205/2014/

http://dx.doi.org/10.1175/1520-0469(1998)055%3C0186:LLPVAC%3E2.0.CO;2
http://www.mathworks.com/matlabcentral/fileexchange/3016-armada-data-mining-tool-version-1-4
http://www.mathworks.com/matlabcentral/fileexchange/3016-armada-data-mining-tool-version-1-4


M. Korologou et al.: Developing an index for heavy convective rainfall forecasting over western Greece 2213

Bol, A.: Buoyancy and CAPE, Principles of Convection, Univer-
sity Corporation for Atmospheric Research,http://meted.ucar.
edu/mesoprim/cape/print.htm(retrieved: 26 August 2012), 2006.

Boyden, C. J.: A Simple Instability Index for Use as a synoptic pa-
rameter, Met. Meg., USA, 198–210, 1963.

Branick, M.: A Comprehensive Glossary of Weather Terms for
Storm Spotters, NOAA Technical Memorandum NWS SR-145,
NOAA, Fort Worth, Texas, 1993.

Chrysoulakis, N., Spiliotopoulos, M., Domenikiotis, C., and
Dalezios, N. R.: Towards Monitoring of Regional Atmospheric
Instability Through MODIS/AQUA Images, International Sym-
posium “GIS and Remote Sensing: Environmental Applica-
tions”, 7–9 November 2003, Volos, 155–166, 2006.

Curry, J. A. and Webster, P. J.: Thermodynamics of Atmospheres
and Oceans, Vol. 65, International Geophysics, Academic Press,
London, UK, 1999.

Dalezios, N. R. and Papamanolis, N. K.: Objective assessment of
instability indices for operational hail forecasting in Greece, Me-
teorol. Atmos. Phys., 45, 87–100, 1991.

Dimitrovaa, T., Mitzevab, R., and Savtchenko, A.: Environmental
conditions responsible for the type of precipitation in summer
convective storms over Bulgaria, Atmos. Res., 93, 30–38, 2009.

Doswell III, C. A. and Rasmussen, E. N.: The effect of neglect-
ing the Virtual Temperature Correction on CAPE Calculations,
Weather Forecast., 9, 625–629, 1994.

Fawbush, E. J., Miller, R. C., and Starrett, L. G.: An empirical
method for forecasting tornado development, B. Am. Meteorol.
Soc., 32, 1–9, 1951.

George, J. J.: Weather Forecasting for Aeronautics, Q. J. Roy. Me-
teorol. Soc., 87, 120, doi:10.1002/qj.49708737120, 1960.

Graham, I., Ronald Shaw, R., Dixon, D., and Paul Jones III, J.:
Research Methods in Geography, in: Chapter: Theorizing Our
World, edited by: Gomez, B. and Paul Jones III, J., Blackwell
Publishing Ltd, Sussex, UK, 2010.

Haklander, A. J. and Van Delden, A.: Thunderstorm predictors and
their forecast skill for the Netherlands, Atmos. Res., 67–68, 273–
299, 2003.

Holton, J. R.: An Introduction to Dynamic Meteorology, 4th Edn.,
Academic Press, Seattle, Washington, 2004.

Hoskins, B. J.: On the existence and strength of the summer sub-
tropical anticyclones – Bernhard Haurwitz memorial lecture, B.
Am. Meteorol. Soc., 77, 1287–1292, 1996.

Humphreys, W. J.: The tornado, Mon. Weather Rev., 54, 501–503,
1926.

Jacovides, C. P. and Yonetani, T.: An evaluation of stability indices
for thunderstorm prediction in Greater Cyprus, Weather Fore-
cast., 5, 559–569, 1990.

Jefferson, G. J.: A modified instability index, Meteorol. Mag., 92,
92–96, 1963a.

Jefferson, G. J.: A further development of the instability index, Me-
teorol. Mag., 92, 313–316, 1963b.

Keeley, S. and Källén, E.: Operational and research activities at
ECMWF now and in the future, ECMWF, available at:old.
ecmwf.int/newsevents/training/meteorological_presentations/
2013/PR2013/Keeley/ECMWF-Past-FuturePR_final.pdf(last
access: 15 May 2014), 2013.

Kessler, E.: Thunderstorm Morphology and Dynamics, University
of Oklahoma Press, USA, 1983.

Kljun, N., Sprenger, M., and Schär, C.: Frontal modification
and lee cyclogenesis in the Alps: A case study using the
ALPEX reanalysis data set, Meteorol. Atmos. Phys., 78, 89–105,
doi:10.1007/s007030170008, 2000.

Lakatos, I.: Proofs and Refutations, The British Journal for the Phi-
losophy of Science, 14, pp. 1—25, 129–139, 221–243, 296, 342,
Oxford Journals, Oxford, UK, 1963.

Litynska, Z., Parfiniewicz, J., and Pinkowski, H.: The prediction
of air mass thunderstorms and hails, No. 450, WMO, Warsaw,
Poland, 128–130, 1976.

Maheras, P. and Anagnostopoulou, C.: Circulation Types and their
Influence on the Interannual variability and precipitation changes
in Greece, in: Mediterranean Climate – Variability and Trends,
Springer Verlag, Berlin, Heidelberg, 215–239, 2003.

Mapes, B. E.: Convective Inhibition, Subgrid-Scale Triggering En-
ergy, and Stratiform Instability in a Toy Tropical Wave Mode, J.
Atmos. Sci., 57, 1515–1535, 2000.

Marinaki, A., Spiliotopoulos, M., and Michalopoulou, H.: Evalua-
tion of atmospheric instability indices in Greece, Adv. Geosci.,
7, 131–135, doi:10.5194/adgeo-7-131-2006, 2006.

MEECC – Ministry of Environment, Energy and Climate Change:
Synoptic Description of the Hydrological Basin of North-
ern Peloponnese, available at:http://wfd.opengov.gr/index.php?
option=com_content&task=view&id=25&Itemid=12, last ac-
cess: 15 June 2012.

Metaxas, D. A., Philandras, C. M., Nastos, P. T., and Repapis, C.
C.: Variability of precipitation pattern in Greece during the year,
Fresen. Environ. Bull., 8, 1–6, 1999.

Michalopoulou, H. and Jacovides, C. P.: Instability indices for the
Cyprus area, Meteorol. Atmos. Phys., 37, 153–157, 1987.

Michalopoulou, H. and Karadana, E.: A review of instability indices
for the greater area of Athens, 3rd Hellenic Conference on Me-
teorology and Atmospheric Physics, Athens, Greece, 193–198,
1996.

Miller, R. C.: Notes on the analysis and severe storm forecasting
procedures of teh Military Weather Warning Center, Tech. Re-
port 200, AWS, USAF, Headquarters, AWS, Scott AFB, Illinois,
1967.

Moncrieff, M. W. and Miller, M. J.: The dynamics and simulation
of tropical cumulonimbus and squall lines, Q. J. Roy. Meteorol.
Soc., 102, 373–394, 1976.

Nemhauser, G. L. and Wolsey, L. A.: Integer and Combinatorial
Optimization, John Wiley & Sons, Canada, 1988.

Peppler, P. A.: A Review of Static Stability Indices and related
Thermodynamic Parameters, Illinois State Water Survey Divi-
sion, SWS Miscellaneous Publication 104, Illinois, USA, 1988.

Peppler, R. A. and Lamb, P. J.: Tropospheric static stability and
central North American growing season rainfall, Mon. Weather
Rev., 117, 1156–1180, 1989.

Petrou, C., Mavroudakis, T., and Giannopoulos, P.: Verification of
Extreme Weather Phenomena in HELLAS, Vol. 14, The Euro-
pean Forecaster Newsletter of WGCEF, Météo-France, Trappes,
France, 22–23, 2009.

Prezerakos, N. G.: An investigation into the conditions in which air-
mass thunderstorms occur at Athens, Meteorol. Mag., 118, 31–
36, 1989.

Reuter, G. W. and Aktary, N.: A slantwise Showalter index based
on moist symmetric instability: Results for Central Alberta,
Atmosphere-Ocean, 31, 379–394, 1993.

www.nat-hazards-earth-syst-sci.net/14/2205/2014/ Nat. Hazards Earth Syst. Sci., 14, 2205–2214, 2014

http://meted.ucar.edu/mesoprim/cape/print.htm
http://meted.ucar.edu/mesoprim/cape/print.htm
http://dx.doi.org/10.1002/qj.49708737120
old.ecmwf.int/newsevents/training/meteorological_presentations/2013/PR2013/Keeley/ECMWF-Past-FuturePR_final.pdf
old.ecmwf.int/newsevents/training/meteorological_presentations/2013/PR2013/Keeley/ECMWF-Past-FuturePR_final.pdf
old.ecmwf.int/newsevents/training/meteorological_presentations/2013/PR2013/Keeley/ECMWF-Past-FuturePR_final.pdf
http://dx.doi.org/10.1007/s007030170008
http://dx.doi.org/10.5194/adgeo-7-131-2006
http://wfd.opengov.gr/index.php?option=com_content&task=view&id=25&Itemid=12
http://wfd.opengov.gr/index.php?option=com_content&task=view&id=25&Itemid=12


2214 M. Korologou et al.: Developing an index for heavy convective rainfall forecasting over western Greece

Rodwell, M. J. and Hoskins, B. J.: Subtropical Anticyclones and
Summer Monsoons, J. Climate, 14, 3192–3211, 2001.

Schaefer, J. T.: Severe thunderstorm forecasting: A historical per-
spective, Weather Forecast., 1, 164–189, 1986.

Showalter, A. K.: A Stability Index for Thunderstorms Forecasting,
B. Am. Meteorol. Soc., 34, 250–252, 1953.

Showalter, A. K. and Fulks, J. R.: Preliminary report on tornadoes,
No. 806, US Dept. of Commerce, Weather Bureau, Washington,
USA, 162 pp., 1943.

Sioutas, M. V. and Flocas, H. A.: Hailstorms in Northern Greece:
synoptic patterns and thermodynamic environment, Theor. Appl.
Climatol., 75, 189–202, 2003.

Tian, B. and Fan, K. : Factors favorable to frequent extreme pre-
cipitation in the upper Yangtze River Valley, Meteorol. Atmos.
Phys., 121, 189–197, 2013.

Trigo, I. F., Bigg, G. R., and Davies, T. D.: Climatology of Cyclo-
genesis Mechanisms in the Mediterranean, Mon. Weather Rev.,
130, 549–569, 2001.

Trochim, W.: The Research Methods Knowledge Base, 2nd Edn.,
Atomic Dog Publishing, Cincinnati, OH, 2000.

Tyagi, B., Krishna, V. N., and Satyanarayana, A. N. V.: Study
of thermodynamic indices in forecasting pre-monsoon thunder-
storms over Kolkata during STORM pilot phase 2006–2008, Nat.
Hazards, 56, 681–698, 2011.

Veremei, N. E., Dovgalyuk, Yu. A., Efimov, S. V., Nosova, A. M.,
and Pechenkin, A. A.: Studying the showers and thunderstorms
on the territory of Russia using the numerical model of convec-
tive cloud and the reanalysis data, Russian Meteorol. Hydrol., 38,
20–27, 2013.

Wallace, J. M. and Hobbs, P. V.: Atmospheric Science, 2nd Edn.,
Academic Press, Washington, USA, 2006.

Whitney, Jr., L. F. and Miller, J. E.: Destabilization by differential
advection in the tornado situation 8 June 1953, B. Am. Meteorol.
Soc., 37, 224–229, 1956.

Xoplaki, E.: Climate variability over the Mediterranean, In-
auguraldissertation der Philosophisch-naturwissenschaftlichen
Fakultät der Universität Bern, Bern, 2002.

Ziakopoulos, D.: Weather, The son of the earth and the sun (Fore-
cast), Artio stamp Ltd, Athens, Greece, 2009.

Zverev, A. S.: Practical Work in Synoptic Meteorology, 1st Edn.,
Hydrometeorological Publishing House, Leningrad, Russia,
1972.

Nat. Hazards Earth Syst. Sci., 14, 2205–2214, 2014 www.nat-hazards-earth-syst-sci.net/14/2205/2014/


