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Abstract. The Weather Research and Forecasting (WRF)
model includes various configuration options related to
physics parameters, which can affect the performance of
the model. In this study, numerical experiments were con-
ducted to determine the best combination of physics param-
eterization schemes for the simulation of sea surface tem-
peratures, latent heat flux, sensible heat flux, precipitation
rate, and wind speed that characterized typhoons. Through
these experiments, several physics parameterization options
within the Weather Research and Forecasting (WRF) model
were exhaustively tested for typhoon Noul, which originated
in the South China Sea in November 2008. The model do-
main consisted of one coarse domain and one nested domain.
The resolution of the coarse domain was 30 km, and that of
the nested domain was 10 km. In this study, model simula-
tion results were compared with the Climate Forecast Sys-
tem Reanalysis (CFSR) data set. Comparisons between pre-
dicted and control data were made through the use of stan-
dard statistical measurements. The results facilitated the de-
termination of the best combination of options suitable for
predicting each physics parameter. Then, the suggested best
combinations were examined for seven other typhoons and
the solutions were confirmed. Finally, the best combination
was compared with other introduced combinations for wind-
speed prediction for typhoon Washi in 2011. The contribu-
tion of this study is to have attention to the heat fluxes be-
sides the other parameters. The outcomes showed that the
suggested combinations are comparable with the ones in the
literature.

1 Introduction

Numerical weather forecasting models have several configu-
ration options relating to physical and dynamical parameter-
ization; the more complex the model, the greater variety of
physical processes involved. For this reason, there are several
different physical and dynamical schemes which can be uti-
lized in simulations. However, there is controversy surround-
ing any perceived advantage of one particular scheme over
others. Therefore, it is critical that the most suitable scheme
be selected for a study. A variety of studies have been con-
ducted around the world in order to find the best scheme op-
tions for different fields of study (Kwun et al., 2009; Jin et
al., 2010; Ruiz et al., 2010; Mohan and Bhati, 2011).

Yang et al. (2011) studied wind speed and precipitation
variations during typhoon Chanchu, which occurred in the
South China Sea in 2006. They carried out five different ex-
periments using the PSU/NCAR (Pennsylvania State Univer-
sity/National Center for Atmospheric Research) mesoscale
model (MM5), with variations in the physical parameteriza-
tions used and in sea surface temperature (SST) distributions.
The simulations obtained were then compared with satellite
observations.

Ardie et al. (2012) performed four types of cumulus pa-
rameterization schemes in the WRF model for simulating
three events of intense precipitation over the southern Penin-
sular Malaysia in the winter monsoon of 2006–2007. The
results were compared with the 3 hourly satellite data us-
ing a confirmation method called the “acuity–fidelity”. The
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four different schemes were the new Kain–Fritsch (KF2),
the Betts Miller Janjic (BMJ), the Grell–Devenyi ensemble
(GD), and the older Kain–Fritsch (KF1). While the BMJ
scheme indicated good achievement in the second and third
events, it showed high errors in the first event. The GD, KF2,
and KF1 schemes executed weakly, and the BMJ and GD
schemes simulated higher values for rainfall. In general, they
stated that, although the BMJ scheme had good results, its
feeble performance for the first event suggested that appro-
priateness of the cumulus parameterization scheme might be
case dependent.

Li (2013) studied the effect of different cumulus schemes
in simulating typhoon track and intensity. The simulation of
20 typhoon cases from 2003 to 2008 represented that cumu-
lus schemes were really effective on the typhoon track and
intensity. It was found that the KF scheme obtained the most
severe typhoon, while the GD and BMJ schemes simulated
weaker typhoons. Those differences were due to variation
in precipitation computations. Different cumulus schemes
caused dissimilar typhoon tracks in the case of large-scale
circulations simulating. The results also indicated that dif-
ferent atmosphere vertical heating created different typhoon
intensity. Those variations led to different convections that
create several Latent Heat Flux (LHF) and cumulus precip-
itation. The KF scheme simulated the most severe vertical
convection, higher cumulus precipitation, and superior inten-
sity, while the GD and BMJ schemes generated more feeble
convection, low cumulus precipitation, and less intensity.

Angevine (2010) presented that Mellor Yamada Janjic
(PBL and surface layer) with a combination of 5-layer ther-
mal diffusion (land surface), Eta (microphysics), RRTM
(long-wave radiation), Dudhia (shortwave radiation), KF (cu-
mulus parameterization) showed small differences in assess-
ing important parameters like SST and LHF, when PBL and
surface layer changed to TEMF.

Chandrasekar and Balaji (2012) also investigated the sen-
sitivity of numerical simulations of tropical cyclones to
physics parameterizations, with a view to determining the
best set of physics options for prediction of cyclones origi-
nating in the north Indian Ocean. In another study by Mandal
et al. (2004), the sensitivity of the MM5 model was investi-
gated, with respect to the tracking and intensity of tropical
cyclones over the north Indian Ocean. The authors identified
the set of physics options that is best suited for simulating
cyclones over the Bay of Bengal.

This paper is an attempt to use a variety of physics param-
eterization options from the WRF model to investigate the
performance of this same model in predicting selected pa-
rameters, with simulations relating to typhoon Noul in the
South China Sea.

1.1 WRF model overview

The WRF (version 3.3.1), a high resolution mesoscale model,
was utilized in this study. This model is a next-generation

numerical model for weather prediction of mesoscale pro-
cesses. It was developed by the Mesoscale and Microscale
Meteorology Division of the National Centre for Atmo-
spheric Research (NCAR/MMM), in collaboration with
other institutes and universities. Michalakes et al. (2004) and
Skamarock et al. (2005) exhaustively explained the equa-
tions, physics parameters, and dynamic parameters available
in the WRF model. The model provides different physical
options for a boundary layer phenomenon such as micro-
physics, longwave and shortwave radiation, cumulus param-
eterization, surface layer, land surface, and planetary bound-
ary layer.

A complete description of the physics options available
in WRF model was developed by Wang et al. (2010). Each
physics option contains different schemes and the details
of all schemes have been comprehensively explained by
Skamarock et al. (2005).

1.2 Case study: typhoon Noul

Typhoon Noul formed in November 2008 in the South China
Sea (Fig. 1). At first, a tropical disturbance was generated in
the Philippines (east of Mindanao) on 12 November. Later,
on that same day, the Joint Typhoon Warning Centre (JTWC)
estimated that the recorded disturbance had the potential to
generate a significant tropical cyclone in the subsequent 24 h.
The system was reclassified to a tropical depression from a
tropical disturbance on 14 November. It was then reclassi-
fied as a tropical storm at 06:00 UTC on 16 November, and it
reached its maximum point at 00:00 UTC on 17 November,
with a 993 mbar minimum central pressure and maximum
sustained winds of 74 km h−1. Noul was slightly weakened
after it made landfall in Vietnam, almost around the middle
of the day on 17 November, and finally disappeared at the
end of that day near Cambodia (JTWC, 2008).

2 Materials and methods

Final analysis 6-hourly data sets (FNL) with a resolution of
1◦, obtained from the National Centres for Environmental
Prediction (NCEP), were inserted to the WRF model as ini-
tial and boundary conditions. It should be noted that the wind
speed at the 10 m level above the earth’s surface is referred to
as “wind speed” throughout this paper. All schemes utilized
in this study are summarized in Table 1. Herein, a total of six
simulations were carried out. The first simulation used the
default set of schemes. The outputs were compared with the
Climate Forecast System Reanalysis (CFSR) data by Saha et
al. (2010), referred to as control data. The CFSR data set has
variety data in different resolutions, but the study considered
that which has the nearest resolution (0.5◦ in longitude and
latitude) to the WRF resolution. The simulation period was
every 4 days.
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Fig1. Typhoon Noul trace in November (NOAA, 2008) 2 
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Figure 1. Typhoon Noul trace in November (NOAA, 2008).

Table 1.Different simulations conducted in the study, using various combinations of schemes.

Sim Microphysics Longwave Shortwave Surface Land Planetary Cumulus
radiation radiation layer surface boundary parameterization

layer

1 WRF single RRTM Dudhia MM5 Noah Yonsei Kain Fritsch
Moment University
3-class

2 Eta GFDL GFDL Eta Noah Mellor Betts
Yamada Miller
Janjic Janjic

3 New RRTM Goddard MM5 5-layer Yonsei New Simplified
Thompson thermal University Arakawa

diffusion Schubert

4 Stony Brook New New Eta 5-layer Mellor Tiedtke
University Goddard Goddard thermal Yamada

diffusion Janjic

5 Lin et al. (1983) RRTM Goddard Pleim Pleim ACM2 Kain Fritsch
Xiu Xiu

6 Lin et al. (1983) RRTMG RRTMG TEMF RUC TEMF Betts Miller
Janjic

WRF single Moment 3-class (Hong et al., 2004); Eta (Rogers et al., 2001); New Thompson (Thompson et al., 2008); Stony Brook University
(Lin and Colle, 2011); Lin et al. (1983); RRTM and RRTMG (Mlawer et al., 1997); GFDL (Rahmstorf, 1993); New Goddard (Tao et al., 2008);
Goddard (Tao and Simpson, 1993); Dudhia (Dudhia, 1989); MM5 (Menéndez et al., 2011); Pleim Xiu (Gilliam and Pleim, 2010); TEMF (Wang
et al., 2010); Noah, 5-layer thermal diffusion, RUC (Wang et al., 2010); Yonsei University (Hong et al., 2006); Mellor Yamada Janjic (Janjic,
1994); ACM2 (Pleim, 2007); Kain Fritsch (Kain, 2004); Betts Miller Janjic (Betts and Miller, 1986; Janjic, 1994); New Simplified
Arakawa-Schubert (Han and Pan, 2011); Tiedtke (Tiedtke, 1989; Zhang et al., 2011).

The physics options of the WRF were altered in different
experiments, to see which of those is most suited for accu-
rate analysis of the interaction between typhoon intensity and
the parameters mentioned earlier. The capability of predict-
ing typhoon intensity was investigated with the model. Fur-
thermore, according to Wang et al. (2010), the SST-update
and SST-skin functions must be activated in the model con-
figuration (prior to version 3.4) in order to see SST variations

during all simulations. The simulations were selected based
on heat transfer in the surface boundary layer and on surface
disturbances.

2.1 Model domains

Figure 2 indicates the defined domains for modelling. The
parent domain called d01, with spatial resolution of 30 km,
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Figure 2. Model domains.

covers a bigger region than the study area. The nested do-
main, d02, with resolution of 10 km, includes the South
China Sea, which is the region under study in this analy-
sis. Geographically, it covers the west side of the tropical Pa-
cific Ocean. The two domains are centred at 7◦ N and 113◦ E.
The South China Sea is bounded by South China, Peninsu-
lar Malaysia, Borneo, the Philippines, and the Indo-China
Peninsula (Ho et al., 2000).

2.2 Evaluation of the model

The most widely used statistical indicators in the liter-
ature dealing with environmental estimation models are
root mean square error (RMSE), coefficient of correlation
(CC), mean bias error (MBE), andt statistic (Jacovides and
Kontoyiannis, 1995). These were used in this study for as-
sessing model performance. These values were calculated for
selected parameters, namely SST, latent heat flux (LHF), sen-
sible heat flux (SHF), precipitation rate, and wind speed in
the center of a typhoon.

The RMSE provides information on the short-term perfor-
mance of a model by comparing the simulated values and
the control data. The smaller the RMSE value, the better the
model’s performance. The MBE provides information on the
long term performance of a model. A positive value gives the
average amount of over-estimation in the estimated values,
and vice versa in the case of a negative value. The smaller ab-
solute value of MBE shows the better model performance. In
order to evaluate and compare all of the parameters computed
by the model, one can use different statistical indicators. The
MBE, which is extensively used, and the RMSE, in combi-
nation with thet statistic, are being proposed in this case.
The t statistic should be used in conjunction with the MBE
and RMSE errors to better evaluate a model’s performance
(Jacovides and Kontoyiannis, 1995). The smaller value oft

indicates the better performance of the model. The CC as a
statistical parameter was used in this paper as well. Higher
CC values show better performance of the model.

Table 2.Statistical evaluation of different simulations for SST.

Sim 1 Sim 2 Sim 3 Sim 4 Sim 5 Sim 6

RMSE 0.71 0.86 0.91 0.71 0.72 0.65
CC −0.06 0.31 −0.1 0.15 −0.12 −0.16
MBE 0.11 −0.28 −0.25 −0.16 −0.10 −0.01
t statistic 0.38 0.84 0.7 0.57 0.35 0.06

The best number for each statistical parameter is written in bold.
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Fig. 3 Comparison of best model performance (simulation 6) with control data, for six-hourly 2 

SST prediction during typhoon Noul 3 
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Figure 3. Comparison of best model performance (simulation 6)
with control data, for 6-hourly SST prediction during typhoon Noul.

2.3 Verification process

After selecting the best simulation for each parameter in the
case of typhoon Noul, the solutions were evaluated by run-
ning the model for seven other typhoons, Peipah in 2007,
Tropical Depression 01W in 2008, Kujira in 2009, Chan-
Hom in 2009, Nangka in 2009, Songda in 2011, and Washi
in 2011. The aim was to confirm the scheme selection pro-
cesses for each parameter. The typhoons were selected from
all storm track data set by Knapp et al. (2010).

3 Results and discussions

The data used for validation of the variables was derived from
the CFSR data set and is available on the related website
(Saha et al., 2010). The results from the nested domain were
used for purposes of analysis and comparison.

3.1 Sea-surface temperature

Statistical evaluation of SST is presented in Table 2. The best
result of the SST simulation is shown in bold. It can be noted
that simulation 6 works satisfactorily for SST, because all
criteria are met, with the exception of the CC value, which
was lower than expected.

Figure 3 indicates the diurnal variation of control data and
simulated SST in simulation 6, with data given for every 6-
h period over the study duration. By and large, there is a
general tendency towards over-prediction of SST when the
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Table 3.Statistical evaluation of different simulations for LHF.

Sim 1 Sim 2 Sim 3 Sim 4 Sim 5 Sim 6

RMSE 95.75 115.2 112.6 140.8 143.9 168.9
CC 0.69 0.49 0.61 0.21 0.51 0.53
MBE −2.96 13.39 −22.67 31.56 −49.65 −16.28
t statistic 0.15 0.59 1.04 1.17 1.87 0.49

The best number for each statistical parameter is written in bold.
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Fig. 4 Comparison of best model performance (simulation 1) with control data, for six-hourly 2 

LHF prediction during typhoon Noul 3 
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Figure 4. Comparison of best model performance (simulation 1)
with control data, for 6-hourly LHF prediction during typhoon
Noul.

typhoon is stronger, and under-prediction when the typhoon
is weaker.

The spotlight of simulation 6 was the amount of tem-
perature and moisture in the different atmospheric layers
that were connected (Liu et al., 1997). Thus, this combina-
tion could predict SST satisfactorily, comparing to the other
groups in this paper.

3.2 Latent heat flux

The oceanic LHF is heat energy released or absorbed by the
ocean during a phase transition without a change in temper-
ature, such as water-surface evaporation (Clark, 2004).

As shown in Table 3, simulation 1 performs best for LHF
prediction, with the minimum RMSE, MBE, andt values,
and the maximum amount of CC.

Figure 4 shows a comparison of simulated and control
data for LHF in the case of the best performing simulation.
Although there are some over-prediction and some under-
prediction points, it can be seen that most simulated values
are very close to the control values.

In this study, the simulation number 1 has focused on the
different water phases in clouds. Phase changing in the dif-
ferent layers can affect the amount of LHF (Zhu and Zhang,
2006).

Table 4.Statistical evaluation of different simulations for SHF.

Sim 1 Sim 2 Sim 3 Sim 4 Sim 5 Sim 6

RMSE 58.37 30.89 60.71 64.48 23.69 54.62
CC 0.60 0.88 0.72 −0.02 0.93 0.524
MBE −12.85 −9.25 −22.38 −7.77 0.48 −14.38
t statistic 1.15 1.6 2.02 1.77 0.03 1.39

The best number for each statistical parameter is written in bold.
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Fig. 5 Comparison of best model performance (simulation 5) with control data, for six-hourly 2 

SHF prediction during typhoon Noul 3 
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Figure 5. Comparison of best model performance (simulation 5)
with control data, for 6-hourly SHF prediction during typhoon
Noul.

3.3 Sensible heat flux

SHF is heat energy transferred by conduction and convection
at the atmosphere–ocean interface that creates a change in
the system temperature (Clark, 2004).

As shown in Table 4, of the six simulations, number 5 can
strongly predict the SHF values with the highest value of CC
(0.93).

The result of simulation 5, indicating its superior perfor-
mance over others, is shown in Fig. 5. Almost all increasing
and decreasing SHF values are predicted as well.

3.4 Precipitation rate

In the case of the precipitation rate, simulation 5 was the
best-performing simulation, with consistently lowest RMSE,
MBE, andt values, and the highest CC values, as shown in
Table 5.

The simulated data from simulation 5 are compared with
control data in Fig. 6. The results indicate that forecasts of
precipitation rates before and after the typhoon are close
to those of the control data. During the period of 14 to
17 November, the simulated data values for the typhoon were
lower than the control data.

As a result, the simulation number 5 could estimate both
SHF and precipitation rate better than the other sets. This
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Fig. 6 Comparison of best model performance (simulation 5) with control data, for six-hourly 2 

precipitation rate prediction during typhoon Noul 3 
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Figure 6. Comparison of best model performance (simulation 5)
with control data, for 6-hourly precipitation rate prediction during
typhoon Noul.

combination has considered convection, mass flux, and cloud
effects. Furthermore, Li (2013) demonstrated that the KF cu-
mulus parameterization could create the most severe vertical
convection.

3.5 Wind speed

Wind-speed estimations during the typhoon were statistically
evaluated, as shown in Table 6. In spite of simulation 4 hav-
ing low CC values, RMSE, and MBE, values are lower in
comparison with those obtained in other simulations, and this
simulation therefore shows the best performance for wind-
speed prediction. Moreover, simulation number 4 focuses on
mixed phase and multiband efficiency, along with the tem-
perature, and the turbulent kinetic energy played a signifi-
cant role in forecasting wind speed. According to Draxl et
al. (2010), turbulent kinetic energy can perform well in pre-
dicting wind speed.

A general tendency for the model to over-predict wind
speed was noted in all simulations, and was also observed
in many earlier studies (Hanna et al., 2010; Ruiz et al.,
2010). Figure 7 shows the comparison between simulated
wind speed and related control data. As noted in earlier stud-
ies, wind speed is significantly affected by local fluctuations,
especially in highly unstable conditions. Thus, wind sensitiv-
ities tend to have more variation (Hu et al., 2010).

3.6 Verification process

Herein, to find whether the best combinations are applicable
or not, they were examined for seven other typhoons (named
in Sect. 2.3). The calculated values of RMSE, CC, MBE, and
t for these typhoons confirms that the suggested combina-
tions show the same results, which are given in Table 7.
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Figure 7. Comparison of best model performance (simulation 4)
with control data, for 6-hourly wind-speed prediction during ty-
phoon Noul.

3.7 Comparison with other studies for the wind speed
prediction issue

In this part, two sets of simulations were defined according to
the previous studies by Chandrasekar and Balaji (2012), and
Angevine (2010), which were considered as the best physics
options for wind prediction. The simulations are indicated by
abbreviations of Sim 7, and Sim 8, respectively. The details
of their represented physics options are indicated in Table 8.

These two suggested simulations for best wind predicting
were conducted for typhoon Washi in 2011. The best wind-
speed prediction by WRF model (simulation 4), CFSR data
set, and these new simulations are compared (Fig. 8).

According to Fig. 8, the best physics options that were
suggested for predicting typhoon intensity during this study
(WRF) and also Sim 7 are nearly in the range of CFSR data
set, and Sim 8 predicted stronger winds at some points.

4 Conclusions

From the results obtained, it is evident that there is no sin-
gle combination of physics options that performs best for
all desired parameters. However, the present study suggests
suitable options for different variables, when considering ty-
phoon existence in the South China Sea. According to differ-
ent schemes defined in this paper, SST, LHF, SHF, precipita-
tion rate, and wind speed are best estimated by simulations 6,
1, 5, 5, and 4, respectively. Therefore, the model configura-
tion should be chosen from the viewpoint of the objective
of the study being undertaken. The main conclusions of this
study are as follows:

– This case study analysed the performance of different
physics options available in the WRF model, for predic-
tion of surface parameters under stormy conditions in
the South China Sea.
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Table 5.Statistical evaluation of different simulations for precipitation rate.

Sim 1 Sim 2 Sim 3 Sim 4 Sim 5 Sim 6

RMSE 0.00027 0.00028 0.00026 0.000280.00025 0.00026
CC 0.329 0.105 0.264 0.369 0.405 0.301
MBE 0.00017 0.00017 0.00016 0.000180.00015 0.00016
t statistic 4.085 4.062 3.841 4.414 3.699 3.943

The best number for each statistical parameter is written in bold.

Table 6.Statistical evaluation of different simulations for wind speed.

Sim 1 Sim 2 Sim 3 Sim 4 Sim 5 Sim 6

RMSE 4.28 3.87 4.10 3.11 4.39 3.15
CC 0.42 0.37 0.49 0.41 0.57 0.70
MBE −2.69 −2.01 −2.93 −1.64 −3.09 −2.18
t statistic 4.13 3.10 5.20 3.17 5.07 4.91

The best number for each statistical parameter is written in bold.

Table 7. The values of statistic parameters for confirming the best
combinations suggested for the selected parameters.

RMSE CC MBE t statistic

SST

Sim 1 0.62 0.85 −0.08 1.21
Sim 4 0.68 0.82 −0.13 1.8
Sim 5 0.63 0.84 −0.07 1.07
Sim 6 0.81 0.87 −0.06 0.66

LHF

Sim 1 129.49 0.82 −5.49 0.4
Sim 4 156.11 0.76 39.6 2.47
Sim 5 233.01 0.75 −127.39 6.16
Sim 6 137.84 0.81 −12.02 0.83

SHF

Sim 1 42.29 0.55 −17.43 4.27
Sim 4 24.65 0.47 −3.97 1.54
Sim 5 22.03 0.68 −2.87 1.24
Sim 6 31.97 0.67 −21.61 8.65

Prate

Sim 1 0.0014 0.68 0.00063 4.77
Sim 4 0.00142 0.72 0.00066 4.89
Sim 5 0.00135 0.73 0.00061 4.76
Sim 6 0.00141 0.67 0.00063 4.73

Wind speed

Sim 1 7.17 0.68 −1.57 2.13
Sim 4 6.9 0.72 1.24 1.73
Sim 5 7.79 0.63 −2.01 2.54
Sim 6 7.38 0.67 −1.95 2.6
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Figure 8. Comparison of wind-speed prediction for typhoon Washi
through different simulations and data sets.

– The recommended combinations of physics options for
the mentioned parameters were confirmed with seven
other typhoons.

– Comparing the presented best simulations with the
CFSR database showed that the suggested groups can
be applicable in predicting issues except for precipita-
tion rate.

– Overall, the performance of the WRF model is accept-
able and satisfactory for prediction of important param-
eters related to typhoon intensity over the South China
Sea region.

– Wind-speed prediction showed a reasonable result com-
pared with other studies.
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Table 8.Two simulations introduced by other studies.

Sim 7 Sim 8

Microphysics WRF single-moment 3-class Eta
Longwave radiation RRTM RRTM
Shortwave radiation RRTMG Dudhia
Surface layer MM5 TEMF
Land surface Pleim Xiu 5-layer thermal diffusion
Planetary boundary layer Mellor Yamada Janjic TEMF
Cumulus parameterization Grell-Devenyi Kain Fritsch
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