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Abstract. The seismic hazard of the Iberian Peninsula is
analysed using a nonparametric methodology based on statis-
tical kernel functions; the activity rate is derived from the cat-
alogue data, both its spatial dependence (without a seismo-
genic zonation) and its magnitude dependence (without using
Gutenberg–Richter’s relationship). The catalogue is that of
the Instituto Geográfico Nacional, supplemented with other
catalogues around the periphery; the quantification of events
has been homogenised and spatially or temporally interre-
lated events have been suppressed to assume a Poisson pro-
cess.

The activity rate is determined by the kernel function,
the bandwidth and the effective periods. The resulting rate
is compared with that produced using Gutenberg–Richter
statistics and a zoned approach. Three attenuation relation-
ships have been employed, one for deep sources and two for
shallower events, depending on whether their magnitude was
above or below 5. The results are presented as seismic hazard
maps for different spectral frequencies and for return periods
of 475 and 2475 yr, which allows constructing uniform haz-
ard spectra.

1 Introduction

The seismic design of structures requires the definition of
an adequate seismic action for the site. In Spain the offi-
cial information for reference in this respect is the seismic
hazard map included in the Spanish seismic code NCSE-
02 (Ministerio de Fomento, 2003), already about a decade

old and referring only to the Spanish territory. At about
the same time, Peláez-Montilla and López-Casado (2002)
presented a seismic hazard analysis (SHA) for the entire
Iberian Peninsula based on the methodology by Frankel
(1995). Since then, several regional studies within the Iberian
Peninsula have been carried out: for the south-east of Spain
(García-Mayordomo et al., 2007, and Gaspar-Escribano
et al., 2008), for Andalusia (Benito et al., 2010), for the
north of the Iberian Peninsula (Secanell et al., 2008, and
Gaspar-Escribano et al., 2011), for Portugal (Vilanova and
Fonseca, 2007, and Sousa and Campos, 2009), and finally
Mezcua et al. (2011) have presented PGA (peak ground ac-
celeration) results for the Spanish territory within the Iberian
Peninsula.

Although national norms may lose jurisdiction at political
boundaries, technical findings are not sensitive to them. It
is therefore decided that the present study should cover the
entire Iberian Peninsula.

In recent times important advances have taken place in
several areas that strongly influence an SHA.

– New evaluation methods have been proposed, some of
which forego the use of seismogenic zones (Frankel,
1995; Woo, 1996a).

– The seismic catalogue includes new information: apart
from recent events, the characterisation of older ones
has been enriched with additional magnitude data or
with the uncertainties associated with the different pa-
rameters.
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– Research on attenuation models has led to better models
and to guidance on their use.

At the same time, the goals pursued by seismic design have
also evolved in a number of aspects.

– A design seismic input may now be required at unpopu-
lated locations, such as maritime areas or coastal zones.

– The characterisation of the seismic input is expected to
be more sophisticated; PGA and the felt intensity are
no longer sufficient, and uniform hazard spectra (UHSs)
are required.

– Increasingly, the design of structures and facilities is
based on more than one level of probability, each level
associated with a given set of performance require-
ments.

As a consequence, it is appropriate to reevaluate the seismic
hazard for the whole Iberian Peninsula, incorporating all re-
cent advances and satisfying the new engineering needs.

The present work was developed in the context of the PhD
thesis by Crespo (2011). Since then, the Spanish Instituto Ge-
ográfico Nacional has carried out a re-evaluation of the na-
tional seismic hazard map incorporating the present method-
ology (Ministerio de Fomento, 2013).

2 Methodology

The methodology employed is inspired by the non-
parametric density estimation (NPDE). In NPDE, the objec-
tive is to find the density function from which a given sample
derives, without specifying a priori a specific shape for the
density function, such as a normal distribution or a gamma
one; instead, the shape of the distribution is expected to be
provided by the sample itself.

The method consists in centring a density function on each
element of the sample, adding all such functions and normal-
ising their sum. It was initially proposed by Fix and Hodges
(1951), but a more recent and very clear description is pro-
vided by Silverman (1986).

The specific application of NPDE to seismic data was pro-
posed by Vere-Jones (1992). Later on, Woo (1996a, b) pre-
sented a way of using kernel functions for modelling seismic
activity rates in SHA.

The mathematical definition of density estimated with ker-
nel functions is as follows:

fn (x) =
1

nH 2

n∑
i=1

K

(
x − xi

H

)
, (1)

wheren is the number of elements in the sample,H is the
bandwidth, which is a measure of the separation between
sample elements,K is the kernel function, andxi is the po-
sition of eventi.

For generating a seismic activity rate densityλk, two
changes are introduced in the previous expression:

– The normalisation with respect to the number of events
n is omitted; thus the result is expressed in terms of
number of events.

– Each kernel function is divided by an effective period of
detectionT , so the density of events is per unit time.

With the above two changes, the expression becomes

λk (M,x) =
1
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)
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. (2)

The effective periodT is a measure of the detection probabil-
ity of that event in past times. As noted in Eq. (2), each event
can be assigned a different effective periodT , which makes
the methodology very versatile. Typical event characteristics
on which the effective period usually depends are the event
magnitude, the time of occurrence and the characteristics of
the epicentral location (onshore, offshore, unpopulated area
at the time of occurrence, etc.), but other factors affecting the
probability of the event being detected can also be incorpo-
rated through the effective period.

The resulting activity rate densityλk depends on location
as well as magnitude through the bandwidthH . As can be
seen, it is a summation of kernel functionsK placed on each
event of the catalogue with coordinatesxi . Each function is
weighted with an effective detection periodT ; the normali-
sation is achieved through the bandwidthH , which depends
on the distance between events, as it will be seen later in
Sect. 5.1. The kernel function, the effective detection periods
and the bandwidth are the three main parameters influencing
the activity rate density.

Several kernel functions have been proposed for the cases
where the sample is of seismic type, specifically the Gaus-
sian kernel, the inverse bi-quadratic (IBQ) and a finite one
that has zero values for distances greater than one bandwidth.
The first two kernels were proposed by Vere-Jones (1992);
later on, Woo (1996a) proposed employing the IBQ and al-
ternatively a finite one. All three types of kernels can be seen
in Fig. 1. The kernels are axially symmetric.

The IBQ kernel originally proposed by Woo (1996b), apart
from being the one in common to the proposals by Vere-
Jones (1992) and Woo (1996a), has been employed here. Its
mathematical expression is

KIBQ (x) =

(
λIBQ − 1

π

)(
1+ xT x

)−λIBQ, (3)

whereλIBQ is a parameter greater than 1 for which Vere-
Jones (1992) suggests values between 1.5 and 2.0.

As explained before, the effective period of detection must
be defined for every earthquake in the catalogue. If the cata-
logue were complete, this effective period of detection would
be the period of time covered by the events; since in most
cases, including the present one, this is not so, effective pe-
riods of detection have to be established: the purpose is to
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Figure 1. Probability densities of various kernel functions: the
Gaussian kernel (GAUSS), the inverse bi-quadratic kernel (IBQ),
and a finite kernel that vanishes in one bandwidth (FIN).

capture correctly the temporal activity rate without eliminat-
ing any event, since this would affect the spatial distribution
of the activity rate density. Details on the derivation of the
effective periods in this case are presented in Sect. 5.2.

The bandwidth is assumed to depend on magnitude
through an exponential law. The relation proposed by Woo
(1996a) was

H(M) = cexp(dM), (4)

wherec andd are parameters to be adjusted, andM is the
magnitude, or the measure employed for the quantification
of the event’s size.

This type of dependency follows the standard form of log-
arithmic correlation between the magnitude and other seis-
mic parameters such as, for instance, the fault length. Again,
specific details on the derivation of the parametersc andd in
Eq. (4) are presented in Sect. 5.2.

With the activity rate density already estimated and the
attenuation model, the rate of occurrence of different levels
of ground motionyj can be derived as follows:

λyj
=

∫
�

Mmax∫
Mmin

P
[
Y > yj |M,x

]
λk (M,x)dMdx. (5)

The rate of occurrence is computed with Eq. (5), and it fol-
lows exactly the summation specified in Eq. (2) for the con-
struction of the seismic activity rate density; the procedure
is quite simple though very intensive in calculations since
for each magnitude it goes through the entire catalogue. The
kernel function is given in Eq. (3) and the shape of the band-
width in Eq. (4). These four equations give all the mathemat-
ical input needed to understand the construction of the rate
of occurrence.

The seismic activity rate density has to be calculated for
the entire area that is susceptible to generating earthquakes

that are relevant for the location studied. The extension of
this area depends on the minimum threshold of ground mo-
tion of interest and the maximum magnitude in the area; with
these data and the attenuation relation, it is possible to esti-
mate the extension of the area where the seismic activity rate
density is needed.

Once the rate of occurrence of different levels of ground
motion has been obtained, the seismic hazard curve at the site
is derived assuming a Poisson process.

This methodology was originally implemented by Woo
(1996b) in the Fortran program KERFRACT. In the context
of the work by Crespo (2011), the code was modified in sev-
eral aspects that are explained in detail in her work. However,
the most important changes affecting the calculation algo-
rithm are as follows:

– For each magnitude being integrated, the decision of
whether an event is considered or discarded when com-
puting the seismic activity is made dependent on the
uncertainty associated with the event magnitude. This
change is especially relevant for historical events that
have large magnitude uncertainties.

– The computation of the activity rate may have the depth
as an additional variable of integration.

This methodology has been already applied in the past in
many parts of the world. Apart from the authors (Crespo and
Martí, 2002; Crespo et al., 2003, 2007), Secanell et al. (2008)
also employed it for studying the Pyrenean region, Menon
et al. (2010) for South India, and Goda et al. (2013) for the
UK.

A question may be posed as to the reliability of this de-
scription of the activity rate and its relative merits in compar-
ison with traditional zoned procedures (Stein et al., 2011).
Several considerations may be offered in this respect. A first
advantage over zoned procedures comes from avoiding the
imposition of constant seismic activity over zones with step-
wise jumps across boundaries; this is particularly signifi-
cant in areas of low to medium activity, with no clear as-
sociation between seismicity and geological features, where
the delineation of zones is a primarily subjective matter,
which has a strong influence on the results. In this respect
Giner et al. (2002) presented five different zonifications, con-
structed by different authors for the same area of Spain, that
produce very different hazard results.

Even for highly active regions like California, Jackson and
Kagan (1999) presented their exercise in earthquake fore-
casting using a methodology based on a smoothing approach
based on kernel functions, similar to the methodology pro-
posed by Woo (1996a). These same authors participated in
the RELM (Regional Earthquake Likelihood Models) test
(Sachs et al., 2012) obtaining with their methodology the
best mean forecast (Helmstetter et al., 2007). This further
confirms the better performance of the zoneless methodol-
ogy over traditional zoned approaches.
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Further, as shown by the results presented here, there are
areas like south-eastern Spain and the Pyrenean region where
the zoneless approaches arrive at significantly higher accel-
eration values than the traditional methodologies. The re-
cent activity felt in south-eastern Spain has been consider-
ably higher than expected from available hazard maps, which
again seems to confirm the limitations of the zoned approach.
A similar situation has arisen in Italy regarding the recent ac-
tivity around L’Aquila and Emilia-Romagna (G. Woo, per-
sonal communication, 2013).

3 Seismic catalogue

3.1 Sources

The main catalogue used in the study is the seismic database
maintained by the Spanish Instituto Geográfico Nacional
(IGN, 2010): more than 95 % of the final catalogue employed
here is constituted by events from the IGN database. How-
ever, some areas that are relevant for the seismic hazard of the
Iberian Peninsula are not fully covered by the IGN catalogue.
This is especially true for the south-east of France; also some
large events in north-western Italy may influence the seis-
mic hazard of the north-east of Spain. The IGN catalogue
has been completed with data from two international organ-
isations (USGS, 2011; ISC, 2010), data from the catalogues
of neighbouring countries (BRGM, 2010; Gruppo di lavoro
CPTI, 2004) and published works that describe the seismicity
of surrounding regions (Vilanova and Fonseca, 2007; Peláez
et al., 2007).

Nearly 60 000 earthquakes have been considered, which
include all magnitudes/intensities registered and dependent
events. Most of them, more than 97 %, come from the IGN
catalogue; some 1500 were added from the ISC, most of
them located in France and in the north of Africa and belong-
ing to the instrumental period; finally, just 45 earthquakes
were taken from the USGS, all of them catalogued as “sig-
nificant events” and located outside the Spanish territory in
areas not covered by the IGN catalogue.

The most ancient event with an assigned intensity dates
back to 1048 and belongs to the IGN catalogue, while the
most recent events considered date from November 2010.

3.2 Magnitude unification

The quantification of events has to be homogeneous through-
out the catalogue. The homogenisation has been conducted in
terms of magnitude, specifically the moment magnitudeMw,
which is becoming the standard measure for seismic events
and is the one used in the majority of modern attenuation re-
lations. Some 10 % of the events in the IGN catalogue are
only quantified with epicentral intensity, as is frequently the
case for events from the historical period. For these histor-
ical earthquakes, if they had an assigned magnitude either
by the IGN (2010) or by specific studies (Martínez-Solares

and López-Arroyo, 2004; Vilanova and Fonseca, 2007), that
value has been considered; in the other cases the correlation
by L. Cabañas (personal communication, 2010) specifically
developed for the Iberian Peninsula has been employed:

Mw = 1.525+ 0.578I0 σ = 0.404, (6)

whereMw is the moment magnitude,I0 is the epicentral in-
tensity, andσ is the standard deviation.

During the instrumental period most events have an as-
signed magnitude; generally this magnitude is eithermb or
mbLg, and since 2002, some of them have also had a mo-
ment magnitude. The type of magnitude is specified in the
catalogue provided by the IGN (2010). The conversion of
both epicentral intensity and magnitudemb or mbLg into
moment magnitude has been carried out using correlations
specifically developed for the Iberian Peninsula by the IGN
(L. Cabañas, personal communication, 2010). Specifically,
three subsets of earthquakes are considered, each one hav-
ing a different correlation.

– For earthquakes characterised with magnitudemb,

Mw = −1.576+ 1.222mb σ = 0.355. (7)

– For earthquakes before March 2002 and characterised
with magnitudembLg,

Mw = 0.258+ 0,980mbLg σ = 0.251. (8)

– For earthquakes after March 2002 and characterised
with magnitudembLg,

Mw = 0.644+ 0.844mbLg σ = 0.235. (9)

Moment magnitudes already assigned by the IGN (2010)
have been maintained, and some other moment magnitudes
from the literature have also been incorporated (Stich et al.,
2003, 2010).

As will be explained in Sect. 6, the magnitude integration
range starts atMw = 3.5. Magnitude uncertainties are con-
sidered on an event-by-event basis assuming a Gaussian dis-
tribution with the mean being the magnitude in the catalogue.
Hence it is necessary to consider lower-magnitude events in
the process of integration. In this case the minimum magni-
tude threshold in the catalogue isMw = 3.0.

3.3 Dependent events

It is assumed that earthquake events are Poisson distributed,
which requires removing the dependent events. The method-
ology followed for this purpose is the traditional one of plac-
ing a time–space window around the main events to identify
those that need to be discarded. The methodology followed is
inspired in the one proposed by Gardner and Knopoff (1974),
but modified in two aspects:
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– The window size depends on the event magnitude ac-
cording to the indications given by Peláez et al. (2007);
namely, forMw = 3.0 the spatio-temporal window was
of 20 km and 10 days, and 100 km and 900 days for
Mw = 8.0.

– The catalogue is scanned in decreasing magnitude or-
der, so that in the potential series the first event identi-
fied is always the main shock (Crespo, 2011).

As a result of the pruning process conducted, 36 % of the
events were considered dependent events (either foreshocks
or aftershocks) and were discarded from the catalogue.

3.4 Uncertainties

The methodology used requires the catalogue to incorporate
uncertainties with respect to magnitude as well as to location
(epicentre and depth).

Regarding magnitude, the uncertainties quoted in the var-
ious catalogues have been taken into account. When using
a correlation, its uncertainties have been combined with those
in the catalogue. It should be pointed out that the correlations
provided by the IGN (L. Cabañas, personal communication,
2010) have been derived with an RMA (reduced major axis)
methodology which takes into account the variability of the
two variables being adjusted. These correlations have been
published by the IGN (Ministerio de Fomento, 2013).

As for the location uncertainty, the catalogues provide this
type of information for many earthquakes, especially in the
instrumental period. For events lacking this information in
the catalogue, an uncertainty has been estimated. It seems
logical that this uncertainty be higher for events that oc-
curred at older times, and that it be higher for epicentres
at sea. The uncertainties assigned to the epicentral location
follow the recommendations by G. Woo (personal commu-
nication, 2000) and are also in agreement with the sugges-
tions by other authors (Giner, 1996; Molina, 1998; García-
Mayordomo, 2005). The uncertainties finally assigned to sea
and land epicentres appear in Table 1.

4 Attenuation model

Major research on the attenuation of ground motion has been
taking place for at least half a century, but important ad-
vances have been produced recently, both in relation to the
number of models available and to their functional forms.

Very relevant work has also been conducted on the criteria
for selecting attenuation models when conducting an SHA.
Cotton et al. (2006) proposed a series of seven criteria that
in practice were rather difficult to satisfy. Later on, Bommer
et al. (2010) reformulated the criteria into a set of 10 recom-
mendations.

Attenuation studies at present tend to focus on medium to
high magnitudes, a range that is representative of only a small

Table 1.Uncertainties (km) in epicentre location.

Year Onshore Offshore
interval epicentre epicentre

< 1600 50 100
1600–1800 40 80
1800–1900 30 60
1900–1970 20 30
1970–1985 10 10
> 1985 5 5

fraction of the seismicity in low to medium seismicity areas
such as the Iberian Peninsula. Bommer et al. (2007) alerted to
the problems that can arise when an attenuation model is em-
ployed out of the range for which it was developed. They also
presented some preliminary results obtained with an attenu-
ation model that employs a database spanning magnitudes
3.0–7.5; their results in the lower range are consistent with
those of Bragato and Slejko (2005).

In the present work, three different attenuation models
have been employed:

– Ambraseys et al. (2005) for shallow earthquakes with
moment magnitudes above 5.0

– Bragato and Slejko (2005) for shallow earthquakes with
moment magnitudes below or equal to 5.0

– Youngs et al. (1997) for deep earthquakes.

The boundary between shallow and deep earthquakes has
been fixed at 35 km, all deep earthquakes occurring between
35 and 200 km, except for a few around Granada which
are around a 600 km depth. These very deep earthquakes
are not included in the calculation. In the same way, deep
earthquakes are accounted for just for magnitudes above
Mw = 5.0, which is the range of applicability of the atten-
uation relation and a sensible lower bound for deep earth-
quakes; hence, deep earthquakes around the Pyrenean region
and many around the south of the peninsula also fall outside
the group of interest.

Most modern attenuation models are well suited for deal-
ing with shallow earthquakes with magnitude above 5.0. The
reasons for choosing that by Ambraseys et al. (2005) are
that it was developed from a wide database of European
records, including some from the Iberian Peninsula; that it
has been used in a number of SHA, including recent ones
in the Iberian Peninsula (Garcia-Mayordomo, 2005; Mezcua
et al., 2011); and that it satisfies 9 of the 10 points pro-
posed by Bommer et al. (2010). The model by Akkar and
Bommer (2010), based on the same database as the one by
Ambraseys et al. (2005), was also initially considered but
eventually discarded because its sampling of spectral peri-
ods is equally spaced throughout the range covered instead
of gradually increasing with the period as the amplification
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becomes smaller. In an area of medium–low seismicity like
the Iberian Peninsula, the maximum spectral amplification in
terms of acceleration is expected to appear at low periods.
Since one of the objectives of the work was to capture this
spectral amplification, the sampling provided by Ambraseys
et al. (2005), smaller than other attenuation models and con-
sistent with that of Bragato and Slejko (2005), was consid-
ered more appropriate. Additionally it is consistent with the
model by Bragato and Slejko (2005), with which it will be
combined. In relation to the magnitude, it is not important
that the model by Ambraseys et al. (2005) does not include
the non-linear magnitude dependence proposed by Bommer
et al. (2010), because it will only be used in part of the mag-
nitude range.

The number of attenuation models generated with
databases that cover the low magnitude range, specifically
below 5.0, is considerably smaller. That by Bragato and Sle-
jko (2005) is one of them and, as already mentioned, is con-
sistent with the preliminary results presented by Bommer
et al. (2007). Additionally, it satisfies 8 out of the 10 cri-
teria proposed by Bommer et al. (2010), the remaining two
being of lesser importance since the model will be employed
in only part of the magnitude range. The minimum magni-
tude at which the integration of the seismic activity rate den-
sity begins isMw = 3.5. This value was finally adopted af-
ter repeated calculations showed that further lowering of this
threshold only affects the results in areas with lower hazard
and for return periods below 475 yr.

There are studies based on macroseismic intensity data
that conclude different attenuations for different regions
within the peninsula (Sousa and Oliveira, 1996; López
Casado et al., 2000). Here, only one attenuation model for
shallow seismicity is employed for the whole Iberian re-
gion; this decision follows the recommendations by Bom-
mer et al. (2010), who claim that there is no strong evi-
dence for persistent regional differences in ground motions
among tectonically comparable areas. Their recommenda-
tions are based on the works by Douglas (2007) and Stafford
et al. (2008), which rely on recorded strong ground motions
rather than macroseismic data.

Attenuation models for deep earthquakes are very scarce,
and those available refer to subduction zones like Chile, west
coast of Mexico, Peru or Japan. To account for deep seis-
micity in the calculations, a model must be used that in-
cludes focal depth as an independent variable; there is then
little choice other than a subduction model, even if the tec-
tonic patterns represented are not the ideal ones. Among the
available subduction models, that by Youngs et al. (1997)
was selected because it scores higher on the list by Bommer
et al. (2010).

The attenuation models have to be harmonised for consis-
tency in their input parameters and in the results produced. In
relation to magnitude, the catalogue had been homogenised
in terms ofMw, which is already the measure employed by
Ambraseys et al. (2005) and Youngs et al. (1997). The model

by Bragato and Slejko (2005) was originally developed in
local Richter magnitudeML but, for the range in which this
model is applied here, both magnitudes can be considered
equivalent, as also assumed by Bommer et al. (2007).

The distance considered is the epicentral distance. The
model by Bragato and Slejko (2005) is based on that dis-
tance. That by Ambraseys et al. (2005) employs the Joyner–
Boore (JB) distance but, for moderate seismicity, the JB
distance can be assumed to be equal to the epicentral one.
Youngs et al. (1997) make use of a similar equivalence
between the epicentral distance, adequately combined with
depth, and the distance to the rupture surface originally em-
ployed in the model.

The type of soil for which the results are derived is “stiff
soil” with a shear wave velocity between 360 and 750 m s−1:
this is the range for which the Bragato and Slejko (2005)
model was investigated in detail and is also one of the soil
types considered by Ambraseys et al. (2005). It corresponds
also to one of the two types of ground studied by Youngs
et al. (1997).

Finally, the acceleration measure used in the regression,
which is also the output acceleration, may vary; indeed all
three models use different measures of acceleration. The
present results employ the same measure as Ambraseys
et al. (2005), which uses the maximum horizontal compo-
nent. For Bragato and Slejko (2005) a conversion has been
carried out using their own model guidelines, and in the case
of Youngs et al. (1997), the correlations by Beyer and Bom-
mer (2006) have been incorporated.

Figures 2 and 3 present part of the attenuation model con-
structed for shallow seismicity, which includes the correla-
tions by Ambraseys et al. (2005) and Bragato and Slejko
(2005), with the aforementioned modifications. As can be
seen, the combination of these two models, with the appro-
priate homogenisation, yields good continuity at theMw =

5.0 boundary. As a qualitative verification, the maximum
spectral acceleration (SA) can be seen to move towards the
lower frequencies with increasing magnitude, as could be ex-
pected.

5 Seismic activity rate

The seismic activity rate is calculated according to Eq. (2).
The kernel function employed is the IBQ, as stated in Sect. 2.

In this section particular choices made for the determina-
tion of the bandwidth and the effective detection periods are
described first, which are the two fundamental elements on
which the seismic activity rate relies.

The seismic activity rate presented in this section repre-
sents an intermediate result of the overall calculation in con-
trast with the seismic activity represented by the Gutenberg–
Richter (1944) relationship, which is an input in the tradi-
tional zoned approach. There is no need to explicitly obtain
these results for deriving the final hazard output; in fact the
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Figure 2. Attenuation of PGA for shallow earthquakes and stiff soil
sites. Magnitudes above 5 have been attenuated with Ambraseys
et al. (2005) and magnitudes equal or below 5 with Bragato and
Slejko (2005).

original implementation by Woo (1996b) did not offer the
possibility of retrieving them. However, it has been consid-
ered a useful exercise in order to help understand the differ-
ences between the traditional and the kernel approach.

5.1 Bandwidth

The bandwidthH(Mw) depends on magnitude as indicated
in Eq. (4). This type of logarithmic relation between moment
magnitude and bandwidth is commonly assumed to be appli-
cable between moment magnitude and other seismic param-
eters.

The derivation ofc andd is performed via a least-square
fit:

– Events are classified in groups according to their mag-
nitude.

– For each event, the distance to the nearest epicentre
within the same magnitude range is determined.

– All minimum distances calculated for each magnitude
range are averaged.

– A least-square fit is conducted in order to obtain the two
parameters,c andd, that appear in Eq. (4).

This methodology has been previously applied at several
sites (Crespo and Martí, 2002; Crespo et al., 2003, 2007).

The derivation of the parametersc andd is done indepen-
dently for shallow and deep earthquakes. If Eq. (4) is ad-
justed using the complete catalogue, the resulting correlation
is that presented in Fig. 4. However, since the fit is conducted
at all points where the hazard is computed, the spatial distri-
bution of c can also be produced, as shown in Fig. 5. As
reflected in the figure,c shows stable values between 0.25
and 0.50 for the areas of higher activity. In the central part of

Figure 3. Attenuation of shallow earthquakes for stiff soil sites and
10 km of epicentral distance. Magnitudes above 5 have been atten-
uated with Ambraseys et al. (2005) and magnitudes equal or below
5 with Bragato and Slejko (2005).

the peninsula and in the Balearic Islands, the values increase
to around 3.0, which is consistent with the fact that a lower
seismicity implies earthquakes more distant from each other.

5.2 Effective detection periods

The effective detection periods, parameterT (xi) in Eq. (2),
have been calculated considering whether an earthquake is
shallow or deep, and for the shallow ones, whether the epi-
centre is on land or at sea.

The magnitude and year of occurrence of each earthquake
are taken into account for determining the effective period of
the earthquake as follows:

– History is divided into time intervals as a function of the
means of detection available at each time.

– For each interval with durationDi and each level of
magnitude, a probability of detectionpim is estimated.

– A reference yearAm is established for each magnitude
level:

Am = A0 −

∑
i

pimDi, (10)

whereA0 is the most recent year with records.
Probabilities of earthquake detection over time need to be

assigned. This can be done by direct estimation based on the
possibilities offered by the available technology. However,
in this case, the estimation of the probability has been made
by comparison of activity rates with the one observed during
the completeness period: the probability is considered to be
proportional to the observed activity rate in the catalogue, be-
ing 1.0 in the completeness period and lower in the previous
times.

www.nat-hazards-earth-syst-sci.net/14/1309/2014/ Nat. Hazards Earth Syst. Sci., 14, 1309–1323, 2014



1316 M. J. Crespo et al.: Seismic hazard at the Iberian Peninsula

Figure 4. Derivation of the bandwidth parameters using the cata-
logue data, separately grouped into shallow and deep events.

Table 2 shows the reference years obtained by the previous
procedure for the calculation of the detection periods.

5.3 Computation of the seismic activity rate

Having defined the kernel functionK(x), the bandwidth
H(Mw), and the effective detection periodsT (xi), the activ-
ity rate can be calculated using Eq. (2). The resulting activity
depends on location and magnitude.

For a given magnitude level, the seismic activity rate can
be contoured; similarly, for a given location, the activity rate
can be plotted. This second result is equivalent, except for
a factor of area, to the traditional activity rate derived with the
Gutenberg and Richter (1944) relationship. Figure 6 shows,
for the south-west of the Iberian Peninsula, a contour map of
the activity rate for earthquakes with magnitude above 3.5,
which is consistent with the seismicity of this area. This plot
constitutes the first type of intermediate results that can be
produced. Although these types of results have been obtained
for the whole Peninsula, we include here the ones for the
south-west, which is one of the most illustrative areas.

Figure 7 shows plots of the activity rate for the four lo-
cations marked in the previous map. These curves repre-
sent the number of earthquakes per unit area and per year
for a given location, similar to the concept used in the
Gutenberg–Richter relationship. However, here this is just a
by-product of the calculations, while in the traditional proce-
dure it is a necessary step on which some assumptions, like
the analytical shape of the correlation, will be based. In the
present case, the shape, not necessarily linear, arises directly
from the catalogue data.

The graphs in Fig. 7 include also a linear fit of the activity
rate derived from the calculations. The slope of this line, re-
ferred to here asbk, may be compared with theb parameter

Figure 5.Distribution of the bandwidth parameterc; the higher val-
ues (red and purple) that appear in low seismicity areas (central
Iberian Peninsula and Balearic Islands) indicate a greater distance
between events of similar size.

Figure 6. Annual rate of occurrence of events per km2 with Mw >

3.5. Points A to D indicate the locations where the activity is plotted
in Fig. 7.

of the Gutenberg–Richter relationship. For each point of the
map, similar fits could be performed leading to a value of the
bk parameter; the results are plotted in Fig. 8. As can be seen,
the values found forbk are consistent with the typical ones
already predicted by Gutenberg and Richter (1944) for theb

parameter.
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Table 2. Reference years for different magnitudes and types of
events.

Magnitude Shallow Deep

(Mw) land sea

> 7.7 800 1595 –
7.2–7.7 900 1620 –
6.6–7.1 1000 1645 –
6.0–6.5 1157 1670 1930
5.4–5.9 1479 1798 1930
4.8–5.3 1733 1821 1930
4.2–4.7 1787 1842 1930
3.6–4.1 1839 1849 –

6 Results and discussion

6.1 General considerations

Once the activity rateλk has been calculated (Sect. 5) and
an attenuation model has been adopted (Sect. 4), the seismic
hazard can be calculated.

The magnitude integration range for shallow seismicity
starts atMw = 3.5 and for deep earthquakes atMw = 5.0.
The lower limit for integration depends on the return period
of interest and on the minimum acceleration levels that need
to be correctly captured. In the present case it was verified
that, for the 475 yr return period, the integration should start
at Mw = 3.5 if accelerations as low as 0.04g must be deter-
mined: using a lower limit for integration does not change
the results significantly, while higher values would affect the
results. This observation confirms the stability and consis-
tency of the attenuation model constructed. The question of
whether or not the minimum accelerations derived are of en-
gineering interest should be decided by the engineer who will
be making use of them and will depend on the type and pur-
pose of the calculation being performed. What has to be guar-
anteed at this stage is that the minimum accelerations being
derived are reliable, which requires an adequate selection of
the magnitude integration threshold.

The upper limit of integration arises from the maximum
magnitude recorded in the catalogue and its uncertainty,
specifically,Mwi+ 2σMwi

, σMwi
being the uncertainty asso-

ciated with eventi. Again, it was verified that the results
are not sensitive to increases in this upper limit, since each
event contribution is weighted with the probability that its
magnitude falls within the integration range, assuming a log-
normal magnitude distribution.

For deep earthquakes, the range of integration used is 35
to 200 km.

16 M. J. Crespo et al.: Seismic hazard at the Iberian Peninsula
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Fig. 7. Activity for each of the four locations identified in Figure 6: (a) point A; (b) point B; (c) point C; (d) point D. The relation is
approximately straight.Figure 7. Activity for each of the four locations identified in Fig. 6:

(a) point A, (b) point B, (c) point C, and(d) point D. The relation
is approximately straight.

Figure 8. Contours ofbk in the south-west of the peninsula. This
parameter, which arises from the calculations, is comparable to the
b parameter of the Gutenberg–Richter relationship.

6.2 Contour maps

The PGA has been calculated for a rectangular area that
spans the Iberian Peninsula for return periods of 475 and
2475 yr. The resulting contours appear in Figs. 9 and 10.

The reason for choosing the 2475 yr period is that it is
becoming an important reference in seismic design (ASCE,
2010; NRC-IRC, 2010).
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Figure 9. Distribution of the accelerations obtained forT = 0 s and
475 yr return period.

It is also around this return period that the contribution
to the seismic activity rate arising from geological consid-
erations may start being significant. Given the convergence
rate between the Iberian and African plates, it is expected
that faults in the Iberian Peninsula are also slow, so mor-
phogenic earthquakes (hence with magnitude above 6.0–6.5)
have recurrence periods of the order of few thousand years,
which exceeds the period covered by the seismic catalogue:
note that the first event in the catalogue dates from the fourth
century BC, and the first quantified event from the fifth cen-
tury AD. The explicit inclusion of geological data would be
carried out adding earthquakes that are representative of the
characteristic magnitude of the fault and with an effective
period consistent with the fault recurrence period. This inclu-
sion affects two aspects: the location where the activity rate
is modelled, which concentrates around specific geometrical
features or faults; and the activity rate itself, which is en-
riched with geological information that the seismic catalogue
does not reflect.

The effect on the distribution of the activity rate is partly
incorporated using the kernel methodology: the activity rate
is not uniformly spread over zones, but this is only guided by
the epicentral locations. All this should be taken into account
when considering the results.

Looking at the 475 yr map, the areas with higher hazard
levels are Granada (south of Spain) and the French slope of
the Pyrenees, where the PGA values reach 0.30g, followed
by the south-east of the peninsula, around the city of Ali-
cante, with a value of 0.27g. Outside the Iberian Peninsula,
the area around Algiers has 0.25g. Finally, Lisbon and the
north of Catalonia attain values of 0.20g and 0.15g, respec-
tively.

Figure 10. Distribution of the accelerations obtained forT = 0 s
and 2475 yr return period.

The results for a 2475 yr return period are presented in
Fig. 10. It can be seen that the distribution of the hazard is
similar to that observed for 475 yr, with approximately dou-
ble the acceleration values. This ratio is consistent with the
dependence on the return period proposed in the Spanish
seismic code (Ministerio de Fomento, 2003).

Two additional hazard maps are shown in Figs. 11 and 12:
they correspond to the same return periods mentioned earlier
but refer to a spectral period ofT = 0.1 s. As clarified in the
next section, this spectral ordinate is the more representative
one for deriving the maximum spectral accelerations, which
are those of the plateau. This spectral ordinate peaks in the
same places as the PGA: around Granada it reaches 0.90g

for 475 yr and 1.90g for 2475 yr.
The ratio of the plateau acceleration to the PGA for 475 yr

turns out to be between 2.5 and 2.8 in most of the Iberian
Peninsula (Fig. 13), which is in agreement with the value of
2.5 frequently found in seismic codes.

6.3 Uniform hazard spectra

Results were also produced in terms of uniform hazard spec-
tra for the eight locations marked with red crosses in Fig. 9.
They are shown in Fig. 14 for selected sites from the south
of the Iberian Peninsula and in Fig. 15 for those in the north.

The maximum amplification appears between periodsT =

0.1 s andT = 0.15 s, which is consistent with spectra corre-
sponding to low magnitudes derived directly from the atten-
uation model (Fig. 3).

In the figures, the dashed lines represent the results of
the seismic hazard analysis, while the solid lines correspond
to an analytical approximation based on constant accelera-
tion, velocity and displacement branches. The more adequate
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Figure 11. Distribution of the accelerations obtained forT = 0.1 s
and 475 yr return period.

Figure 12. Distribution of the accelerations obtained forT = 0.1 s
and 2475 yr return period.

periods for anchoring those branches were found to beT =

0.1, 0.4 and 2.0 s, respectively. However, the latter corre-
sponds, in fact, to the highest period for which results are
available; hence the possibility exists that a longer period
might have been preferable.

6.4 Comparison with previous studies and seismic codes

It is interesting to compare the results shown above with
those of other recent regional studies. Benito et al. (2010)
presented a study for Andalusia. The geometry of their con-

Figure 13. Maximum amplification of the accelerations for 475 yr
return period, measured by the ratio of the plateau to the PGA.

tour lines is consistent with that shown in Fig. 9, and their nu-
merical values are also consistent, possibly slightly lower, af-
ter correcting for the fact that their results correspond to rock
conditions. For Granada the present study calculates 0.30g

(for stiff soil) while they find 0.22g for rock; this difference
may be partly explained from the consideration of different
soil types.

Secanell et al. (2008) studied the area around the Pyre-
nees. They used the kernel methodology proposed by Woo
(1996a) in one of the branches of a logic tree. As in the pre-
vious case, after correcting for the soil type, there is good
consistency with the results presented here, both qualitative
and quantitative.

For the area around Alicante, we calculate 0.28g, a
value that is significantly higher than the one reported
using zoned methods (García-Mayordomo, 2005; García-
Mayordomo et al., 2007; Benito et al., 2006) but that is in
agreement with Peláez-Montilla and López-Casado (2002),
who employed a variant of the zoneless approach by Frankel
(1995) working in terms of felt intensity.

For these two latter areas (Pyrenees and Alicante), good
consistency is found with previous studies based on zoneless
approaches but not otherwise. This suggests that the spatial
gradient of the activity rate in these areas is high, so the zona-
tion needed in order to represent this seismic activity rate
would require small zone dimensions, which might be dif-
ficult to characterise, in terms of magnitude–frequency rela-
tionships, with the seismic information available.

For the area of Portugal the present study reaches 0.20g

around Lisbon and 0.13g in the southern coast of Portugal
(Algarve region). The work by Vilanova et al. (2007) finds
for rock 0.19g for Lisbon and 0.20g for the Algarve region;
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Fig. 14. Comparison of uniform hazard spectra and fitted code spectra for cities in the south of the Iberian Peninsula: (a) Huelva; (b) Granada;
(c) Alicante; (d) Lisbon.Figure 14. Comparison of uniform hazard spectra and fitted code

spectra for cities in the south of the Iberian Peninsula:(a) Huelva,
(b) Granada,(c) Alicante, and(d) Lisbon.

after accounting for the different soil type, the value around
Lisbon would be slightly lower in our study, with a somewhat
larger difference for the south of Portugal. The attenuation
relationships employed by Vilanova et al. (2007) are proba-
bly responsible for this discrepancy. Vilanova et al. (2007)
used three different attenuation models in the branches of
their logic tree, and the lowest values were derived using
Ambraseys et al. (1996), not very different from Ambraseys
et al. (2005) employed here. Considerably larger are the val-
ues found by Peláez-Montilla and López-Casado (2002), but
this is likely a consequence of the fact that they work in terms
of intensity and translate the final results into accelerations.

Table 3 compares the calculated PGA values for eight
cities in the Iberian Peninsula and compares them with those
reported elsewhere. The locations are indicated with red
crosses in Fig. 9.

Regarding the return period of 2475 yr, although it is be-
coming a more frequent reference (OPCM, 2008; NRC-IRC,
2010; ASCE, 2010), no results have been published recently
for it so comparisons cannot be offered.

Regarding the UHS results, the range of spectral periods
with maximum amplification appears to be narrower than in-
dicated by the Spanish seismic code (Ministerio de Fomento,
2003) for soil type II, which is equivalent to the stiff soil
considered here; however it is in agreement with the peri-
ods used to limit the plateau in Eurocode 8 (CEN, 2004) for
earthquakes with magnitude belowMs = 5.5.
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Fig. 15. Comparison of uniform hazard spectra and fitted code spectra for cities in the north of the Iberian Peninsula: (a) Orense; (b)
Pamplona; (c) Gerona; (d) Oporto.Figure 15. Comparison of uniform hazard spectra and fitted code

spectra for cities in the north of the Iberian Peninsula:(a) Ourense,
(b) Pamplona,(c) Gerona, and(d) Porto.

Table 3. Results of PGA (g) for selected locations. Results of the
present study are compared with values given by the official Spanish
seismic code as well as other published studies.

PGA Other
City stiff soil NCSE-02c PM&LCd studies

(this study) (stiff soil) (for rock)

Huelva 0.10 0.10 0.16
0.19f

0.05–0.08a

Granada 0.30 0.23 0.16–0.24 0.16–0.22a

Alicante 0.21 0.14 0.08–0.16 0.11–0.12b

Lisbon 0.21 – 0.24–0.32 0.19f

Ourense 0.09 0.04 0.04–0.08 0.10f

Pamplona 0.11 0.04 0.04–0.08 0.08–0.10e

Gerona 0.14 0.08 0.04–0.08 0.08–0.10e

Porto 0.10 – 0.04–0.08 0.10f

a Benito et al. (2010).
b García-Mayordomo et al. (2007).
c Ministerio de Fomento (2003).
d Peláez-Montilla and López-Casado (2002).
e Secanell et al. (2008).
f Vilanova et al. (2007).

It should also be noted that a number of seismic codes con-
struct the design spectra by using several spectral ordinates.
ASCE (2010) takesT = 0.2 s as the reference period for the
plateau andT = 1.0 s for the constant velocity branch. These
values are probably adequate for regions more active than the
Iberian Peninsula (see again Fig. 3): Figs. 14 and 15 suggest
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that the periodT = 0.2 s should more likely belong to the
constant acceleration branch.

Using several spectral ordinates to construct design spec-
tra is probably the best way of taking advantage of all the
information produced with the new attenuation models. The
Italian seismic code (OPCM, 2008) is a good example in Eu-
rope.

7 Summary and conclusions

A seismic hazard assessment of the Iberian Peninsula has
been carried out using the current state of the art in seismic
engineering and taking into account the present engineering
needs.

From the point of view of the methodology, the seismic
activity rate is constructed via a non-parametric estimation
based on kernel functions. The resulting rate presents a con-
tinuous variation in space and magnitude, and its shape is not
assumed but is derived in the process. No seismogenic zones
are needed, and the uncertainties in magnitude and position
are incorporated in the methodology.

The main seismic catalogue employed in the calculation is
the IGN database. However, the construction of the activity
rate in certain areas requires information from a wider area
than the one covered by the IGN, particularly the south of
France. As a consequence, the IGN catalogue has been sup-
plemented with information from other catalogues or pub-
lished studies.

For the homogenisation of the catalogue, made in terms
of moment magnitudeMw, the existence of a growing num-
ber of events in the IGN catalogue that have more than one
type of magnitude assigned has been of great help, informa-
tion that permits establishing suitable correlations between
different types of magnitude. Once homogenised, dependent
events have been identified and discarded.

The seismic activity rate compiled has a continuous vari-
ation with respect to location and magnitude: its characteris-
tics are derived solely from the information contained in the
catalogue.

The attenuation model has been constructed combining re-
lations from three different authors. It has proven to be stable
with respect to the variations of the minimum and maximum
magnitudes between which the integration of the activity rate
density is performed.

Results have been obtained for the Iberian Peninsula for
four spectral frequencies, two return periods, and a soil with
a shear wave velocity between 360 and 750 m s−1.

The results for PGA and 475 yr are generally consistent
with different recent studies performed at a regional scale.
There are two regions – specifically the south-east of Spain
and the Pyrenean region – where consistency is achieved
only with studies that followed a zoneless approach, the ac-
celerations obtained here being significantly higher than the
ones obtained with traditional procedures; this fact suggests

that the spatial gradient of the activity rate in these areas is
high, so the zonation needed to represent this seismic activ-
ity rate would require small zone dimensions, which might
be difficult to characterise with the available seismic infor-
mation.

The results for 2475 yr are consistent with those for 475 yr,
with the acceleration ratios between the two return periods
being in the usual range.

Uniform hazard spectra have been derived for eight loca-
tions. The spectral shapes present the maximum amplifica-
tion of acceleration around 0.1 s, which should be expected
for a medium–low seismicity area like the Iberian Peninsula.
The best points for anchoring branches of constant accelera-
tion, velocity and displacement branches appear to be 0.1, 0.4
and 2.0 s, respectively; they are lower than usually found in
seismic codes, but they are consistent with the low seismicity
in the area.
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