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Abstract. In this paper we present a probabilistic hazard as-
sessment for tephra fallout at Mt. Etna (Italy) associated with
both short- and long-lived eruptions. Eruptive scenarios and
eruption source parameters were defined based on the geo-
logical record, while an advection–diffusion–sedimentation
model was used to capture the variation in wind speed and
direction with time after calibration with the field data. Two
different types of eruptions were considered in our analysis:
eruptions associated with strong short-lived plumes and erup-
tions associated with weak long-lived plumes. Our proba-
bilistic approach was based on one eruption scenario for both
types and on an eruption range scenario for eruptions produc-
ing weak long-lived plumes. Due to the prevailing wind di-
rection, the eastern flanks are the most affected by tephra de-
position, with the 122 BC Plinian and 2002–2003 eruptions
showing the highest impact both on infrastructures and agri-
culture.

1 Introduction

Volcanic eruptions close to inhabited areas represent a major
natural hazard that includes lava flows, tephra fallout, mud-
flows, toxic gases and other phenomena that can be triggered
during volcanic activity (e.g. tsunamis, deformation, floods,
tremors). Social and economic disruptions increase in rela-
tion to population growth (Tilling and Lipmann, 1993) and
depend on the size and type of the eruption, on the prevail-
ing wind direction and on the distance to the volcanic vent.
In order to reduce the risk associated with volcanic activ-
ity, careful land-use planning requires a reliable evaluation
of the hazard associated with different eruptive phenomena.
Among these, tephra fallout can cause collapse of buildings

and damage to both agriculture and transportation networks
(Blong, 1984; Sparks et al., 1997). In addition, fine ash can
be associated with long-term health effects such as silicosis
and chronic pulmonary diseases (Horwell and Baxter, 2006),
and when injected into the atmosphere it can be extremely
dangerous for air traffic. In fact, fine ash can cause severe
damage to aircraft jet engines due to both the accumulation
of melted glass particles and erosion of turbine blades, in-
terfere with electronic equipment, obstruct the Pitot tubes
that measure air speed, obscure the windscreen and landing
lights and other damaging effects (Casadevall, 1994; Miller
and Casadevall, 2000).

Recent studies of hazard assessment from tephra fallout
have highlighted the need to combine field data of past
eruptions with probabilistic approaches using well-calibrated
models (e.g. Barberi et al., 1990; Cioni et al., 2003; Hurst
and Smith, 2004; Bonadonna et al., 2005a, b; Magill et al.,
2006). While the knowledge of stratigraphic records allows
for the characterization of the eruptive activity of a given vol-
cano and for the evaluation of the recurrence time, models
of tephra dispersal help quantify the potential impact of a
specific phenomenon. Cioni et al. (2003) showed how prob-
abilistic assessments represent a significant improvement
to the hazard evaluation for different volcanic phenomena
and volcanic vents with respect to deterministic approaches.
However, models need to be calibrated with reliable data sets.

Although high-intensity explosive activity is rare at Mt.
Etna, eruptions ranging from violent strombolian to sub-
plinian frequently occur from the summit craters, and fis-
sures can open on volcano flanks. Usually, violent strombo-
lian activity produces weak plumes that last from hours to
months and affect the lower troposphere, whereas the parox-
ysmal phase of subplinian eruptions lasts from a few minutes
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to hours and may reach the tropopause. As an example, be-
tween November 2002 and January 2003 a volcanic plume
produced by the eruptive fracture opened on the upper SE
flank of Etna at 2750 m above sea level (a.s.l.) and formed
copious tephra fallout in the eastern part of Sicily (Andronico
et al., 2005, 2008). During this eruption about 80 % of crops
were damaged, houses suffered structural damage and trans-
port operations were heavily affected. Roads were covered
by ash and the reduced visibility and the slipperiness caused
several accidents (Barnard, 2004). Furthermore, the airports
of Catania and Reggio Calabria were forced to close for sev-
eral weeks (Andronico et al., 2005). Recently, Etna was very
active, producing 39 lava fountain events between 12 Jan-
uary 2011 and 26 October 2013. During the paroxysmal
phases that lasted on average about one hour, the eruptive
column rose up to about 11 km a.s.l. (e.g. 8 September 2011).
Most of those events formed copious tephra fallout mainly in
the eastern sector and forced the closure of the international
airport of Catania. A detailed quantification of the impact
associated with tephra fallout is necessary even for basaltic
volcanoes such as Etna, which are typically considered as
mostly characterized by effusive activity.

The reconstruction of the geological records for basaltic
volcanoes is not an easy task. Thin tephra deposits are usu-
ally not preserved, because they are eroded away soon after
the eruptive event (hours or days). Violent strombolian activ-
ity can last several days (e.g. 2001 and 2002–2003) and its
characterization is often difficult due to the high variability
of eruptive phenomena and meteorological conditions that
influence and scatter the fallout sedimentation (Andronico
et al., 2008; Scollo et al., 2007). However, constant moni-
toring of the explosive activity at Etna has been performed
during the last two decades (Alparone et al., 2007; Scollo et
al., 2009; Andronico et al., 2009). An exceptional amount
of data was collected thanks to many field surveys that were
carried out at the end of explosive activities (e.g. the 2001
Etna eruption, Scollo et al., 2007; the 1998 Etna eruption,
Andronico et al., 1999; the 1990 Etna eruption, unpublished
data; 122 BC, Coltelli et al., 1998).

We considered two categories of explosive eruptions at
Mt. Etna, the first producing strong short-lived plumes (SSL
eruptions) and the second producing weak long-lived plumes
(WLL eruptions, also named Class B eruptions by Branca
and Del Carlo, 2005). Eruption source parameters were iden-
tified for each category (column height, total mass, total
grain-size distribution, density of the deposit). Information
was also obtained by direct observations of volcanologists
working at the former CNR Istituto Internazionale di Vul-
canologia and, since 2001, at the Istituto Nazionale of Ge-
ofisica e Vulcanologia, sezione di Catania. In addition, we
have considered the record of explosive eruptions identified
within the Holocene tephrostratigraphic succession of Etna
(Del Carlo et al., 2004) and the historical reports of the post-
1669 AD period (Branca and Del Carlo, 2005) to include
information concerning the volcanological features of Etna

explosive activity. The hazard has been evaluated quantita-
tively using the TEPHRA model (Bonadonna et al., 2005a)
already used to study some Etna eruptions (Scollo et al.,
2008a). The model was configured to include the time factor
necessary for modelling WLL eruptions. Probabilistic maps
for both SSL and WLL eruptions were hence performed after
model calibration for both typologies.

2 Etna explosive activity

The current Etna activity is produced by the Mongibello vol-
canic center from its summit craters or lateral vents opened
on volcano flanks down to a few hundred metres in alti-
tude. Eruptions from the summit craters and/or branches
of the central conduits are more common than flank erup-
tions fed by independent paths (Rittmann, 1973). Although a
wide variety of explosive activity does indeed take place, for
many years this has been considered subordinate compared
to the frequent lava flow eruptions for which Etna is generally
known. The thick volcaniclastic successions that blanket the
eastern slope of the Etna edifice testified to important explo-
sive activity in Late Pleistocene and Holocene times. For the
last 12 ka at least 25 subplinian (Branca and Del Carlo, 2005)
and one Plinian (in 122 BC; Coltelli et al., 1998) eruptions
have occurred at Etna. After the 1669 eruption, the largest
and most destructive historical eruption whose eruptive vents
opened at low altitude on the SE flank of the volcano (about
900 m a.s.l.), the method of observing and describing the
eruptive events changed toward a more modern conception
with more detailed reports. The critical review of the histori-
cal reports over the last four centuries carried out by Branca
and Del Carlo (2005) showed that subplinian eruptions (SSL)
at Mt. Etna were produced by summit craters and lasted from
a few minutes to hours, generally during periods of long-
lived strombolian activity at the summit craters; nonetheless,
on a few occasions (e.g. 17 July 1960) they occurred dur-
ing periods of quiescence. Since 1670, at least 12 subplinian
eruptions have taken place (see Table 1 in Branca and Del
Carlo, 2005). These events produced several kilometre-high
eruptive columns that caused tephra fallout over very wide
areas to distances of hundreds of kilometres. On the contrary,
long-lived explosive activity has usually been produced by
vents opened mainly on the SE flank (WLL eruptions). This
type of eruption produces weak eruptive plumes and proxi-
mal deposits that form large scoria cones or coalescent cones
(see Table 2 in Branca and Del Carlo, 2005). Since 1990,
Etna has produced a very large number (more than 150) of
violent explosive events with fire fountains that formed erup-
tive columns from 5 to 15 km a.s.l. and erupted tephra vol-
ume from 104 to 107 m3 (Branca and Del Carlo, 2005). These
eruptions have been thoroughly described for tephra fallout
dispersion and eruptive parameters (e.g. Andronico et al.,
2008).
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Table 1. Eruption source parameters used in the hazard assessment:M is the total mass,H the column height andMdϕ andσϕ are mode
and standard deviation of the TGSD.

M (kg) H (km) Mdϕ σϕ

SSL-Calibration 1998 eruption 1.3× 109 12 2.3 1.5
WLL-Calibration 2001 eruption 2.3× 109 3.5–5.5 2 1.5
OES-SSL1 1990 eruption 1.5× 1010 15 −0.5 1.5
OES-SSL2 122 BC eruption 2.8× 1011 24–26 2.3 1.5
OES-WLL 2002–2003 eruption 4.4× 1010 7 0.5 1.5
ERS-WLL 1.5× 106–5× 109 3.6–7 −0.5–2.3 1.5

3 Modelling

Hazard assessment from tephra fallout is quantified us-
ing a 2-D advection–diffusion model named TEPHRA,
which semi-analytically solves the mass conservation equa-
tion (see Bonadonna et al., 2005a for the model descrip-
tion). TEPHRA includes the grain size-dependent diffusion
law (Suzuki, 1983), particle density variation (Bonadonna
and Phillips, 2003), stratified atmosphere (Bonadonna et al.,
2002; Connor et al., 2001; Macedonio et al., 1988) and ter-
minal settling velocity as a function of the particle Reynolds
number (Bonadonna et al., 1998). TEPHRA uses parallel
techniques (it is written in ANSI C and uses the MPI li-
brary) suitable for the application of probabilistic approaches
that require many simulations and hence are highly time-
consuming. Input parameters of TEPHRA are:

– Plume height (H ): maximum height of the eruptive
column determined from ground observations (e.g.
Andronico et al., 2008), from satellite retrievals (e.g.
Prata and Grant, 2001) and/or analysis of the field de-
posit (e.g. Carey and Sparks, 1986).

– Total mass (M): total erupted mass extrapolated from
the deposit (e.g. Bonadonna and Houghton, 2005),
from statistical analysis (Scollo et al., 2008a) or ex-
tracted from empirical laws correlating the total mass
with the column height (e.g. Sparks et al., 1997).

– Total grain-size distribution (TGSD): total grain-size
distribution modelled as a Gaussian distribution hav-
ing a modeMdϕ and standard deviationσϕ . It can be
extrapolated from the tephra deposit by using different
methodologies (see Bonadonna and Houghton, 2005
for a review) or estimated with a theoretical model of
tephra dispersal (Mannen, 2006).

– Density of lithics and pumices (DL, DP): den-
sity of particles usually measured in the laboratory
(e.g. Houghton and Wilson, 1989; Eychenne and
Le Pennec, 2012) or using simple parameterizations
(Bonadonna and Phillips, 2003).

In addition, three empirical parameters need to be eval-
uated through model calibration (e.g. Bonadonna et al.,
2002; Scollo et al., 2007):

– Horizontal diffusion coefficient (K). This parame-
ter accounts for atmospheric diffusion and horizontal
gravitational spreading of volcanic clouds. If the parti-
cle fall time is small, the diffusion can be described by
Fick’s law and the varianceσ 2

ij :

σ 2
ij = 4K(tij + t ′i), (1)

wherei indicates the point sources along the eruptive
plume,j is the particle size,K (m2 s−1) is the atmo-
spheric horizontal diffusion coefficient,tij (s) is the
fall time of a particle of sizej released from a point
sourcei along the eruptive plume, andt ′i (s) is the hor-
izontal diffusion time in the vertical plume, which ac-
counts for the change in width of the vertical plume
with height (Ernst et al., 1996; Woods, 1995; Morton et
al., 1956; Sparks and Wilson, 1982; Bonadonna et al.,
2005a). For particle fall times with a scale of hours, the
diffusion is described by a power law (Suzuki, 1983):

σ 2
ij =

8C

5
(tij + t ′i)

2.5, (2)

whereC is the apparent eddy diffusivity determined
empirically withC = 0.04 m2 s−5/2 (Suzuki, 1983).

– Fall-time threshold (FTT): parameter that indicates the
shift between Fickian and power-law diffusion. Large
values of FTT mean that a large number of particle
sizes follow the linear diffusion, and therefore produce
a thick and narrow deposit in the proximal area cen-
tered along the dispersal axis.

– Plume ratio (PR): parameter related to the plume mass
distribution. The mass of erupted tephra is assumed to
be uniformly distributed with height, but there is the
option of choosing where the mass is located (i.e. the
ratio between total height and the lower plume level
where particles start being released).
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3.1 Model configuration

Semi-analytical tephra dispersal models assume that vol-
canic particles are instantaneously released at time zero (e.g.
TEPHRA, Bonadonna et al., 2005a; HAZMAP, Barberi et al.,
1990; Macedonio et al., 2005; ASHFALL, Hurst and Turner,
1999). They are usually applied to relatively short-lived
activity, such as subplinian and Plinian eruptions (Suzuki,
1983; Armienti et al., 1988; Hurst and Turner, 1999; Connor
et al., 2001). Nevertheless, violent strombolian eruptions,
such as the 2001 and 2002–2003 Etna eruptions, can last sev-
eral days (Scollo et al., 2007; Andronico et al., 2008) and are
significantly affected by wind variations (Bursik et al., 1992;
Sparks et al., 1997). TEPHRA was hence modified to account
for the variation in wind direction and speed with time in or-
der to compile a comprehensive hazard assessment of WLL
eruptions. In particular, a specific number of wind profiles,
n, associated with a given eruption is determined by dividing
the total eruption duration by the interval between available
wind profiles (e.g. six hours for the atmospheric sounding
data of the Italian Air Force (IAF) at Trapani Birgi, located in
western Sicily and available athttp://weather.uwyo.edu). For
instance, if the total eruption duration is 84 h, the number of
wind profilesn is 14. When the duration cannot be precisely
divided by the time interval (6 h), the number of wind pro-
files is approximated. The total erupted mass is then divided
by n, andn eruptions of a mass ofM/n are sequentially run
assuming constant eruptive parameters (i.e.H , TGSD, DL
and DP, PR,K, FTT). The fractionmi,j of particles with size
j that fall from a point sourcei to a point on the ground with
coordinates (x,y) is determined as the sum of the contribu-
tion of then eruptions of massM/n:

mi,j (x,y) =

n∑
s=1

mi,j (x,y), (3)

wheres indicates the simulations between 1 andn.

4 Model calibration

TEPHRA is calibrated by varying empirical parameters (K,
FTT and PR) and finding the best fit between computed
and observed data by the minimum of themf function
(Bonadonna et al., 2002):

mf =

√√√√∑
N

(Mobs− Mcomp)2

N − 1
, (4)

whereN is the number of the field data, andMobs (kg m−2)

andMcomp (kg m−2) are the observed and computed masses
accumulated per area unit. The calibration was carried out for
SSL and WLL eruptions. The SSL calibration is based on the
22 July 1998 eruption (Aloisi et al., 2002; Andronico et al.,
1999; Scollo et al., 2008a) and the WLL calibration on the

 22 

 608 

609 
Figure 1. Examples of a) SSL plume produced during 22 July 1998 Etna eruption (courtesy of 610 

M. Pompilio); b) WLL plume formed on 24 July 2001 (photo taken by S.Scollo). 611 

612 

Fig. 1. Examples of (a) SSL plume produced during the
22 July 1998 Etna eruption (courtesy of M. Pompilio);(b) WLL
plume formed on 24 July 2001 (photo taken by S. Scollo).

21–24 July phase of the 2001 eruption (Scollo et al., 2007).
These two eruptions were chosen as case studies due to the
associated large data sets.

4.1 Model calibration for eruptions generating strong
short-lived plumes

Calibration of the SSL eruptions was based on data col-
lected after the activity of 22 July 1998, one of the largest
and most studied events occurred at Etna since the last cen-
tury (Andronico et al., 1999; Scollo et al., 2008a; Bonadonna
and Costa, 2013). A sustained column reached an altitude
of 12 km (a.s.l.), forming a typical strong plume (Fig. 1a).
The wind direction was almost constant, about 140◦ from
the north, up to 10 km a.s.l. where it rotated toward NE
(about 50◦ from the north) and with an intensity of less
than 10 m s−1 (Aloisi et al., 2002). The eruption produced
an abundant tephra fallout deposit on the southeastern flank.
Thirty-five samples were collected a few hours after the end
of the eruptive episode; from the analysis of the tephra de-
posit, the eruption was classified as subplinian (Andronico et
al., 1999). The total mass of pyroclastic material erupted was
estimated using Pyle’s method (1989) at about 1.3× 109 kg
(Andronico et al., 1999), and the total grain-size distribu-
tion was centered on 2.3ϕ with a standard deviation of 1.5
(Scollo et al., 2008a) using Voronoi’s method (Bonadonna
and Houghton, 2005). Model calibration was carried out
varying K between 0.001 and 6800 m2 s−1, FTT between
36 and 3600 s and PR between 0 and 1. The best-fit values
were obtained forK equal to 200 m2 s−1, FTT equal to 180 s
(i.e. 0.05 h) and PR equal to 0.4 (Fig. 2a, b and c). On the
basis of these values, a new simulation was performed and
local differences among the computed best-fit values and the
field data were evaluated at each sample point (Fig. 2d). The
largest discrepancies are shown by locations with mass accu-
mulation> 10 kg m−2. Finally, the comparisons among the
grain-size distributions of the samples and those computed at
the same locations show a good agreement at different dis-
tances from the vent (Fig. 3).
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Fig. 2. Misfit function calculated varying:(a) the atmospheric hor-
izontal diffusion coefficient (K) between 0.001 and 68002 s−1;
(b) the fall-time threshold (FTT) between 36 and 3600 s and(c) the
plume ratio (PR) between 0 and 1;(d) Log plot shows the compar-
ison between computed and observed data. Computed data are ob-
tained by introducing the following best-fit values into the model:
K = 200 m2 s−1, FTT= 180 s, and PR= 0.4.
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Figure 3. Comparison between observed grain-size distribution of the tephra deposit (black) 624 

associated with the 22 July 1998 eruption of Etna (Andronico et al., 1999) and grain-size 625 

distribution computed (grey) at the same locations, Rifugio Sapienza, Tardaria, Sant’Agata Li 626 

Battiati and Agnone, respectively 5, 11, 22, 50 km from the volcanic vent. 627 
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Fig. 3. Comparison between observed grain-size distribution of
the tephra deposit (black) associated with the 22 July 1998 erup-
tion of Etna (Andronico et al., 1999) and grain-size distribution
(grey) computed at the same locations, Rifugio Sapienza, Tardaria,
Sant’Agata Li Battiati and Agnone, respectively 5, 11, 22, and
50 km from the volcanic vent.

4.2 Model calibration for eruptions generating weak
long-lived plumes

The WLL calibration was based on data collected after
the first phreatomagmatic phase of the 2001 Etna eruption
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Figure 4. Misfit function calculated varying the atmospheric horizontal diffusion coefficient 630 

(K) between 0.001-6800 m
2
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, the Fall-Time Threshold (FTT) between 36-10800 s and PR 631 

between 0 and 1. Log plot shows the comparison between computed and observed data with 632 

the best fit values obtained from the results of sensitivity test for K= 1800 m
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Fig. 4. Misfit function calculated varying the atmospheric horizon-
tal diffusion coefficient (K) between 0.001 and 6800 m2 s−1, the
fall-time threshold (FTT) between 36 and 10 800 s, and PR between
0 and 1. Log plot shows the comparison between computed and ob-
served data with the best-fit values obtained from the results of the
sensitivity test forK = 1800 m2 s−1, FTT= 2520 s (i.e. 0.7 h) and
PR= 1.

between 21 and 24 July (Fig. 1b), already used for validat-
ing several models (Scollo et al., 2007; Costa et al., 2006;
Barsotti et al., 2008). During this event, a weak and long-
lived plume that rose up to about 5 km in altitude opened at
2570 m a.s.l. on the SE flank of Etna. The deposit was bilo-
bate in shape due to the change in explosive intensity, wind
direction and velocity. It covered the area between Giarre and
Catania, with two dispersal axes toward S and SSE. From the
analysis of 46 samples, a total volume of 2.32× 109 kg and
a total grain-size distribution peaked at 2ϕ were calculated
by using the power law and Voronoi’s methods, respectively
(Scollo et al., 2007).

Like the SSL eruption calibration,K varied between 0.001
and 6800 m2 s−1, FTT between 36 and 10 800 s, and PR be-
tween 0 and 1 (Fig. 4a, b and c). Best-fit values were obtained
for K equal to 1800 m2 s−1, FTT equal to 2520 s (i.e. 0.7 h),
and PR equal to 1. The agreement between computed and
field data is shown in Fig. 4d, while the comparison between
grain-size distributions of the collected samples and grain-
size distributions computed at the same locations is shown in
Fig. 5.

5 Wind data analysis

We analysed wind data from atmospheric soundings by
the IAF from January 1990 to 2003 (data available at
http://weather.uwyo.edu). Comparisons carried out between
data obtained by radio-sounding balloons in Trapani and
radio-sounding balloons launched in the proximity of
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(black) associated with the 21-24 July eruption of Etna and grain-size distribution computed 637 

(grey) at the same location. Field data were collected respectively at about 4, 14, 20, 24 km 638 
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Fig. 5.Comparisons between the observed grain-size distribution of
the tephra deposit (black) associated with the 21–24 July eruption
of Etna and grain-size distribution (grey) computed at the same lo-
cation. Field data were collected respectively at about 4, 14, 20, and
24 km from the volcanic vent.

Etna (Coltelli et al., 2011, INGV technical report avail-
able at http://istituto.ingv.it/l-ingv/produzione-scientifica/
rapporti-tecnici-ingv/rapporti-tecnici-2011) have shown that
tropospheric differences are< 35◦ with a mean value of 15◦

for the wind direction, and< 10 m s−1 with a mean value of
4 m s−1 for the wind speed. As a result, we consider this data
set reliable for the compilation of hazard assessments of tro-
pospheric eruptions at Mt. Etna.

Data were converted to a compatible format for the
TEPHRA model that requires the direction (degree calcu-
lated from the north of provenance+180◦) and wind speed
(m s−1) from 1 to 30 km in altitude, in 1 km steps. Winds
usually blow to the southeast in the lower troposphere, mov-
ing toward the east as altitude increases (Fig. 6a). The mean
direction of the wind is between 97◦ and 173◦ (provenance
of the wind+180◦) with a standard deviation between 38◦

and 93◦. The mean speed is roughly between 7 and 23 m s−1

with a standard deviation between 4 and 11 m s−1 (Fig. 6b).
The wind speed increases regularly in the troposphere up to
11 km in altitude (going up to 25 m s−1) and decreases at the
tropopause, dropping regularly to 8.5 m s−1 at 20 km in alti-
tude (Fig. 6b). Plotting wind directions for different altitudes
(5, 10, 15 and 20 km) in Fig. 7, we may evaluate its maximum
probability that is mainly between 90◦ and 120◦.

6 Hazard assessment

In our analysis we have compiled probability maps for:

– One eruption scenario of SSL eruption based on
two large explosive events of Mt. Etna: (i) the 1990
eruption, the largest eruptive event in the last three
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Figure 6. Plots showing: a) the mean wind direction (provenance +180°) and b) the mean 646 

wind speed every km over 15 years of wind profiles sampled 4 times a day (00:00; 06:00, 647 

12:00, 18:00 local time) from 1 January 1990 up to 2003. The standard deviation for each 648 

height level is also reported. Data are available at http://weather.uwyo.edu.  649 

Fig. 6. Plots showing:(a) the mean wind direction (provenance
+180◦) and(b) the mean wind speed every km over 15 yr of wind
profiles sampled 4 times a day (00:00; 06:00, 12:00, 18:00 LT) from
1 January 1990 up to 2003. The standard deviation for each height
level is also reported. Data are available athttp://weather.uwyo.edu.

centuries; category 1 (OES-SSL1) and (ii) the Plinian
eruption of 122 BC, the largest eruptive event occur-
ring in the last 12 000 yr; category 2 (OES-SSL2).

– One eruption scenario of WLL eruption (OES-WLL)
based on the 2002–2003 eruption.

– Eruption range scenarios of WLL eruption (ERS-
WLL) based on WLL eruptions recorded in the last
three centuries.

OES and ERS are described in Bonadonna (2006). We also
considered the following hazardous thresholds: (i) roof col-
lapse (100, 200 and 300 kg m−2; Cioni et al., 2003) and
(ii) damage to vegetation (10 kg m−2; Bonadonna et al.,
2005a). The main eruption source parameters used in our
analysis are reported in Table 1.
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Figure 7. Plots showing the percentage of wind direction between 0 and 360° (from the North) 651 
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Fig. 7. Plots showing the percentage of wind direction between 0◦

and 360◦ (from the north) at four different altitude levels (i.e. 5, 10,
15 and 20 km). Data are available athttp://weather.uwyo.edu.

6.1 One eruption scenario probability maps associated
with strong short-lived plumes (category 1)

The eruption of 5 January 1990 was the largest explosive
event of the last 300 yr (category 1). It began at 03:00 UTC
from the southeast crater and lasted for about 35 min (Calvari
et al., 1991; Carveni et al., 1994). Unfortunately, there were
few direct observations due to adverse atmospheric condi-
tions, but some samples were collected a few days after the
event (Calvari et al., 1991). The pyroclastic deposit covered
almost the whole of the WNW Etna flank. The proximal de-
posit was made up of light spatter bombs and lapilli hav-
ing a clast density of 1160 kg m−3. 4 m- and 9 cm- thick de-
posits were found at 0.5 and 6.5 km downwind from the vol-
canic vent respectively (Calvari et al., 1991). Given that more
physical parameters are required to run TEPHRA, some of
the collected samples were used to better characterize the
eruption. The total erupted massM and the total grain-size
distribution TGSD were estimated by comparing simulations
carried out through model validation based on themf func-
tion (Eq. 4). We variedM and TGSD parameters between
1–4× 1010 kg and−3 and 2.5ϕ, respectively and found, as
the best descriptors,M = 1.5× 1010 kg, in agreement with
the value found by Carveni et al. (1994), andMdϕ = −0.5ϕ.
Figure 8 shows the comparison between the grain-size dis-
tribution collected near Bronte (15 km far from the volcanic
vent) and the grain-size computed at the same location by
varying theMdϕ of TGSD between−3 and 2.5ϕ. Good
agreement is shown for TGSD equal to−0.5ϕ. Direct obser-
vations of the column height were not available and a value
of 15 km was derived from the mass eruption rate based on
the approach of Sparks et al. (1997).

OES-SSL1 probability maps were hence compiled. In
particular, we found that tephra accumulation≥ 300 and
≥ 200 kg m−2 affects only the region within 5 and 10 km
of the vent respectively, where no towns are present. By
contrast, tephra accumulation≥ 100 kg m−2 affects densely

 29 

 655 

 656 

Figure 8. Comparison between the grain-size distribution collected at Bronte (about 15 km 657 
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Fig. 8. Comparison between the grain-size distribution collected at
Bronte (about 15 km from the vent) and computed by TEPHRA at
the same locality. TheMdϕ of the TGSD used in the simulations
varied between−3 and 2.5ϕ. The best agreement was obtained for
Mdϕ of −0.5ϕ.

populated areas such as Zafferana, although with a low prob-
ability (Fig. 9a). Finally, an OES-SSL1 scenario can cause
severe damage to agriculture (≥ 10 kg m−2) on the eastern
flanks of the volcano, having the largest probability of ex-
ceeding the hazardous threshold for vegetation (Fig. 9b).

6.2 One eruption scenario probability maps associated
with strong short-lived plumes (category 2)

The Plinian eruption that occurred in 122 BC was studied in
detail by Coltelli et al. (1998), who identified seven pyroclas-
tic units in the stratigraphic succession. The first magmatic
phase of the eruption was characterized by the emplacement
of widespread coarse-ash fallout (Unit A), small phreatomag-
matic deposit (Unit B) and two Plinian fallout deposits (units
C and E), separated by a phreatomagmatic episode (Unit D).
The eruption ended with a complex phreatomagmatic phase
(Unit F) and a post-eruption phreatic activity inside the
caldera (Unit G). A 16 cm-thick tephra deposit was collected
in a drill core at 5 km offshore from the Catania coastline and
a 1-3 cm-thick tephra deposit was found in the Ionian sea at
400 km from the vents. During the Plinian phase (units C and
E) a total mass of about 2.8× 1011 kg was erupted, and the
column height reached 24–26 km a.s.l. (Coltelli et al., 1998).
The total grain-size distribution was supposed to be simi-
lar to the eruption used for the calibration (1998 Etna erup-
tion) and was fixed at 2.3ϕ. Conditional probability maps for
this event show that the tephra accumulation has a very high
probability (between 50 and 100 %) of exceeding 100 kg m−2

up to about 30 km from the volcanic vent (Fig. 10). There
is also a 20 % probability of exceeding 300 kg m−2 within
15 km of the volcanic vent. Roof collapses may occur in large
densely populated areas such as Giarre and Zafferana (be-
tween 40 % and 70 % for 300 and 100 kg m−2, respectively).
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Figure 9. Probability maps for the OES-SSL1 having similar features of 5 January 1990 eruption 666 

considering thresholds of a) 100 kg m
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Fig. 9. Probability maps for the OES-SSL1, having similar fea-
tures to the 5 January 1990 eruption, considering thresholds of
(a) 100 kg m−2 and(b) 10 kg m−2.

6.3 One eruption scenario probability maps associated
with weak long-lived plumes

The eruption of 2002–2003 began on 26 October 2002 with
the opening of a complex system of eruptive fissures on the
northeastern (from 3010 to 2920 m and from 2500 to 1890 m)
and southern (from 2850 to 2600 m) flanks. The eruption
ended on 28 January 2003, after three months of almost con-
tinuous explosive activity and lava flow emission. Eruption
columns up to 7 km a.s.l. were emitted from the southern fis-
sure continuously for 56 days. Abundant tephra fell on all
the volcano’s flanks, often forcing the closure of the airports
in Catania and Reggio Calabria (Andronico et al., 2005).
Lapilli and ash mainly covered the eastern sectors of the vol-
cano due to dominant winds that blew eastward. A total vol-
ume of 4.4± 0.6× 1010 kg and a total grain-size distribution
peaked at 0.5ϕ were estimated by Andronico et al. (2008).
Over the past three centuries, this activity has been consid-
ered comparable only with the 1763 eruption (Andronico et
al., 2005) that was produced from La Montagnola volcanic
cone located near the 2002–2003 vent and lasting 84 days
(Recupero, 1815).
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Figure 10. Probability maps for the OES-SSL2 having similar features to the 122 BC Plinian  674 

eruption considering thresholds of a) 300 kg m
-2
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Fig. 10. Probability maps for the OES-SSL2, having similar fea-
tures to the 122 BC Plinian eruption, considering thresholds of
(a) 300 kg m−2, (b) 200 kg m−2, and(c) 100 kg m−2.

The OES-WLL probability maps were compiled consider-
ing an eruption lasting 100 days and producing a weak plume
of 7 km a.s.l. Tephra accumulation has a very high probabil-
ity (between 80–100 %) of exceeding 200 and 100 kg m−2

within 12 and 18 km of the vent respectively, and mainly af-
fected the southeastern flanks of the volcano (Fig. 11).
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Figure 11. Probability maps for the OES-WLL with similar features to the 2002-03 eruption. 678 

Thresholds considered are: a) 200 and b) 100 kg m
-2
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Fig. 11. Probability maps for the OES-WLL, with similar features
to the 2002–2003 eruption. Thresholds considered are:(a) 200 and
(b) 100 kg m−2.

6.4 Eruption range scenario probability maps
associated with weak long-lived plumes

Eruption range scenario was evaluated for WLL eruptions
because only for this case may we consider future prolonged
multi-vent activity. From the analysis carried out by Branca
and Del Carlo (2005), we consider the column height vari-
able between 3.6 km and 7 km a.s.l. (Fig. 12) and the to-
tal mass between 1.5× 106 and 5× 109 kg. The duration of
the eruption was assumed to be between 4 (2001 Etna erup-
tion) and 100 days (Fig. 13). Both parameters were sampled
from a logarithmic distribution according to Bonadonna et
al. (2005b) (Table 1). The location of eruptive vents (lat-
itude, longitude and height) was also sampled statistically
(Fig. 14a). Probability maps are shown in Fig. 14b, c and
d. There is a small probability (between 1 and 20 %) that
the mass loading exceeds 300 kg m−2 beyond 15 km, and a
slightly higher probability (between 10 and 20 %) between
10 and 15 km. The probability of exceeding 200 kg m−2 is
between 1 and 30 % within 20 km. Finally, the probability of
exceeding 100 kg m−2 is > 20 % at distances< 20 km.
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Figure 12. Column height sampled for the Eruption Range Scenario of long-lived eruptions (ERS-687 

WLL). 688 
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Fig. 12.Column height sampled for the eruption range scenario of
long-lived eruptions (ERS-WLL).
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Figure 13. Eruption duration (days) sampled for the Eruption Range Scenario of long-lived eruptions 692 

(ERS-WLL). 693 

694 

Fig. 13. Eruption duration (days) sampled for the eruption range
scenario of long-lived eruptions (ERS-WLL).

7 Discussion

The evaluation of eruption source parameters is necessary
to reliably model volcanic ash transport during an eruption
(Mastin et al., 2009) and to calibrate and validate volcanic
ash transport and dispersion models (Scollo et al., 2008a;
Bonadonna, 2006). This is why the IAVCEI Commission on
Tephra Hazard Modelling compiled a comprehensive data set
in order to improve model accuracy by comparisons among
data and model results (http://dbstr.ct.ingv.it/iavcei). While
detailed field observations are necessary for characterizing
explosive activity, numerical models represent a powerful
tool to quantitatively analyse the effects caused by eruptions.
Over the last 30 yr, increasingly sophisticated models have
greatly helped to represent the natural system realistically
(Sheridan, 1994; Costa and Macedonio, 2005; Ongaro et al.,
2012). To evaluate the impact from tephra fallout, the last
generation of models (e.g. Bonadonna et al., 2005a; Connor
and Connor, 2006; Folch et al., 2008) takes full advantage of
parallel programming (Wilkinson and Allen, 1999).
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Figure 14. a) Location of volcanic vents sampled statistically for the ERS-WLL simulations. 698 

Probability maps associated with ERS-WLL using the thresholds: b) 300; c) 200 and d) 100 kg m
-2
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Fig. 14. (a)Location of volcanic vents sampled statistically for the ERS-WLL simulations. Probability maps associated with the ERS-WLL
using the thresholds:(b) 300,(c) 200 and(d) 100 kg m−2.

Semi-analytical models, such as TEPHRA, are based on
the assumption that the total mass is released instantly. As
a result, these models cannot typically capture the variation
of wind velocity and direction with time and have mostly
been used for the hazard assessment of strong and relatively
short-lived eruptions. However, our implementation of the
TEPHRA model to account for sequential discrete explosive
events has also allowed for the compilation of probability
maps for long-lived eruptions (WLL), and consequently our
results may be compared with those obtained by other mod-
els that instead consider the time variability of the eruption,
such as FALL3D (Costa et al., 2006) and VOLCALPUFF
(Barsotti et al., 2008). The results of the hazard assessment
at Etna have indicated that deposits associated with OES-
WLL eruptions have the highest impact. Probability maps
show that mass accumulation≥ 200 and≥ 100 kg m−2 can
be reached within 18 and 23 km of the vent. Densely pop-
ulated cities, located in the eastern flank of the volcano,
such as Acireale and Giarre, can then be seriously affected.
This is in agreement with the results obtained by Barsotti et
al. (2010), who showed that towns and infrastructures on the
eastern side of the volcano are significantly more exposed to
ash hazard. For these towns the cleanup of roofs and roads
is hence required to prevent significant disruption. We found

that OES-WLL eruptions could also affect the populated ar-
eas of Catania even if the probability of reaching a threshold
of 100 kg m−2 is relatively low (between 10 and 30 %). The
effect on populated areas (i.e. accumulation of 100 kg m−2)

associated with a larger range of source parameters for WLL
(i.e. ERS-WLL) results in lower probabilities, but is not neg-
ligeable. In addition, the impact on infratstructures and agri-
culture associated with Etna eruptions was evaluated for the
first time for events similar to the 5 January 1990 event (i.e.
the most explosive event of the last 300 yr) and the 122 BC
Plinian eruption. In the case of an exceptional event such as
a basaltic Plinian eruption (OES-SSL2 scenario), there is a
very high probability that roof collapses may happen within
50 km of the vent.

Caveats. It should be noted that, for SSL eruptions,
TEPHRA does not reproduce the deposit well within the
plume corner. The greatest differences between the model
and the field data are in fact located between 1.8 and 3.8 km
from the vent. There are also differences for low mass load-
ing (< 1 kg m−2), for which TEPHRA gives higher values
than those observed in the distal region. This could depend on
the fact that very thin deposits might not be preserved in dis-
tal regions (Bonadonna et al., 2002; Scollo et al., 2007), but
it could also reflect the complex dynamics of the long-lasting
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activity. In addition, the absence of topography in the model
could generate large uncertainties in the simulated mass load-
ing for column heights of 3–4 km (Scollo et al., 2008b). Nev-
ertheless, the comparison between computed and observed
data for the eruptions generating strong short-lived and and
weak long-lived plumes used in the calibration is still good
(within 50 %). Consequently, we can conclude that TEPHRA
may also provide reliable hazard assessments for this type of
eruption, but uncertainties have to be considered during the
analysis and interpretation of the resulting probability maps
(i.e.±50 %). Moreover,K partially depends on the meteoro-
logical conditions of specific eruptions that may be different
from the meteorological conditions of eruptions considered
during calibration. However, in TEPHRA,K accounts for
both atmospheric diffusion and gravitational spreading, and
the populated areas analysed in our hazard assessment are
all located near the active vent, where the contribution of the
gravitational spreading dominates.

Finally, particle aggregation is not considered in our simu-
lations, and, therefore, mass loading in proximal areas might
be underestimated for fine-rich TGSD. In fact, many tephra
deposits could only be reproduced when particle aggrega-
tion was described (e.g. Cornell et al., 1983; Bonadonna et
al., 2002; Carey and Sigurdsson 1982; Folch et al., 2010),
and a certain degree of aggregation was also observed at
Etna (Scollo et al., 2005, 2007). However, fine-poor TGSD
are not significantly affected by particle aggregation (e.g.
Bonadonna and Phillips, 2003), and, consequently, we do not
expect the OES-SSL1, OES-WLL and ERS-WLS to be sig-
nificantly affected (Table 1).

8 Concluding remarks

In this work, a detailed hazard assessment was carried out on
the basis of two different typologies of Etna eruptions: erup-
tions associated with strong short-lived plumes (SSL erup-
tions) and eruptions associated with weak long-lived plumes
(WLL eruptions). Four different scenarios and long-lived
multi-event activity were considered in order to describe the
large variability that may occur at basaltic volcanoes such
as Etna. Results clearly show that the eastern flank could be
strongly affected by all explosive activities due to the pre-
vailing wind direction. In particular, eruptions such as the
2002–2003 lasting 100 days and 122 BC Plinian eruptions,
the latter never considered before, are the most dangerous,
with the highest probability of roof collapse. However, se-
vere damages to agriculture may occur on the eastern side of
volcano for all the different eruption types considered in our
study. For more comprehensive hazard assessment and better
quantification of uncertainties, future research could include
additional eruptive scenarios such as the recent lava foun-
taining activities in 2011, 2012 and 2013, as well as different
volcanic ash dispersal models.
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