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Abstract. The predictive analysis of natural disasters and
their consequences is challenging because of uncertainties
and incomplete data. The present article studies the use of
variable fuzzy sets (VFS) and improved information dif-
fusion method (IIDM) to construct a composite method.
The proposed method aims to integrate multiple factors and
quantification of uncertainties within a consistent system for
catastrophic risk assessment. The fuzzy methodology is pro-
posed in the area of flood disaster risk assessment to improve
probability estimation. The purpose of the current study is to
establish a fuzzy model to evaluate flood risk with incom-
plete data sets. The results of the example indicate that the
methodology is effective and practical; thus, it has the poten-
tial to forecast the flood risk in flood risk management.

1 Introduction

Floods are rare natural mutation phenomenon. They occur
frequently in China, where approximately two-thirds of its
area is threatened by different types and degrees of floods
(Chen, 2010). These phenomena are the results of natural
and unnatural causes, such as social and economic factors.
In order to reduce the so severe losses that caused by natural
disasters, a large number of engineering and non-engineering
relief efforts were carried out. One important work of which
is carrying on flood disaster risk analysis.

In the case of natural hazards, risk is most meaningful
when expressed in terms of potential human suffering and/or
economic losses (Wilson and Crouch, 1987; Maskrey, 1989;
Smith, 1996). Besides the probability of a hazard occurring,
risk must include the potential adverse consequences that can
result from the hazard event. To summarize all definitions of

“risk”, would be to say the term refers to “the possibility of
some adverse events.”

Risk analysis incorporates the likelihood of a specific
event and the severity of the outcome. This process combines
both the severity and the probability of all relevant hazard
loss scenarios. Risk managers use two different evaluative
methods in risk and hazard analysis: deterministic and prob-
abilistic.

Deterministic analysis relies on the laws of physics and
chemistry, or on correlations developed through experience
or testing, to predict the outcome of a particular hazard sce-
nario. In the deterministic approach, one or more possible
designs can be developed that represent the worst possible
credible events. In this approach, the frequency of possible
occurrences need not be evaluated.

Probabilistic analysis evaluates the statistical likelihood
that a specific event will occur and what losses and conse-
quences will result. In addition to using analysis techniques
and experimental findings, the approach uses considerable
statistics including the incorporation of historical informa-
tion. But the conventional hydrological frequency analysis
method often becomes invalid because of the shortage of his-
torical measured data in degree and frequency (Efstratiadis et
al., 2010).

People often use “expectation,” instead of “probability dis-
tribution” to compare risks or mathematically combine rele-
vant quantities using one or some operators. The risk of quan-
titative expression also becomes the “risk degree”. In some
fields, an essentially multi-dimensional risk problem can be
simplified into a one-dimensional (1-D) problem using the
proper expression. However, common sense dictates that we
must be very careful in using the simplified results in the field
of general risk analysis.
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240 Q. Li: Fuzzy approach to analysis of flood risk

In general, to obtain a way to control or manage a sys-
tem, we use a mathematical model that closely represents the
system. The mathematical model is solved and its solution
is applied to the system. Models are idealized representation
but the nature of disasters is changing, and disasters are be-
coming more complex.

In fact, the main characteristics of natural disaster systems
are the uncertainty and complexity of the system. A subsys-
tem of natural disaster systems is the human society system.
Disasters have a broad social impact. They cause deaths, in-
juries and monetary losses. However, they can also redirect
the character of social institutions, result in new and costly
regulations imposed on future generations, alter ecosystems
and disturb the stability of political regimes. So when judg-
ing the consequences of future natural disasters, it is neces-
sary to analyze the human society structure (land use, prop-
erty distribution, structures, etc). Human society structure is
very complex with many uncertain factors, which we must
fully consider in analyzing natural disaster systems. In fact,
even on natural disaster phenomena, uncertainty and com-
plexity still cannot be ignored. Uncertainty, ambiguity, con-
stant change, and surprise are problems that disaster man-
agement has to overcome. Unfortunately, most management
strategies are designed for a predictable world and a static
view of natural disasters.

One very common claim states that mathematical mod-
els fail when applied in management sciences due to system
complexity or computational difficulty. A risk system may
only be studied by certain state equations, on the condition
that these state equations could be found. However, in many
cases, to obtain the state equation and all data is very difficult.
Going a step further, if we employ other methods to simplify
the system analysis, obtaining the precise relations we need
is also difficult. In other words, the relations we obtain are
usually imprecise.

Probability method is another kind of simplified research
work, but it is not appropriate to replace risk analysis with
the probability analysis. Altay and Green (2006) show that
probability theory and statistics are very frequently utilized
methods in the research literature (about 20 % of research
effort included in their review), but much less frequently in
practice. Because feasibility and reliability problems exist in
terms of practical issues without considering the fuzzy un-
certainty. Sometimes, results based on the classical statisti-
cal methods are sometimes very unreliable and unstable for
cases with limited or small sample issues. In fact, the col-
lection of long sequence disaster data is quite a challenging
task, especially when the sample is small. In this case, only
records of the same age or of similar ages may be used for
flood risk analysis.

Information diffusion is just a fuzzy mathematical set-
value method for samples, considering that the use of fuzzy
information of samples is optimized to offset information
deficiency. The information diffusion theory helps extract
the useful underlying information from the sample as much

as possible, improving system recognition accuracy (Huang,
2002; Palm, 2007).

2 Fuzzy risk

When we study a risk system using a traditional probabilistic
method, it is usually difficult to ascertain if a hypothesis of
probability distribution is suitable, and sometimes we meet
the problem of small samples, wherein the data is too scanty
to make a decision. The problem has shown that empirical
Bayesian methods (Carlin and Louis, 1997) and kernel meth-
ods (Breiman et al., 1977; Chen, 1989; Devroye and Gyorfi,
1985; Hand, 1982; Parzen, 1962; Silverman, 1986; Wertz,
1978) need further development. Obtaining a precise rela-
tion between events and probabilities of occurrence is diffi-
cult. To represent the imprecision, the best way is to employ
fuzzy sets to represent the relations.

Uncertainty is another factor to consider. It is defined in
simple language as the lack of definiteness and has important
implications in what integrated disaster management could
achieve. Thus, uncertainty should be considered in all disas-
ter management decisions.

Fuzzy set theory, which deals with uncertainties and al-
lows the incorporation of the opinions of decision makers,
may provide an appropriate tool for establishing disaster risk
management systems, such as fuzzy rule-based techniques
and the combination of the fuzzy approach with other tech-
niques. Risk is expressed in terms of fuzzy risk only when
we study it by a fuzzy method. Some early related applica-
tions can be found in the literature (Brown, 1979; Clements,
1977; Dong et al., 1985; Esogbue et al., 1992; Hadipriono
and Ross, 1991; Hoffman et al., 1978).

The concept of the fuzzy set was proposed by Zadah
(Zadeh, 1965), who bestowed media and fuzziness scien-
tific description and great significance in the academic world.
However, the fuzzy set is static if the relativity and variability
are not considered. Therefore, the theory is in conflict with
the variability of the interim form. Some defects of tradi-
tional fuzzy sets are due to approaching the media, variable
fuzzy phenomenon, and variable fuzzy objects by static con-
cepts, theory, and method of traditional fuzzy sets.

In light of the foregoing, the theory and method of vari-
able fuzzy sets (VFS) was proposed by Chen based on op-
posite fuzzy sets and the definitions of a relative difference
function (Guo and Chen, 2006; Wu et al., 2006). The method
of Chen is the innovation and extension of the static fuzzy
set theory established by Zadeh (Zadeh, 1965), which is very
important in theory and applications. The VFS theory was
the extension of fuzzy sets theory which was established by
Chen (Chen and Guo, 2006; Guo and Chen, 2006; Wu et
al., 2006). The comprehensive evaluation of VFS effectively
eliminates the border effect on assessment result and mon-
itors estimation standard error. This method can determine
relative membership functions and membership degrees of
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Fig. 1. The relation of the relative membership degree function
µA(u); µAc(u) and the relative difference functionD(u).

disquisitive objectives (or indices) scientifically and reason-
ably. This technique can also make full use of one’s knowl-
edge and experience, as well as quantitative and qualitative
information of index systems, to obtain weights of objectives
(or indices) for comprehensive disasters evaluations (Wang
et al., 2011; Zhang et al., 2011).

In the present study, VFS was combined with information
diffusion as an integration of techniques. The method pro-
posed in the current research uses fuzzy multiple indicators
of comprehensive evaluation of VFS and converts the multi-
dimensional indicators of the samples into one-dimensional
degree values. Then, the method turns the degree values of
the observed sample into fuzzy sets by information diffusion
method, finally obtaining the risk values. The method is then
tested by a case showing that the method is superior to the
traditional statistical model and improves the result of tradi-
tional estimation.

3 Modeling framework of variable fuzzy sets and
information diffusion

3.1 Variable fuzzy sets

A is a fuzzy concept in the domain ofU , andu is any element
of U (u ∈ U ). A andAc are a pair of opposite fuzzy concepts
(or two basic fuzzy attributes). The relative membership de-
gree RMD ofAc is any elementu of U to A is µA(u), which
ranges from 0 to 1 continuously. The RMD toAc is µc

A,
which ranges from 1 to 0. RMD satisfiesµA(u) +µAc(u) = 1
(Chen and Guo, 2006; Guo and Chen, 2006).

Hence, for any elementu (u ∈ U ), a pair of numbers
µA(u) andµAc(u) and in the continuum[0,1] are assigned
to u.

µA(u) and µAc(u) are the RMD functions that express the
levels of acceptability and repellency, respectively. The map-
ping µA(u), µAc(u) : u 7→ µA(u),µAc(u) ∈ [0,1] is shown
in Fig. 1.

When two basic fuzzy attributes are equal, the dynamic
equilibrium can be established (Fig. 1). When the RMD
µA(u) is larger thanµAc(u), the major property ofu is ac-
ceptability, and the minor property is repellency. When it
changes fromµA(u) > µAc(u) to µA(u) < µAc(u), the con-
clusion is the exact opposite.

Definition: Let D(u) = µA(u) − µAc(u), whereD(u) is
defined as the relative difference function ofu to A as
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Fig. 2.Relationship between pointM, and internals[p,q], [m,n].

the mappingD : u → D(u) ∈ [−1,1] (Chen and Guo, 2006;
Guo and Chen 2006; Wu et al., 2006). Hence, from the
Eq.µA(u)+µAc(u) = 1 we can infer thatD(u) = 2µA(u)−1
or µA(u) = 1+ D(u)/2. Let

A+ = {u |u ∈ U,0 < D(u) < 1}

A− = {u |u ∈ U,−1 < D(u) < 0}

A0 = {u |u ∈ U,D(u) = 0}

V0 = {(u,D) |u ∈ U,D(u)

= µA(u) − µAc(u),D ∈ [−1,1] }

A+,A− andA0 are the attracting sets, repelling sets, and bal-
ance boundaries of VFSV0, respectively. For any elementu,
the setV0 is defined as Variable Fuzzy Sets (VFS).

For example, the interval[p,q] is considered as the at-
tracting setsW0 of W , implying that 0< DA(u) ≤ 1 and
µA(u) < µAC (u), and W is the interval[m,n] which in-
cludesW0 (W0 ⊂ W). [m,p] and[q,n] are the repelling sets
of W implying that−1 ≤ DA(u) < 0 andµA(u) < µAC (u)

in the repelling sets[m,p] and [q,n]. Then,M is a value
which satisfiesDA(u) = 1, implyingµA(u) = µAc(u) = 0.5,
whereM is usually different from the mid-value of interval
[p,q] (see Fig. 2).

If x is placed at right side ofM, the relative difference
function (∀u ∈ W)DA(u) can be expressed as{

D(u) = (
u−p
M−p

)β u ∈ [p,M]

D(u) = −(
u−p
m−p

)β u ∈ [m,p]
(1)

According to the formulaµA(u) = 1+D(u)/2, Eq. (1) can
be transformed to Eq. (2):{

µA(u) = 0.5[1+ (
u−p
M−p

)β ] u ∈ [p,M]

µA(u) = 0.5[1− (
u−p
m−p

)β ] u ∈ [m,p]
(2)

and ifx is placed at left side ofM, the difference function
is{

D(u) = (
u−q
M−q

)β u ∈ [M,q]

D(u) = −(
u−q
n−q

)β u ∈ [q,n]
(3)

and Eq. (3) can also be transformed to Eq. (4):

Or

{
µA(u) = 0.5[1+ (

u−q
M−q

)β ] u ∈ [M,q]

µA(u) = 0.5[1− (
u−q
n−q

)β ] u ∈ [q,n].
(4)

In whichβ is an index larger than 0, usuallyβ = 1. Equa-
tions (1) to (4) are linear functions. They satisfy the follow-
ing conditions: (i)u = p andu = q, D(u) = 0 andµA(u) =

µAc(u) = 0.5; (ii) u = M, D(u) = 1 and µA(u) = 1; and
(iii) u = m andu = n, D(u) = −1 andµA(u) = 0. Based on
Eqs. (2) and (4), the values of relative membership degree
functionµA(u) of inquisitive indices are obtained.

www.nat-hazards-earth-syst-sci.net/13/239/2013/ Nat. Hazards Earth Syst. Sci., 13, 239–249, 2013
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3.2 Information diffusion

In the current research, we first use fuzzy multiple indi-
cators of comprehensive evaluation of VFS and convert
the multi-dimensional indicators of the samples into one-
dimensional degree values. Then, we turn the degree values
of the observed sample into fuzzy sets by information diffu-
sion method, finally obtaining the risk values.

Information diffusion is a fuzzy mathematic set-value
method for samples. The use of fuzzy information of samples
is optimized to offset information deficiency. This method
can transform an observed data into a fuzzy set, turning a
single point sample into a set-value sample.

In this study some improvements are made to improve the
information diffusion method:

1. Diffusion velocity k is replaced with variablek(u),
and it is used to obtain the disaster risk estimation.
This method provides an improved information diffu-
sion process implementation and higher accuracy.

2. An optimal discretization algorithm is designed. Ac-
cording to the diffusion function assumed in the IIDM
equation, the MacCormack scheme is used during the
process to obtain the numerical solutions. Finally, the
method is compared with NIDM and traditional statisti-
cal method by examining the mean error.

3.2.1 Definition of information diffusion

Information diffusion: supposeX is the sample set andV is
the universal field, and information diffusion is a mapping
µ : X × V → [0,1] that satisfies the following (Huang and
Shi, 2002):

1. It is decreasing.∀x ∈ X,∀υ ′,υ ′′
∈ V , if

∥∥υ ′
− x

∥∥ ≤∥∥υ ′′
− x

∥∥, thenµ(x,υ ′) ≥ µ(x,υ ′′). µ is the diffusion
function.

2. ∀x ∈ X. Let υ∗ be the observed value ofx, which satis-
fiesµ(x,υ∗) = max

υ∈V
µ(x,υ).

3. µ(x,υ) is conservative. If and only if∀x ∈ X, its inte-
gral value on the universe is 1, viz.

∫
U

µ(x,u)du = 1.

3.2.2 Improved information diffusion method (IIDM)

In Shang and Jin (2002), the diffusion function of informa-
tion diffusion method is described as follows:

∂u

∂t
=

∂

∂x
(k

∂u

∂x
). (5)

In whichk is a constant. So Eq. (4) can be written as

∂u

∂t
= k

∂2u

∂x2
. (6)

But the information carried by the samples moves from
a higher level of consistency to a lower one because of in-
herent uneven distributions (Gu and Li, 2002). So a func-
tion of u, i.e. k(u), instead of the constantk in the current
paper.k(u) can be selected freely if this function satisfies
some conditions. The simplest quadratic function in which
k(u) = (u+1)2 can be used in the current paper, satisfies the
conditions as following:

1. The function is non-negative increasing.

2. The diffusion velocity is irregular which means the dif-
fusion velocity becomes faster as the consistency in-
creases.

3. There is little diffusion even without consistency.

So the diffusion function of improved information diffu-
sion method (IIDM) can be written as{

∂u
∂t

=
∂
∂x

(k(u) ∂u
∂x

)

u|t=0 = δ(x)
, (7)

it can be transformed as

∂u

∂t
= k(u)

∂2u

∂x2
+

∂k(u)

∂u
(
∂u

∂x
)2. (8)

The MacCormack difference scheme can be selected to get
the solutions. As a special form of the Lax-Wendroff differ-
ence scheme, the MacCormack difference scheme follows a
two-step predictor-corrector mechanism. This technique is a
second-order-accurate method because it is used with for-
ward differences on the predictor and with rearward differ-
ences on the corrector (Anderson and Wendt, 1995).

So the diffusion function of the problem can be described
as

vt (wn,x) = u(wn − x, t) (9)

in which W = {w1,w2, · · · ,wn} is the sample degree vari-
able, andu(wn−x, t) is the solution of Eq. (7). The informa-
tion function carried by the sample{w1,w2, · · · ,wn} which
diffuses to the pointx field can be described as

ft (x) =

n∑
i=1

vt (wi,x)

n
. (10)

3.2.3 Principle of NIDM

The information diffusion method is called normal infor-
mation diffusion when its diffusion function is normal dis-
tribution. LetW = {w1,w2, · · · ,wn} be a sample, andU =

{u1,u2, · · · ,um} be the discrete universe.wianduj are called
a sample point and a monitoring point, respectively.∀wi ∈

W∀uj ∈ U we diffuse the information carried bywi to uj

Nat. Hazards Earth Syst. Sci., 13, 239–249, 2013 www.nat-hazards-earth-syst-sci.net/13/239/2013/
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Table 1.Flood disaster rating standard.

Disaster level Damage area
(thousand
hectares)

Inundated
area (thousand
hectares)

Dead population
(persons)

Collapsed houses
(ten thousand)

Recurrence
interval (years)

Grade
number

Small flood 0∼ 9045 0∼ 4989 0∼ 3446 0∼ 112.1 <2 1
Medium flood 9045∼ 14197 4989∼ 8216.7 3446∼ 5113 112.1∼ 247.7 2∼ 5 2
Large flood 14 197∼ 20 388 8216.7∼ 13 000 5113∼ 10 676 247.7∼ 754.3 5∼ 20 3
Extreme flood 20 388∼ 80 000 13 000∼ 50 000 10 676∼ 1 00 000 754.3∼ 5000 >20 4

at gain fi(uj ) by using the normal information diffusion
method (NIDM) shown in Eq. (11).

fi(uj ) = exp

[
−

(wi − uj )
2

2h2

]
,uj ∈ U (11)

whereh is called normal diffusion coefficient, calculated by
Eq. (12) (Huang and Shi, 2002).

h =



0.8146(b − a), n = 5;

0.5690(b − a), n = 6;

0.4560(b − a), n = 7;

0.3860(b − a), n = 8;

0.3362(b − a), n = 9;

0.2986(b − a), n = 10;
0.6851(b − a)/(n − 1), n ≥ 11.

(12)

whereb = max
1≤i≤n

{xi};a = min
1≤i≤n

{xi}.

4 Flood disaster risk analysis based on VFS and IIDM

The disastrous loss data collected by the Ministry of Water
Resources of the People’s Republic of China cover the period
from 1950 to 2009. The damaged and inundated areas, dead
population, and collapsed houses were chosen as the disas-
ter indicators in the flood risk analysis. Using actual histori-
cal data from 1950 to 2009, the flood frequency analysis was
used to determine the flood disaster rating standard (Table 1).
The flood cases were divided into four groups, namely, small,
medium, large, and extreme. Floods that occurred every 2 yr
were classified as small floods, those that occurred every 2
to 5 yr were medium floods, those that occurred every 5 to
20 yr were large floods, and those that occurred after more
than 20 yr were considered extreme floods. The range of the
floods in each group was decided using the flood disaster rat-
ing standard (Table 1).

4.1 VFS for comprehensive assessment of the flood
degree

Based on the study of Chen and Guo (2006) and Table 1,
for each degreeh(h = 1,2,3,4), the following matrices of

Table 2.Scale preferences used in the pairwise comparison process.

Range Category Score

Superior Absolutely superior 9
Very strongly superior 7
Strongly superior 5
Moderately superior 3

Equal Equal 1
Inferior Absolutely inferior 1/9

Very strongly inferior 1/7
Strongly inferior 1/5
Moderately inferior 1/3

parameters are established to calculate RMD of VFS:

I[p,q] =


[0,9045] [9045,14197] [14197,20388] [20388,80000]
[0,4989] [4989,8216.7] [8216.7,13000] [13000,50000]
[0,3446] [3446,5113] [5113,10676] [10676,100000]
[0,112.1] [112.1,247.7] [247.7,754.3] [754.3,5000]



I[m,n] =


[0,14197] [0,20388] [9045,80000] [14197,80000]
[0,8216.7] [0,13000] [4989,50000] [8216.7,50000]
[0,5113] [0,10676] [3446,100000] [5113,100000]
[0,247.7] [0,754.3] [112.1,5000] [247.7,5000]



M =


0 10762 18324 80000
0 6064 11406 50000
0 4002 8822 100000
0 157 585 5000

 .

Indexx locates at either the left side or right side of point
M, then Eq. (2) or Eq. (4) is selected for calculating RMD
µh(uij ) of indices based on matricesI[p,q], I[m,n], andM,
whereh is the grade number (h = 1,2,3, and 4),i is the in-
dex number (i = 1,2,3, and 4), andj is the sample number
(j = 1,2· · ·32, . . .60).

Then a two-level hierarchy is constructed to obtain the
weights of the evaluation indicator. The goal is to ascertain
“the weights of the evaluation indicators”. The evaluation in-
dicators (attributes) are damage area, inundated area, dead
population, and collapsed houses.

The pairwise comparison is conducted using a scale based
on the proposal of Saaty (Saaty, 1980) detailed in Table 2.
To illustrate the kind of results obtained, Table 3 presents a
pairwise comparison matrix drawn from the information pro-
vided from the expert for the evaluation of the importance of

www.nat-hazards-earth-syst-sci.net/13/239/2013/ Nat. Hazards Earth Syst. Sci., 13, 239–249, 2013
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Table 3. Pairwise comparison of the alternatives with respect to
flood disasters.

Damage Inundated Dead Collapsed
area area population houses

Damage area 1 1/2 1/9 1/3
Inundated area 2 1 1/5 1/2
Dead population 9 5 1 3
Collapsed houses 3 2 1/3 1

Table 4. Vector of weights of the alternatives with respect to flood
disasters.

Flood impact

Damage area 0.0655
Inundated area 0.1189
Dead population 0.6043
Collapsed houses 0.2113
CR 0.0030

the factors. Then, the consistency of the comparison matrix
was tested and the relative weights of the elements are com-
puted along with the consistency ratio (CR) as presented in
Table 4. If the CR is below 10 %, the judgments are consid-
ered consistent.

According to AHP, we obtain the normalized weights of
the evaluation indicators as

W = [0.06550.11890.60430.2113] = wi . (13)

With the following variable fuzzy recognition model
Eq. (14) proposed by Wu et al. (2006), the synthetic disas-
ter degreeH of each index can be obtained.

u′

h(xj ) =

1+


m∑

i=1
[wi(1− µ(xij )h]

p

m∑
i=1

[wiµ(xij )h]p


α
p


−1

(14)

whereh = 1, 2, 3, 4, andH is synthetic disaster degree.xj

represent samplej , andxij is thei-th index value of the sam-
ple. wi is the disaster index weight,m is the number of in-
dexes (m = 4).α is the rule parameter of model optimization
andp is the distance parameter, usuallyα = 1 or 2;p = 1 or
2. Using Eq. (14), the synthetic relative membership degree
of each indexu′

h(xj ) for floods can be obtained. Then, after
normalizing these indices, the normalized synthetic relative
membership degreesuh(xj ) of each index are obtained.

Using Eq. (15), the synthetic disaster degree of the sample
is obtained as shown in Table 5.

H = (1,2,3,4) × uh(xj ) (15)

Table 5.The disaster degree values during the 60 yr in China.

Sample Degree Sample Degree
value value

1 1.2975 31 1.7058
2 2.4769 32 2.2728
3 1.5831 33 2.4727
4 1.5564 34 2.6061
5 3.2447 35 1.777
6 1.2101 36 1.7948
7 3.2537 37 1.5432
8 2.131 38 1.628
9 1.4648 39 1.8295
10 1.7051 40 1.5528
11 2.2814 41 1.6377
12 2.1606 42 2.7769
13 2.0829 43 1.3983
14 3.449 44 1.7725
15 2.2234 45 2.7208
16 1.1692 46 2.0294
17 1.0678 47 2.8727
18 1.0227 48 1.4821
19 1.0524 49 2.3079
20 1.9909 50 1.4299
21 1.1141 51 1.2857
22 1.1142 52 1.1281
23 1.0727 53 1.4456
24 1.3453 54 1.3957
25 1.2092 55 1.1273
26 3.9117 56 1.4349
27 1.1177 57 1.3782
28 1.3402 58 1.2435
29 1.0624 59 1.0483
30 1.3200 60 1.0439

4.2 Flood risk evaluation using improved information
diffusion

Based on VFS, the disaster degree values of the 60 sam-
ples are calculated (Table 5), that is, the sample point set
W = {w1,w2, · · · ,wn}. The information function carried by
the sample{w1,w2, · · · ,wn} which diffuses to the pointx
can be obtained according to Eqs. (5) to (8). Then, based on
Eqs. (9) to (10), disaster probability risk estimation is calcu-
lated.

The IIDM is used in the form as follows:{
∂u
∂t

=
∂
∂x

(K(u) ∂u
∂x

)

u |t=0 = δ(x)
(16)

where the initial valueδ(x) is assumed as normal distribu-
tion. The variance of this value should be a fairly small one
that can facilitate information diffusions.

Assumeu|t=0 =

√
3
π

exp(−3x2), and the MacCormack
technique is applied. The interval ofx is set as [−4,4]
which suits the disaster degree value interval and satisfies
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Fig. 4 comparison of the risks by IIDM with the small sample and the large sample 687 

Fig. 3. Comparisons of the risks by IIDM, the traditional statistical
method, and NIDM.

the symmetry requirement in normal distribution. The inter-
val [−4,4] is divided into 500 subintervals, and the timet is
equal to 1000. With the MacCormack technique the numeri-
cal solutions for the problemu1(x),u2(x), · · · ,u1000(x) can
then be obtained.

As described above, the information diffusion function is
vt (wn,x) = u(wn − x, t). W = {w1,w2, · · · ,wn} will be the
values of the sample by VFS, whereasu(wn −x, t) is the so-
lution of Eq. (8). The information function for disaster degree

can be written asft (x) =

n∑
i=1

vt (wn,x)

n
. Then, the disaster risk

estimate or the probability risk value is calculated. The re-
lationship between the recurrence intervalN (years) and the
probability p can be expressed asN = 1/p. The flood ex-
ceedance probability curve to the disaster degree value with
the comparison of that by the traditional statistical method
and NIDM is shown in Fig. 3.

5 Discussion

5.1 Results and discussion

In order to testify this method, all sixty records are selected
to comprise the large sample, and the estimated risk of this
set is calculated by the IIDM and other two methods. Then,
30 records are randomly selected to comprise a small sample
set and are analyzed in the same way. Comparisons of these
sample sets using IIDM, NIDM and the statistical method are
demonstrated in Figs. 4 and 5, respectively.

Figure 4 shows the difference between the two curves
of the estimated risk with small sample and large sam-
ple by VFS-IIDM model. From Fig. 4, two curves match
well, which indicates that the result barely changes when the
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Fig. 4.Comparison of the risks by IIDM with the small sample and
the large sample.
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Fig. 5 comparison of the risks by traditional statistics with the small sample and the large sample 689 
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Fig. 5. Comparison of the risks by traditional statistics with the
small sample and the large sample.

sample size changes, and that the method is stable and barely
affected by the size of the sample. The analysis results for a
very large sample can be used as the standard, so the VFS-
IIDM method is considered closer to the standard than the
statistical method, as proven by the following Monte Carlo
experiments. In Fig. 5, we compare two curves of the esti-
mated risk with small sample and large sample by frequency
statistics. The mean errors between the results are much big-
ger and reach the value of 0.0522, which indicates that it is
unstable and changeable with the sample size.

Figures 4 and 5 indicate that the results of the small sample
analyzed by VFS-IIDM model are satisfactory. The results
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Table 6.Comparison of three methods.

Method IIDM NIDM Statistics

Mean error 0.0081 0.0237 0.0522

reflect the fact that the risks of the floods decrease smoothly
with the increase in degree value, and that the VFS-IIDM
model works better for practical problems. Table 6 presents a
comparison of the mean errors between the results with large
sample and small sample by VFS-IIDM model, NIDM model
and traditional statistics. Comparing with those calculated by
the other two methods (see Table 6), IIDM approach is much
better because the mean error of VFS-IDM model is smallest.

The results also illustrate the risk assessment values and
recurrence interval values of different disaster levels in
China.

The disaster degree value obtained by VFS in Table 5
shows the effect of each disaster. The result in Fig. 4 illus-
trates the risk estimation, i.e., the exceedance probability of
the disaster degree value, which indicates that the degrees
of the flood impacts occur with a corresponding frequency
probability. For example, according to the results calculated
in Fig. 4, the exceedance probability of the flood whose im-
pact is 2.8 degrees is 0.1057. In other words, floods exceed-
ing the 2.8 degree value (extreme floods) occur every 9.4607
(N = 1/p) years. In fact, the probability risks of the floods
with each flood impact degree may be obtained (see Table 7).

Based on the standard of four grades (Chen, 2009), the
following categories are used:

a. if 1.0 ≤ H ≤ 1.5, then the flood degree is small
(1st grade);

b. if 1.5<H ≤ 2.5, then the flood degree is medium
(2nd grade);

c. if 2.5<H ≤ 3.5, then the flood degree is large
(3rd grade); and

d. if 3.5<H ≤ 4, then the flood degree is extreme
(4th grade).

Table 7 shows that the exceedance probability risk esti-
mation is 0.0252 when the disaster impact degree is 3.5. In
other words, floods exceeding the 3.5 degree value (extreme
floods) occur every 39.6825 yr. Similarly, the probability of
floods exceeding 2.5 degrees (large floods) is 0.1672, indicat-
ing that floods exceeding that intensity occur every 5.9809 yr.
These findings demonstrate the serious situation of floods in
China. The frequency and the recurrence interval of the four
grades of floods are shown in Table 8.

5.2 Method evaluated using Monte Carlo method

To further evaluate our method, we compared it with other
methods using some simulation experiments by Monte Carlo

Table 7.The disaster risk values.

Degree Risk Degree Risk
value value

0.1 0.9929 2.1 0.2885
0.2 0.9885 2.2 0.2534
0.3 0.9821 2.3 0.2216
0.4 0.9730 2.4 0.1929
0.5 0.9604 2.5 0.1672
0.6 0.9436 2.6 0.1443
0.7 0.9219 2.7 0.1239
0.8 0.8948 2.8 0.1057
0.9 0.8617 2.9 0.0896
1.0 0.8228 3.0 0.0753
1.1 0.7785 3.1 0.0627
1.2 0.7297 3.2 0.0515
1.3 0.6776 3.3 0.0416
1.4 0.6236 3.4 0.0328
1.5 0.5692 3.5 0.0252
1.6 0.5156 3.6 0.0185
1.7 0.4639 3.7 0.0127
1.8 0.4150 3.8 0.0077
1.9 0.3693 3.9 0.0035
2.0 0.3272 4.0 0.0000

method. As flood frequency always obeys some kind of dis-
tribution. Some experiments are conducted using the normal
distribution, exponential distribution and log-normal distri-
bution.

An experiment is conducted using the normal distribution
N(0,1). We obtain 10 numbers randomly from the standard
normal distributionN(0,1). The average divergence is ob-
tained asρ = 0.0594 after 50 simulation experiments. Then,
let n = 12, . . . ,22 and respectively simulate 50 experiments.
We then obtain Table 8, which shows the average divergence-
ρ of the normal information diffusion estimate compared
with the average divergenceρ′ of the histogram estimate.
The relative error of the histogram estimate and informa-
tion diffusion method is calculated ase =

ρ′
−ρ
ρ′ . The results

show that information diffusion method is better than the his-
togram estimate. Roughly speaking, for a small sample, the
information diffusion method can improve a histogram esti-
mator to reduce the mean error by about 15.63 %.

For the two other experiments in exponential distribution
and log-normal distribution, we refer to Tables 10 and 11
to show the average and divergences-p, p′ of the histogram
estimate and information diffusion method, respectively. Ta-
bles 10 and 11 show that, whenn is small, the information
diffusion method is better than the histogram estimate in re-
lation to the exponential distribution and log-normal distri-
bution.

When n is small, the method of information diffusion
method is superior with respect to almost any distribution.
Furthermore, for a given sample whose size is very large and
which is drawn from a distribution, the new method is not the
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Table 8.Flood disaster risk evaluation values.

Disasters level Small flood Medium flood Large flood Extreme flood

Exceedance probability risk 0.8228 0.5692 0.1672 0.0252

Return period (years) 1.2154 1.7569 5.9809 39.6825

Table 9.Average divergence and the relative error forN(0,1).

n 10 12 14 16 18 20 22

0.0594 0.0472 0.0446 0.0443 0.0432 0.0417 0.0403
0.0637 0.0579 0.0570 0.0548 0.0540 0.0476 0.0453
0.0664 0.1847 0.2190 0.1909 0.1994 0.1231 0.1109

Table 10.Average divergence and the relative error forE(1.5).

n 10 12 14 16 18 20 22

0.0876 0.0881 0.0854 0.0822 0.0821 0.0724 0.0708
0.1225 0.1094 0.1022 0.0916 0.0885 0.0835 0.0793
0.2845 0.1946 0.1646 0.1027 0.0729 0.1333 0.1072

Table 11.Average divergence and the relative error for log-normal distribution.

n 10 12 14 16 18 20 22

0.0391 0.0262 0.0274 0.0388 0.0364 0.0373 0.0264
0.0849 0.0647 0.0670 0.0544 0.0606 0.0545 0.0463
0.5395 0.5951 0.5910 0.2868 0.3993 0.3156 0.4298

best because the large sample can provide abundant statisti-
cal information.

A study of the above simulation experiments reveals that
the superiority of information diffusion method is dependent
on whether we are blind to the population and whether the
size of a given sample is small. In the experiments, the given
sample is considered fuzzy due to its small size, so some
benefits can be obtained by information diffusion method.
The work efficiency of information diffusion method is about
35 % higher than that of the histogram estimate. That is, if
no knowledge is available about the population from which
the given sample is drawn, and if the sample size is small,
we have to obtain more observations, adding about 35 %, to
guarantee that the estimation is as good as the one given by
the fuzzy method.

However, if we have a lot of knowledge about the pop-
ulation to confirm an assumption, the statistical object with
respect to a given sample is clearer. So if the size of a given
sample is large, there is an abundance of statistical informa-
tion in the sample. In this case, it is unnecessary to replace
the statistics with information diffusion method as little ben-
efit can be obtained using it.

6 Conclusions

Disaster risk analysis is a complex multi-criteria problem
crucial to the success of strategic decision making in disas-
ters. In China floods occur frequently and cause significant
property losses and casualties, and flood risk analysis of an
area is important for flood disaster managers so they could
implement a compensation and disaster-reduction plan. But
Traditional statistics are frequently inaccurate, especially in
small sample problems. In the present study, a comprehen-
sive fuzzy method for flood disaster risk assessment is devel-
oped. This method provides an enhanced implementation of
information diffusion process and better corresponds to the
actual situation.

Disaster risk, as a natural or societal phenomenon, is nei-
ther precise nor certain. In the current paper, we use a fuzzy
method of flood risk assessment based on VFS theory and
improved information diffusion technique to improve prob-
ability estimation. In the improved information diffusion
method, the diffusion velocityk is replaced with variable
k(u). The method is based upon VFS and the IIDM which
has been tested in the example. The proposed method can
be generalized as an integration of techniques and has been
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tested as stable and reliable. The results are consistent with
practical problems.

In view of the theoretic system of flood risk assessment
developed thus far and the fact that observed series of disas-
ters are quite short or even unavailable, the method adopted
in the paper is indisputably an effective and practical method.

As fuzzy risk analysis involves more imprecision, uncer-
tainty, and partial truth in natural and societal phenomena,
this research in flood risk assessment must promote the study
of the foundations of fuzzy risks. Neither the classical mod-
els nor this proposed model govern the nature of the physical
processes. They are introduced as a compensation for their
own limitations in the understanding of the processes con-
cerned. It is based upon an improved modeling framework,
and it can be extended to some other disasters.

We hope that further technological developments in flood
control and many new effective methods of flood risk anal-
ysis can be used to obtain prediction accuracy. And by con-
ducting such analysis, lessons can be learned so that the im-
pact of natural disasters, such as the floods in China, can be
prevented or mitigated in the future.
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