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Abstract. The predictive analysis of natural disasters and“risk”, would be to say the term refers to “the possibility of
their consequences is challenging because of uncertaintiesome adverse events.”

and incomplete data. The present article studies the use of Risk analysis incorporates the likelihood of a specific
variable fuzzy sets (VFS) and improved information dif- event and the severity of the outcome. This process combines
fusion method (IIDM) to construct a composite method. both the severity and the probability of all relevant hazard
The proposed method aims to integrate multiple factors andoss scenarios. Risk managers use two different evaluative
quantification of uncertainties within a consistent system formethods in risk and hazard analysis: deterministic and prob-
catastrophic risk assessment. The fuzzy methodology is proabilistic.

posed in the area of flood disaster risk assessment to improve Deterministic analysis relies on the laws of physics and
probability estimation. The purpose of the current study is tochemistry, or on correlations developed through experience
establish a fuzzy model to evaluate flood risk with incom- or testing, to predict the outcome of a particular hazard sce-
plete data sets. The results of the example indicate that theario. In the deterministic approach, one or more possible
methodology is effective and practical; thus, it has the poten-designs can be developed that represent the worst possible
tial to forecast the flood risk in flood risk management. credible events. In this approach, the frequency of possible
occurrences need not be evaluated.

Probabilistic analysis evaluates the statistical likelihood
that a specific event will occur and what losses and conse-
1 Introduction guences will result. In addition to using analysis techniques

and experimental findings, the approach uses considerable
Floods are rare natural mutation phenomenon. They occugatistics including the incorporation of historical informa-
frequently in China, where approximately two-thirds of its tjon. But the conventional hydrological frequency analysis
area is threatened by different types and degrees of floodgethod often becomes invalid because of the shortage of his-

(Chen, 2010). These phenomena are the results of naturghrical measured data in degree and frequency (Efstratiadis et
and unnatural causes, such as social and economic factorgy  2010).

In order to reduce the so severe losses that caused by naturalpegple often use “expectation,” instead of “probability dis-

disasters, alarge number of engineering and non-engineeringipution” to compare risks or mathematically combine rele-
relief efforts were carried out. One important work of which yant quantities using one or some operators. The risk of quan-
is carrying on flood disaster risk analysis. titative expression also becomes the “risk degree”. In some
In the case of natural hazards, risk is most meaningfulije|ds, an essentially multi-dimensional risk problem can be
when expressed in terms of potential human suffering and/ogjmpjified into a one-dimensional (1-D) problem using the
economic losses (Wilson and Crouch, 1987; Maskrey, 1989, oper expression. However, common sense dictates that we

Smith, 1996). Besides the probability of a hazard occurring,myst be very careful in using the simplified results in the field
risk must include the potential adverse consequences that cast general risk analysis.

result from the hazard event. To summarize all definitions of
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240 Q. Li: Fuzzy approach to analysis of flood risk

In general, to obtain a way to control or manage a sys-as possible, improving system recognition accuracy (Huang,
tem, we use a mathematical model that closely represents th2002; Palm, 2007).
system. The mathematical model is solved and its solution
is applied to the system. Models are idealized representation
but the nature of disasters is changing, and disasters are b@- Fuzzy risk
coming more complex.

In fact, the main characteristics of natural disaster system&Vhen we study a risk system using a traditional probabilistic
are the uncertainty and complexity of the system. A subsysmethod, it is usually difficult to ascertain if a hypothesis of
tem of natural disaster systems is the human society systenprobability distribution is suitable, and sometimes we meet
Disasters have a broad social impact. They cause deaths, ithe problem of small samples, wherein the data is too scanty
juries and monetary losses. However, they can also rediredb make a decision. The problem has shown that empirical
the character of social institutions, result in new and costlyBayesian methods (Carlin and Louis, 1997) and kernel meth-
regulations imposed on future generations, alter ecosystemads (Breiman et al., 1977; Chen, 1989; Devroye and Gyorfi,
and disturb the stability of political regimes. So when judg- 1985; Hand, 1982; Parzen, 1962; Silverman, 1986; Wertz,
ing the consequences of future natural disasters, it is neces:978) need further development. Obtaining a precise rela-
sary to analyze the human society structure (land use, propion between events and probabilities of occurrence is diffi-
erty distribution, structures, etc). Human society structure iscult. To represent the imprecision, the best way is to employ
very complex with many uncertain factors, which we must fuzzy sets to represent the relations.
fully consider in analyzing natural disaster systems. In fact, Uncertainty is another factor to consider. It is defined in
even on natural disaster phenomena, uncertainty and consimple language as the lack of definiteness and has important
plexity still cannot be ignored. Uncertainty, ambiguity, con- implications in what integrated disaster management could
stant change, and surprise are problems that disaster maachieve. Thus, uncertainty should be considered in all disas-
agement has to overcome. Unfortunately, most managemenér management decisions.
strategies are designed for a predictable world and a static Fuzzy set theory, which deals with uncertainties and al-
view of natural disasters. lows the incorporation of the opinions of decision makers,

One very common claim states that mathematical mod-may provide an appropriate tool for establishing disaster risk
els fail when applied in management sciences due to systermanagement systems, such as fuzzy rule-based techniques
complexity or computational difficulty. A risk system may and the combination of the fuzzy approach with other tech-
only be studied by certain state equations, on the conditiomiques. Risk is expressed in terms of fuzzy risk only when
that these state equations could be found. However, in manwe study it by a fuzzy method. Some early related applica-
cases, to obtain the state equation and all data is very difficulttions can be found in the literature (Brown, 1979; Clements,
Going a step further, if we employ other methods to simplify 1977; Dong et al., 1985; Esogbue et al., 1992; Hadipriono
the system analysis, obtaining the precise relations we neednd Ross, 1991; Hoffman et al., 1978).
is also difficult. In other words, the relations we obtain are The concept of the fuzzy set was proposed by Zadah
usually imprecise. (Zadeh, 1965), who bestowed media and fuzziness scien-

Probability method is another kind of simplified research tific description and great significance in the academic world.
work, but it is not appropriate to replace risk analysis with However, the fuzzy set is static if the relativity and variability
the probability analysis. Altay and Green (2006) show thatare not considered. Therefore, the theory is in conflict with
probability theory and statistics are very frequently utilized the variability of the interim form. Some defects of tradi-
methods in the research literature (about 20 % of researckional fuzzy sets are due to approaching the media, variable
effort included in their review), but much less frequently in fuzzy phenomenon, and variable fuzzy objects by static con-
practice. Because feasibility and reliability problems exist in cepts, theory, and method of traditional fuzzy sets.
terms of practical issues without considering the fuzzy un- In light of the foregoing, the theory and method of vari-
certainty. Sometimes, results based on the classical statistable fuzzy sets (VFS) was proposed by Chen based on op-
cal methods are sometimes very unreliable and unstable fgposite fuzzy sets and the definitions of a relative difference
cases with limited or small sample issues. In fact, the col-function (Guo and Chen, 2006; Wu et al., 2006). The method
lection of long sequence disaster data is quite a challengingf Chen is the innovation and extension of the static fuzzy
task, especially when the sample is small. In this case, onl\set theory established by Zadeh (Zadeh, 1965), which is very
records of the same age or of similar ages may be used famportant in theory and applications. The VFS theory was
flood risk analysis. the extension of fuzzy sets theory which was established by

Information diffusion is just a fuzzy mathematical set- Chen (Chen and Guo, 2006; Guo and Chen, 2006; Wu et
value method for samples, considering that the use of fuzzyal., 2006). The comprehensive evaluation of VFS effectively
information of samples is optimized to offset information eliminates the border effect on assessment result and mon-
deficiency. The information diffusion theory helps extract itors estimation standard error. This method can determine
the useful underlying information from the sample as muchrelative membership functions and membership degrees of
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(u)=1 1) > gt () 05 ww<u, @ p,)=0 Fig. 2. Relationship between poiaf, and internal$p, q1, [m, n].
05 u(u)=1

, (w)=0
the mappingD : u — D(u) € [—1, 1] (Chen and Guo, 2006;
Fig. 1. The relation of the relative membership degree function Guo and Chen 2006; Wu et al., 2006). Hence, from the
tau); wac(u) and the relative difference functiad(u). Eq.ua@)+pac(u) = 1we caninferthab (u) = 2u4(u)—1
orua(u) =1+ D(u)/2. Let

disquisitive objectives (or indices) scientifically and reason-A+ = {ulu € U,0 < D(u) < 1}
ably. This technique can also make full use of one’s knowl-A_ = {u|u € U, -1 < D(u) < 0}
edge and experience, as well as quantitative and qualitativeA0 —{u|ueU,D®u)=0)}
information of index systems, to obtain weights of objectives Vo = {(u. D) |u € U, D()
(or indices) for comprehensive disasters evaluations (Wang'© ~ "% )1 €, Lo
etal., 2011; Zhang et al., 2011). = ua) — pac(u), D € [-1,1]}

In the present study, VFS was combined with information 4. 4_ andAg are the attracting sets, repelling sets, and bal-
diffusion as an integration of techniques. The method pro-ance boundaries of VF®, respectively. For any element

posed in the current research uses fuzzy multiple indicatorghe setv; is defined as Variable Fuzzy Sets (VFS).
of comprehensive evaluation of VFS and converts the multi-  For example, the intervdlp, ¢] is considered as the at-

dimensional indicators of the samples into one-dimensionalyacting setswy of W, implying that 0< DA (u) <1 and
degree values. Then, the method turns the degree values ¢f , (,;) < e (), and W is the interval[m,n] which in-
the observed sample into fuzzy sets by information diffusionciydesw, (Wo c W). [m, p] and[g, n] are the repelling sets
method, finally obtaining the risk values. The method is thenof W implying that—1 < D4 (1) < 0 andjua (i) < 1 4c (u)
tested by a case showing that the method is superior to thg, the repelling set$m, p] and[q,n]. Then, M is a value
traditional statistical model and improves the result of tradi- which satisfies 4 (u) = 1, implying ua () = pac(u) = 0.5,
tional estimation. whereM is usually different from the mid-value of interval
[p.q] (see Fig. 2).

If x is placed at right side oM, the relative difference

3 Modeling framework of variable fuzzy sets and function (u € W)D () can be expressed as

information diffusion

3.1 Variable f t b = (L:Z)ﬂ welp. Ml (1)
X ariable fuzzy sets D(u) = _(::l:;;)ﬂ welm, pl
A is a fuzzy concept in the domain bf, andu is any element According to the formulaw 4 (u) = 14+ D(u) /2, Eq. (1) can

of U (u € U). A andA¢ are a pair of opposite fuzzy concepts pe transformed to Eq. (2):

(or two basic fuzzy attributes). The relative membership de- u—

gree RMD ofAc is any element of U to A is w4 (1), which a(u) =051+ (M_—I;;)ﬂ] u€lp,M] )

ranges from 0 to 1 continuously. The RMD #f is 1S, pa@) =051~ (G=)P1 u e m, p]

‘(’"Chk'gr‘]r:r':geGSJgog‘olc)go %&“’;‘f} j?fé‘ﬁf‘z(gég)’%(”) =1 andifxis placed atleft side o, the difference function
Hence, for any element (u € U), a pair of numbers

pa(u) andac(u) and in the continuunio, 1] are assigned D) = (574)? ueM,q]

tou. D) = —(g)ﬂ uelq,nl 3)
wa(u) and pac(u) are the RMD functions that express the

levels of acceptability and repellency, respectively. The map- 2nd Eg. (3) can also be transformed to Eq. (4):

ping ua(u), mac@) :ur—> pua(u), nwac(u) € [0,1] is shown pa(u) =0.5[1+ (Ale:q Y lueM, q)

in Fig. 1. Or (1) = 0.5[1 — (ufc;])ﬁ] uelg.n] 4
When two basic fuzzy attributes are equal, the dynamic patit) == n=q a1

equilibrium can be established (Fig. 1). When the RMD In which g8 is an index larger than 0, usualfy= 1. Equa-
wa(u) is larger thanuac (1), the major property ofi is ac-  tions (1) to (4) are linear functions. They satisfy the follow-
ceptability, and the minor property is repellency. When it ing conditions: (i)u = p andu = ¢, D(u) =0 andu4 (u) =
changes fromu (1) > pac(u) t0 s (u) < pwac(u), thecon-  pwac(u) =0.5; (i) u=M, Dw)=1 and ua(u) =1; and
clusion is the exact opposite. (i) u =m andu =n, D(u) = —1 andp 4 (u) = 0. Based on

Definition: Let D(u) = ua(u) — uac(u), where D(u) is Egs. (2) and (4), the values of relative membership degree
defined as the relative difference function ofto A as function 4 (1) of inquisitive indices are obtained.
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3.2 Information diffusion But the information carried by the samples moves from
a higher level of consistency to a lower one because of in-
In the current research, we first use fuzzy multiple indi- herent uneven distributions (Gu and Li, 2002). So a func-
cators of comprehensive evaluation of VFS and converttion of , i.e. k(u), instead of the constartin the current
the multi-dimensional indicators of the samples into one-paper.k(x) can be selected freely if this function satisfies
dimensional degree values. Then, we turn the degree valuesome conditions. The simplest quadratic function in which
of the observed sample into fuzzy sets by information diffu- k(1) = (« + 1)2 can be used in the current paper, satisfies the
sion method, finally obtaining the risk values. conditions as following:

Information diffusion is a fuzzy mathematic set-value
method for samples. The use of fuzzy information of samples 1.
is optimized to offset information deficiency. This method
can transform an observed data into a fuzzy set, turning a 2.
single point sample into a set-value sample.

In this study some improvements are made to improve the

information diffusion method:

The function is non-negative increasing.

The diffusion velocity is irregular which means the dif-
fusion velocity becomes faster as the consistency in-
creases.

3.

1. Diffusion velocity k is replaced with variable(u),
and it is used to obtain the disaster risk estimation. .

There is little diffusion even without consistency.

So the diffusion function of improved information diffu-

This method provides an improved information diffu-
sion process implementation and higher accuracy.

sion method (IIDM) can be written as

{ = ax k3 e
2. An optimal discretization algorithm is designed. Ac- li=0 = 8(x)

cording to the diffusion function assumed in the [IDM it can be transformed as

equation, the MacCormack scheme is used during the

process to obtain the numerical solutions. Finally, the 5, % k() du

method is compared with NIDM and traditional statisti- 5~ = k()&= + — = ()" (8)

cal method by examining the mean error.

The MacCormack difference scheme can be selected to get
the solutions. As a special form of the Lax-Wendroff differ-
ence scheme, the MacCormack difference scheme follows a
Information diffusion: supposg is the sample setand is  two-step predictor-corrector mechanism. This technique is a
the universal field, and information diffusion is a mapping second-order-accurate method because it is used with for-
p: X xV —[0,1] that satisfies the following (Huang and ward differences on the predictor and with rearward differ-
Shi, 2002): ences on the corrector (Anderson and Wendt, 1995).

So the diffusion function of the problem can be described
as

3.2.1 Definition of information diffusion

1. It is decreasing.Vx € X,Yu',v" €V, if|v/ —x| <
HU” —x”, thenu(x,v') > u(x,v”). u is the diffusion
function. 9)

in which W = {w1, wz,---,w,} is the sample degree vari-

able, and«(w, —x, ) is the solution of Eq. (7). The informa-
tion function carried by the samplevs, wo, - -+, w,} which

v (wy, X) =u(w, —x,1)

. Vx € X. Letv™* be the observed value ®f which satis-
fiespu(x,v*) = ma}/)w(x, v).
ve

3. u(x,v) is conservative. If and only ¥x € X, itsinte-  diffuses to the point field can be described as
gral value on the universe is 1, vif, u(x, u)du = 1.
n
3.2.2 Improved information diffusion method (IIDM) i;”f(wi’x)
Jfi(x) = _T (10)

In Shang and Jin (2002), the diffusion function of informa-

tion diffusion method is described as follows: 3.2.3 Principle of NIDM

Ou J The information diffusion method is called normal infor-

mation diffusion when its diffusion function is normal dis-
tribution. LetW = {w1, wp, ---, w,} be a sample, and/ =
{u1,uz,---,u,) bethe discrete universe;andu ; are called
a sample point and a monitoring point, respectively; €
Wvu; e U we diffuse the information carried by; to u;

5)
In whichk is a constant. So Eq. (4) can be written as

82u

9 ax2

ou

(6)
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Table 1.Flood disaster rating standard.

Disaster level = Damage area Inundated Dead population Collapsed houses Recurrence Grade
(thousand area (thousand (persons) (ten thousand) interval (years) number
hectares) hectares)

Small flood 0~9045 0~4989 0~ 3446 0~112.1 <2 1

Medium flood 9045- 14197 4989~ 8216.7 3446~ 5113 112.1247.7 2~5 2

Large flood 1419% 20388 8216.4 13000 5113-10676 247.~754.3 5~ 20 3

Extreme flood 20388 80000 13000-50000 10676~-100000 754.3-5000 >20 4

at gain f;(u;) by using the normal information diffusion Table 2.Scale preferences used in the pairwise comparison process.
method (NIDM) shown in Eq. (11).

Range Category Score
(w; —uj)? Superior  Absolutel [ 9
(1) =exp| —— I ) 11 p utely superior
Jiluj) p|: 2h2 ujet (11) Very strongly superior 7
Strongly superior 5
wherer is called normal diffusion coefficient, calculated by Equal '\é:i‘:ate'y superior 13
Eq. (12) (Huang and Shi, 2002). Inferior ~ Absolutely inferior 1/9
) Very strongly inferior ~ 1/7
0.8146b —a), n=>5; Strongly inferior 1/5
0.56900 —a), n=6 Moderately inferior 1/3
0.456Q0b — a), n="T,
h= 0.386Qb — a), n=28; (12)
0.3362b — a), n=29, - .
0.2086b —a), 2= 10 parameters are established to calculate RMD of VFS:
0.6851b —a)/(n—1), n > 11 [ [0,9045 [9045 14197 [1419720389 [203888000Q
I _ | [0,4989 [498982167] [82167,13000 [1300Q5000Q
whereb = max{x;}:a = min {x;}. P41 =1 [0,3446 [34465113 [511310676 [1067610000Q
1<i<n 1<i<n | [0,1121] [1121,247.7] [2477,7543] [754.3,5000
[ [0,14197 [0,20388 [9045 80000 [141978000Q
4 Flood disaster risk analysis based on VFS and IIDM ;. _ | [0.82167][0,13000 [49895000Q [82167,5000Q
lm.n) [0,5113 [0, 10676 [3446 10000Q [5113 10000Q
| [0,2477] [0,7543] [1121,5000 [247.7,5000Q

The disastrous loss data collected by the Ministry of Water
Resources of the People’s Republic of China cover the period 010762 18324 8000

from 1950 to 2009. The damaged and inundated areas, degg _ | 0 6064 11406 50000

population, and collapsed houses were chosen as the disas- 8 4105072 %88252 1;’888

ter indicators in the flood risk analysis. Using actual histori-

cal data from 1950 to 2009, the flood frequency analysis was Indexx locates at either the left side or right side of point
used to determine the flood disaster rating standard (Table 1)/, then Eqg. (2) or Eq. (4) is selected for calculating RMD
The flood cases were divided into four groups, namely, smallj+x (u;;) of indices based on matricds, 4, Im.., and M,
medium, large, and extreme. Floods that occurred every 2 ywhereh is the grade numben(= 1,2, 3, and 4),i is the in-
were classified as small floods, those that occurred every 2ex numberi(=1,2,3, and 4), and; is the sample number
to 5yr were medium floods, those that occurred every 5 to(j =1,2---32,...60).

20yr were large floods, and those that occurred after more Then a two-level hierarchy is constructed to obtain the
than 20 yr were considered extreme floods. The range of thaveights of the evaluation indicator. The goal is to ascertain
floods in each group was decided using the flood disaster ratthe weights of the evaluation indicators”. The evaluation in-

ing standard (Table 1). dicators (attributes) are damage area, inundated area, dead
population, and collapsed houses.
4.1 VFS for comprehensive assessment of the flood The pairwise comparison is conducted using a scale based
degree on the proposal of Saaty (Saaty, 1980) detailed in Table 2.

To illustrate the kind of results obtained, Table 3 presents a
Based on the study of Chen and Guo (2006) and Table 1pairwise comparison matrix drawn from the information pro-
for each degreé&(h =1, 2, 3,4), the following matrices of vided from the expert for the evaluation of the importance of
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244 Q. Li: Fuzzy approach to analysis of flood risk

Table 3. Pairwise comparison of the alternatives with respect to Table 5. The disaster degree values during the 60yr in China.
flood disasters.

Sample Degree Sample Degree

Damage Inundated Dead Collapsed value value
area area population  houses
Damage area 1 /2 1/9 1/3 ; ;i%g 2; ;Zggg
Inundated area 2 1 /B 1/2 ' '

Dead population 9 5 1 3 3 1.5831 33 24727
Collapsed houses 3 2 /3 1 4 15564 34 2.6061

5 3.2447 35 1.777
6 1.2101 36 1.7948
Table 4. Vector of weights of the alternatives with respect to flood 7 3.2537 37 1.5432

disasters. 8 2.131 38 1.628
9 1.4648 39 1.8295
Flood impact 10 1.7051 40 1.5528
11 2.2814 41 1.6377
Damage area 0.0655 12 2.1606 42 2.7769
Inundated area 0.1189 13 20829 43 1.3983
Dead population  0.6043 14 3.449 44 1.7725
Collapsed houses 0.2113 15 29234 45 27208
CR 0.0030 16 1.1692 46 2.0294
17 1.0678 47 2.8727
18 1.0227 48 1.4821
the factors. Then, the consistency of the comparison matrix 19 1.0524 49 2.3079
was tested and the relative weights of the elements are com- 32 i'iigi gg 1'3223
puted along with the consistency ratio (CR) as presented in o9 1‘1142 5o 1'1281
Table 4. If the CR is below 10 %, the judgments are consid- 23 1:0727 53 1:4456
ered consistent. 24 1.3453 54 1.3957
According to AHP, we obtain the normalized weights of 25 1.2092 55 1.1273
the evaluation indicators as 26 3.9117 56 1.4349
27 1.1177 57 1.3782
W =[0.0655011890604302113 = w;. (13) 28 1.3402 58 1.2435
29 1.0624 59 1.0483
With the following variable fuzzy recognition model 30 1.3200 60 1.0439

Eq. (14) proposed by Wu et al. (2006), the synthetic disas-
ter degreed of each index can be obtained.

L 4.2 Flood risk evaluation using improved information
m Y diffusion
_Z [wi (L— p(xij)nl?
’=1m (14) Based on VFS, the disaster degree values of the 60 sam-
> [wip(xij)nl? ples are calculated (Table 5), that is, the sample point set
i=1 W = {w1, w2, ---,wy}. The information function carried by
) o the sample{wi, wo, -, w,} which diffuses to the poink
whereh =1, 2, 3, 4, andH is synthetic disaster degree;  can pe obtained according to Egs. (5) to (8). Then, based on

represent samplg andx;; is thei-th index value of the sam- s (9) to (10), disaster probability risk estimation is calcu-
ple. w; is the disaster index weight; is the number of in-  |3teq.

dexes f» = 4). « is the rule parameter of model optimization  The IDM is used in the form as follows:
andp is the distance parameter, usually=1or 2 p =1 or

up(xj) =41+

2. Using Eq. (14), the synthetic relative membership degreef 2 = -2 (K (u)3“ (16)
of each index), (x;) for floods can be obtained. Then, after ulr=0 = 8(x)
normalizing these indices, the normalized synthetic relative
membership degrees, (x;) of each index are obtained. where the initial values(x) is assumed as normal distribu-
Using Eg. (15), the synthetic disaster degree of the sampléion. The variance of this value should be a fairly small one

is obtained as shown in Table 5. that can facilitate information diffusions.

Assumeu|,—g = \/gexp(—sz), and the MacCormack
H=(1,2,3,4) xup(x;) (15)  technique is applied. The interval of is set as 4, 4]

which suits the disaster degree value interval and satisfies
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The exceedance probability curves of flood to disaster degree value The excesdance probability curves of flood to disaster degree value
T
T

\1 T T 1
09 \1 B 09k i
0.8F ——IIDM (large sample) ‘lllll 1 08f IIDM {large sample) b
0.7F ----Traditional Statistics (large sample) J,l 1 07k ------- IIDM (small sample) B
_ 0BF — —MIDM (large sample) i 1 06} 1
g o5p A 1 8 05} 7
= . s
04} b 1 S gaf 1
03F B 03k i
0.2F i 7 02F 7
01F N B 01k i
4 -3 -2 -1 0 1 2 3 4 4 3 2 A1 0 1 2 3 4

disaster degree value disaster degree value

Fig. 3. Comparisons of the risks by IIDM, the traditional statistical Fig. 4. Comparison of the risks by IIDM with the small sample and
method, and NIDM. the large sample.

the symmetry requirement in normal distribution. The inter-

The exceedance probability curves of flood to disaster degree value
T T T T

val [—4, 4] is divided into 500 subintervals, and the timis 1
equal to 1000. With the MacCormack technique the numeri- |1 _
Chal S%IUti%ns.fordthe probleml(x), MZ(X)’ T MlOOO(x) can 08k Traditional Statistics (large sample) i
then be obtained. . ' "

As described above, the information diffusion functionis 07 FR Traditional Statistics (small sample) 1
v (Wp, x) = u(wy, —x,1). W={wi,ws, -, w,} will be the sl : i
values of the sample by VFS, wheredgw,, — x, t) is the so- £
lution of Eq. (8). The information function for disaster degree E 08y i

i vy (Wp,x) = o4t 1

can be written ag; (x) = =~———. Then, the disaster risk 0al i
estimate or the probability risk value is calculated. The re-
lationship between the recurrence inter¥a(years) and the o2r i
probability p can be expressed &= 1/p. The flood ex- 01 .
ceedance probability curve to the disaster degree value with , , , , ,
the comparison of that by the traditional statistical method 1 15 2 2.5 3 3.8 4

disaster degree value

and NIDM is shown in Fig. 3.

Fig. 5. Comparison of the risks by traditional statistics with the

. . small sample and the large sample.
5 Discussion P 9 P

5.1 Results and discussion
sample size changes, and that the method is stable and barely

In order to testify this method, all sixty records are selectedaffected by the size of the sample. The analysis results for a
to comprise the large sample, and the estimated risk of thisery large sample can be used as the standard, so the VFS-
set is calculated by the IIDM and other two methods. Then,IIDM method is considered closer to the standard than the
30 records are randomly selected to comprise a small samplstatistical method, as proven by the following Monte Carlo
set and are analyzed in the same way. Comparisons of thesxperiments. In Fig. 5, we compare two curves of the esti-
sample sets using IIDM, NIDM and the statistical method aremated risk with small sample and large sample by frequency
demonstrated in Figs. 4 and 5, respectively. statistics. The mean errors between the results are much big-
Figure 4 shows the difference between the two curvesger and reach the value of 0.0522, which indicates that it is
of the estimated risk with small sample and large sam-unstable and changeable with the sample size.
ple by VFS-IIDM model. From Fig. 4, two curves match  Figures 4 and 5 indicate that the results of the small sample
well, which indicates that the result barely changes when theanalyzed by VFS-IIDM model are satisfactory. The results
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Table 6. Comparison of three methods. Table 7. The disaster risk values.
Method IIDM  NIDM  Statistics Degree  Risk Degree  Risk
value value
Mean error 0.0081 0.0237 0.0522
0.1 0.9929 2.1 0.2885
0.2 0.9885 2.2 0.2534
reflect the fact that the risks of the floods decrease smoothly 82 8335(1) gj 8?5;8
with the increase in degree value, and that the VFS-IIDM 05 09604 25 0.1672
model works better for practical problems. Table 6 presents a 06 09436 2.6 0.1443
comparison of the mean errors between the results with large 0.7 0.9219 2.7 0.1239
sample and small sample by VFS-IIDM model, NIDM model 0.8 0.8948 2.8 0.1057
and traditional statistics. Comparing with those calculated by 0.9 0.8617 2.9 0.0896
the other two methods (see Table 6), IIDM approach is much 1.0 0.8228 3.0 0.0753
better because the mean error of VFS-IDM model is smallest. 11 0.7785 3.1 0.0627
The results also illustrate the risk assessment values and 12 0.7297 3.2 0.0515
recurrence interval values of different disaster levels in 13 06776 3.3 0.0416
China. 1.4 0.6236 3.4 0.0328
The disaster degree value obtained by VFS in Table 5 o o Ss o0
shows the effect of each disaster. The result in Fig. 4 illus- 1.7 0.4639 3.7 0.0127
trates the risk estimation, i.e., the exceedance probability of 18 04150 3.8 0.0077
the disaster degree value, which indicates that the degrees 1.9 0.3693 3.9 0.0035
of the flood impacts occur with a corresponding frequency 2.0 0.3272 4.0 0.0000

probability. For example, according to the results calculated
in Fig. 4, the exceedance probability of the flood whose im-

pact is 2.8 degrees is 0.1057. In other words, floods excee%ethod_ As flood frequency always obeys some kind of dis-
ing the 2.8 degree value (extreme floods) occur every 9.460¢p, tion. Some experiments are conducted using the normal

(N =1/p) years. In fact, the probability risks of the floods iqiihytion, exponential distribution and log-normal distri-
with each flood impact degree may be obtained (see Table 7)oution.
Based on the standard of four grades (Chen, 2009), the experiment is conducted using the normal distribution

following categories are used: N(0,1). We obtain 10 numbers randomly from the standard
a.if 1.0<H <15, then the flood degree is small normal distributionN (0, 1). The average divergence is ob-
(1st grade); tained asp = 0.0594 after 50 simulation experiments. Then,
letn =12,...,22 and respectively simulate 50 experiments.
b. if 1.5<H <2.5, then the flood degree is medium \ye then obtain Table 8, which shows the average divergence-
(2nd grade); p of the normal information diffusion estimate compared
c.if 2.5<H <35, then the flood degree is large with the average divergeng&! of the his.togram est?mate.
(3rd grade)_; and The relative error of the histogram esurnate and informa-
tion diffusion method is calculated as= 2-2. The results
d. if 3.5<H <4, then the flood degree is extreme show thatinformation diffusion method is better than the his-
(4th grade). togram estimate. Roughly speaking, for a small sample, the

Table 7 shows that the exceedance probability risk esti_information diffusion method can improve a histogram esti-

mation is 0.0252 when the disaster impact degree is 3.5. fnator to reduce the mean error bY about 15'6_3 %'_ o
other words, floods exceeding the 3.5 degree value (extreme FOT the two other experiments in exponential distribution
floods) occur every 39.6825yr. Similarly, the probability of 21d log-normal distribution, we refer to Tables 10 and 11

floods exceeding 2.5 degrees (large floods) is 0.1672, indicat® Show the average and divergengesy’ of the histogram

ing that floods exceeding that intensity occur every 5.9809 yr€Stimate and information diffusion method, respectively. Ta-
These findings demonstrate the serious situation of floods jples 10 and 11 show that, whenis small, the information

China. The frequency and the recurrence interval of the fouidiffusion method is better than the histogram estimate in re-
grades of floods are shown in Table 8. lation to the exponential distribution and log-normal distri-

bution.
5.2 Method evaluated using Monte Carlo method When n is small, the method of information diffusion
method is superior with respect to almost any distribution.
To further evaluate our method, we compared it with otherFurthermore, for a given sample whose size is very large and
methods using some simulation experiments by Monte Carlavhich is drawn from a distribution, the new method is not the
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Table 8.Flood disaster risk evaluation values.

Disasters level Small flood Medium flood Large flood Extreme flood
Exceedance probability risk  0.8228 0.5692 0.1672 0.0252
Return period (years) 1.2154 1.7569 5.9809 39.6825

Table 9. Average divergence and the relative error f&(0, 1).

n 10 12 14 16 18 20 22

0.0594 0.0472 0.0446 0.0443 0.0432 0.0417 0.0403
0.0637 0.0579 0.0570 0.0548 0.0540 0.0476 0.0453
0.0664 0.1847 0.2190 0.1909 0.1994 0.1231 0.1109

Table 10.Average divergence and the relative error f£11.5).

n 10 12 14 16 18 20 22

0.0876 0.0881 0.0854 0.0822 0.0821 0.0724 0.0708
0.1225 0.1094 0.1022 0.0916 0.0885 0.0835 0.0793
0.2845 0.1946 0.1646 0.1027 0.0729 0.1333 0.1072

Table 11.Average divergence and the relative error for log-normal distribution.

n 10 12 14 16 18 20 22

0.0391 0.0262 0.0274 0.0388 0.0364 0.0373 0.0264
0.0849 0.0647 0.0670 0.0544 0.0606 0.0545 0.0463
0.5395 0.5951 0.5910 0.2868 0.3993 0.3156 0.4298

best because the large sample can provide abundant statisé- Conclusions
cal information.

A study of the above simulation experiments reveals that
the superiority of information diffusion method is dependent Disaster risk analysis is a complex multi-criteria problem
on whether we are blind to the population and whether thecrucial to the success of strategic decision making in disas-
size of a given sample is small. In the experiments, the giverfers. In China floods occur frequently and cause significant
sample is considered fuzzy due to its small size, so soméroperty losses and casualties, and flood risk analysis of an
benefits can be obtained by information diffusion method.aréa is important for flood disaster managers so they could
The work efficiency of information diffusion method is about iMmplement a compensation and disaster-reduction plan. But
35% higher than that of the histogram estimate. That is, ifTraditional statistics are frequently inaccurate, especially in
no knowledge is available about the population from which Small sample problems. In the present study, a comprehen-
the given sample is drawn, and if the sample size is Sma||,sive fuzzy method for flood disaster risk assessment is devel-
we have to obtain more observations, adding about 35 %, t@ped. This method provides an enhanced implementation of
guarantee that the estimation is as good as the one given U'g)formation diffusion process and better corresponds to the
the fuzzy method. actual situation.

However, if we have a lot of knowledge about the pop- Disaster risk, as a natural or societal phenomenon, is nei-
ulation to confirm an assumption, the statistical object with ther precise nor certain. In the current paper, we use a fuzzy
respect to a given sample is clearer. So if the size of a giverdnethod of flood risk assessment based on VFS theory and
sample is large, there is an abundance of statistical informalmProved information diffusion technique to improve prob-
tion in the sample. In this case, it is unnecessary to replac@Pility estimation. In the improved information diffusion

the statistics with information diffusion method as little ben- method, the diffusion velocity is replaced with variable
efit can be obtained using it. k(u). The method is based upon VFS and the [IDM which

has been tested in the example. The proposed method can
be generalized as an integration of techniques and has been
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tested as stable and reliable. The results are consistent witbhen, X. R.: Non-parametric Statistics, Shanghai Science and Tech-
practical problems. nology Press, Shanghai, 1989.

In view of the theoretic system of flood risk assessmentClements, D. P.: Fuzzy ratings for computer security evaluation,
developed thus far and the fact that observed series of disas- 1977- . . S
ters are quite short or even unavailable, the method adOpteBel‘ér;’ﬁeéé-é and Gyorfi, L.: Nonparametric Density Estimation, Wi-
n :[:Se f% azgirrlissll(nglnsg;g?s% \&/lgl\?j:(r:‘::g?eair:]jp?;i?;%&: Tjitchecfbong, W., Shah, H., and Wongt, F.: Fuzzy computations in risk and

. . . - ’ decision analysis, Civil Eng. Syst., 2, 201-208, 1985.
ta!nty, and pa}rual truth in natural and societal phen0men""Efstratiadis, A., Vasiliades, L., and Loukas, A.: Review of exist-
this research in flood risk assessment must promote the study jnq statistical methods for flood frequency estimation in Greece,
of the foundations of fuzzy risks. Neither the classical mod- EyU COST Action ES0901: European Procedures for Flood Fre-
els nor this proposed model govern the nature of the physical quency Estimation (FloodFreq) — 3rd Management Committee
processes. They are introduced as a compensation for their Meeting, Prague, 2010.
own limitations in the understanding of the processes conEsogbue, A. O., Theologidu, M., and Guo, K.: On the application
cerned. It is based upon an improved modeling framework, of fuzzy sets theory to the optimal flood control problem arising
and it can be extended to some other disasters. in water resources systems, Fuzzy Sets Syst., 48, 155-172, 1992.

We hope that further technological developments in flood®Y: C- @nd Li, D: Mathematical and Physical Equations, Higher

control and many new effective methods of flood risk anal- _ Education Press, Beijing, 2002. . .
sis can be used to obtain prediction accuracy. And by Con_Guo, Y. and Chen, S. Y.: Application of Variable Fuzzy Sets in Clas-
y ) sified Prediction of Rockburst, ASCE, Proc. Sess. GeoShanghai,

ducting such analysis, lessons can be learned so that the im- 115_113 2006
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