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Abstract. Experiments on extremely steep deterministic ber of geometric criteria related to the wave shape on the
waves generated in a large wave tank by focusing of a broadverge of breaking were suggested, such as maximum steep-
banded wave train serve as a motivation for the theoreticahess {k ~ 0.443 for Stokes wave, where and k are the
analysis of the conditions leading to wave breaking. Particu-amplitude and the wave number, respectively), wave asym-
lar attention is given to the crest of the steepest wave wherenetry in either horizontal or vertical direction, as well as
both the horizontal velocity and the vertical acceleration at-maximum instantaneous surface slope (Longuet-Higgins and
tain their maxima. Analysis is carried out up to the third order Fox, 1977). The kinematic criteria for wave breaking predict
in wave steepness. The apparent, Eulerian and Lagrangiathat the wave breaks if the orbital velocity at its crest ex-
accelerations are computed for wave parameters observed oeeds either the phase or the group velocity of the wave, al-
experiments. It is demonstrated that for a wave group with ahough recent experiments by Grue and Jensen (2012) seem
wide spectrum, the crest propagation velocity differs signi-to demonstrate that the maximum velocity at the crest of
ficantly from both the phase and the group velocities of thebreaking wave does not exceed significantdcQwhere the
peak wave. Conclusions are drawn regarding the applicabiwave phase velocity is computed taking into account non-
lity of various criteria for wave breaking. linear and current effects. Phillips (1958) offered a dynamic
breaking criterion arguing that since for gravity water waves
the gravity is the only restoring force, the maximum pos-
i sible negative value of the vertical acceleration at the free
1 Introduction surfaceay = —g. Although straightforward and physically
convincing, this criterion remains neither experimentally nor

Three main factor; determme the wave ener.gy.balgnce: Inhumerically supported. Longuet-Higgins (1985) noticed that
put QUe to. the aCt.IOI’I of wind, wave energy d|s§|pat|9n, andthe maximum negative value of the vertical acceleration in
r}onlmear interactions among waves. The nonlmear.mteracthe steepest Stokes wave where a°1@@rner flow exists at
tions among waves are fairly well understood; the interac-y . . oct is onlys, = —g/2. In some field experiments the
tion between wind and waves can be modelled effectively. In_, .« \red values closedp= —g/2 were reported, but most
spite of the fact that breaking constitutes the dominant wavi j

e'texperiments yield wave breaking at downward acceleration

energy damping mechanism, it is not yet understood pro Values less thap/2 (Jensen et al., 2007)

err:yilso t_hat theb;/vave'brer?kipg Iconstitutes Oﬂe of the most It should be stressed that when experimental verification
challenging probiems in physical oceanography. of the dynamic criterion by Phillips (1958) is considered,

During the wave b_reaking process, a SUbStanFial part of thedistinction should be made between the “apparent” accelera-
wave energy is dissipated, mostly to turbulent kinetic energyyon defined by Longuet-Higgins (1985) 4% /312, the Eu-

of water velocity. fluctuations and gventually to heat. The,lerian vertical acceleratione = dw /a1, and the Lagrangian
dptaﬂed mechamsm of wave breaking gnd the exact Condl'acceleration of the fluid particle; . While in linear approx-
tions requ[red fqr waves to break remain largely unknown',imation all these accelerations are identical, they can differ
The breaking criteria suggested over the years may be I'essentially when nonlinear terms are accounted for. For uni-

vided in a broad sense into three types: geometric, kinematic. _ .. ;
) . . irectional waves, the velocity = (u, w) at the free surface
and dynamic (Gemmrich, 2005; Babanin, 2011). A num- ty= (. w)
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2102 L. Shemer: On kinematics of very steep waves

£ =¢(x,t) is related ta; by the kinematic boundary condi- known. While the temporal derivatives of the surface eleva-

tion tion 9¢/dr can be estimated from measurements, it is not so
regardingd /dx. Moreover, in order to determine the parti-
w=20¢/0t+ uwaf/dx at z=1<¢(x,y). (1) cle path at the free surface of a water wave, the horizontal

velocity everywhere at the surface should be known. This
It is evident from Eq. (1) that at higher orders the Eulerian point is stressed by Bridges in his Appendix to the paper by
vertical acceleratiomg # 92¢/3t2. The “apparent” accele- Sclavounos (2005), where the three-dimensional generaliza-
ration 82z /912 can be measured relatively simply; the expe- tion of the John (1953) equations was presented. The solu-
rimental determination ofg however is significantly more tion may also be sensitive to changes in the initial conditions
complicated since it requires simultaneous measurements dghat cannot be known with sufficient accuracy. Alternatively,
the horizontal component of the instantaneous surface velothe kinematics of the water particle at the free surface can be
city and of the surface slope. The Phillips dynamic criterion determined using fully nonlinear numerical models, for ex-
is based on the Lagrangian vertical accelerationa quan-  ample such as those based on conformal mapping (Chalikov
tity that is even more difficult to measure. In this respect it and Sheinin, 2005). Chalikov and Babanin (2012) applied
should be noted that the contribution of higher order (bound)this method for studies of breaking during the evolution of
waves is essential not only to the material acceleration of thea random unidirectional wave field. This fully nonlinear ap-
water particle, but also to the velocity components (Johanfroach does not require decomposition into separate orders.
nessen, 2010). The present study, however, is based on experiments where
The present study that considers broad-banded wavéhe shape of the steepest wave was prescribed at the leading
groups was motivated by an observation made during exorder, and the computations of the wavemaker driving sig-
periments on unidirectional random water waves in a largenal as well as subsequent data processing were based on the
wave tank (Shemer et al., 2010). In the course of that studyspatial version of the Zakharov (1968) equation as suggested
it was noticed that for a fixed wave peak frequency and steepby Kit and Shemer (2002) and Shemer et al. (2007). In order
ness, maximum accelerations and velocities of the waveto represent faithfully the experimental conditions, the kine-
maker piston required for excitation of the prescribed wavematics at the surface of the steep wave are computed here us-
field depend on the spectral shape and increase strongly asg the approach adopted in the derivations of the Zakharov
the spectrum gets wider. This observation led to a plausibleequation.
assumption that while the negative vertical acceleration re-
mains significantly below gravitational acceleratigreven
for the steepest possible Stokes wave, the situation may difé  1heoretical and experimental background
fer for a wave field with a wider spectrum. The horizontal
velocities at crests of steep waves in a broad-banded wav
field may also exceed significantly estimates based on a sin-
gle dominant mode. Moreover, both the vertical accelerations" ;
and the horizontal velocities of fluid particles at the free sur- are related to the generalized complex "amplitudes’) =
face of extreme waves that are essentially nonlinear diffef (“)” ) composed of the Fourier transfgrms of the surface
significantly from those predicted by the linear wave theory. elevationf; (x) = ;(a),,x) and of the velocity potential at the
Previous measurements in a large wave tank (Shemer et afree SUffaC@Ps(x) = ¢%(w;, x):
2007) provided records of deterministic steep focused waves
with a wide spectrum under controlled conditions. In these g Yo W o s
experiments, a dispersive deep or intermediate-depth wavé; (*) = (2 ) ¢j(x)+i (2 > ¢,;(x)
train was generated by a wavemaker in such a way that it !
evolved into a single steep wave at a prescribed location. IMhe amplitudes; (x) in Eq. (2) can be seen as consisting of
some experiments the steep wave underwent breaking closg¢sum of the free and bound waves:
to the prescribed focusing location, while for other wave pa-
rameters no breaking wave observed. Since direct measures= [aBj (x)+328} (x)+83Bl;-’(x)+ ]exp( iwjt).  (3)
ments of the horizontal velocities and of the horizontal and
vertical acceleration components of water particle at the cresThe amplitudesB; denote the so-called “free” waves that
of the steepest wave are extremely difficult to perform, thesesatisfy the dispersion relation for gravity waves in water of
guantities have to be computed. intermediate depth: w? = kg - tanh(kh); B’ and B/ corre-
Several possible approaches to carry out these compuspond to the second and third order, respectively, “bound
tations can be considered. As shown by John (1953), thevaves. The small parameter in the decomposition E)a,
kinematics of fluid particles at the surface of unidirectional wherek anda represent the characteristic wave number and
waves can be computed at any given location once the sumamplitude. The higher order bound componeBtsB”, etc.
face elevation and its temporal and spatial derivatives areare computed for a given free wave packet j =1,..., N,

he spatial evolution of a nonlinear unidirectional wave field
that takes into account third-order (quartet) interactions is
written in terms of scaled amplitudeB; = B (w;, x) that

)
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following Stiassnie and Shemer (1987); see also Krasitskiwherewg = 27/ Ty is the carrier wave frequencsg the max-

(1994). The second-order bound wawgsgenerated by har-
monicsi and j and their frequencies, and wave numbers
k, be computed using the relations

/ 1
Bh(l) ZAEU.)IBJ-BI; kn=kj+k; w,=0;+w, (4a)
4 2
Bn(z) = A;j)lB;‘Bl; ky=—kj+ki; o =—wj+w;, (4b)
B,;<3)=A£3)IB;B;“; ky=—kj—ki; won=—wj—w;. (4C)

The third-order bound wave’ generated by free harmonics
i, j, andm are determined by

" 1
B, =CS) BiBiBy: ko =1+ +kon;

wp =wj+w + o, (5a)
" 2
B,® =C) BIBBy: kn=—kj+ki +kn;

Wy = —0; + 0] + Wy, (5b)
B,® =C B B Bu; kn=—kj—ki+kn;
n =% jim®Pj B Pm> Kn = Jj 1 m»

Wy = —Wj — 0] + Wy, (5¢)
B, =C\}) BIBI Bl kn=—kj —k —kn:

Wy = —Wj — W] — Wp. (5d)

The coefficientsA in Eq. (4) andC in Eq. (5) are given in the
Appendix of Stiassnie and Shemer (1987). As can be see
from Egs. (4) and (5), the phase velocitigs= w, /k, of

higher order bound waves are not defined by the free wave

dispersion relation, but rather by frequencies and wave num

bers of the “parent” free waves. The complex amplitugdes

that contain both free and bond waves’ contributions for any
prescribed wave frequency spectrum allow the computation

of the temporal variation of the surface elevation

N
Z /;)—;a.,(x)exp[i (ij—(,()j[)]} (6a)
j=1

and of the velocity potential at the free surface

N
; /%jaj(x) eXp[i (ij—wjt)]}. (6b)

The surface elevatioy, the full velocity potentialy and
the horizontalu = d¢/dx(z = ¢ (x, 1)) and the verticalw =
¢ /9z(z = ¢ (x, 1)) velocity components at the free surface
can thus be computed to the needed order.

In experiments of Shemer et al. (2002, 2007), the follow-

C(x,t) = lRe
b

oS (x t):llm
T

S,

imum wave amplitude in the group attained at 0, and the
parametern defines the width of the group. The free wave
frequency spectrum of the surface elevation given by Eq. (7)
is also Gaussian. Higher valuesmfcorrespond to a wider
group with a narrow spectrum. A decreaserirrenders the
group narrower and the frequency spectrum wider. It was
demonstrated in Shemer et al. (2007) that/#oe 0.6, the
wave group in Eg. (7) contains only a single wave and thus
has a wide spectrum. The small parameter representing the
magnitude of nonlinearity, is defined based on the maxi-
mum crest heightg at the leading order and the carrier wave
numberg = ¢oko.

Experiments were carried out in the Large Wave Chan-
nel (GWK) in Hanover, Germany, which is 300 m long, 5m
wide, 7 m deep, with water depth set at 5m. The piston-type
wavemaker was driven by a computer-generated signal that
was obtained by integration of the spatial version of the Za-
kharov equation from the focusing location back to the wave-
maker (see Shemer et al. 2007). The focusing location in
all experiments was set at 120 m from the wavemaker. Two
peak wave periods were usetl; = 2.8 s, corresponding to
wave length of\g = 27 /kg = 125 m and nearly deep water
conditions koh = 2.6), andlp = 4.32 s (.o = 25.0 m), corre-
sponding to intermediate water depth wiigh = 1.26. The
experiments were carried out for the width parameies
0.6 at the values of the nonlinearity coefficient ¢okg rang-
ing from 0.1 (corresponding to nearly linear wave regime)
to those exceeding= 0.3 for strongly nonlinear and break-

n . .

Ing waves. The approach adopted in the experiments thus en-
abled generating either a single breaking wave or a wave on
the verge of breaking at a prescribed location in the wave
tank. In all experiments where breaking was observed, it oc-
curred at the crest of the steepest wave in close vicinity of
the focusing location. In particular, it was observed that the
wave withe = 0.3 andTp = 2.8 s does not break, while the
longer wave withTp = 4.34 s and the same steepness under-
goes breaking. When the maximum steepness was reduced
to e = 0.27 while retaining the same dominant wave period,
no breaking was observed.

3 Numerical simulations

In view of these experimental observations, computations
of the surface elevation variation with time, as well as the
horizontal and vertical components of velocity and acceler-
ations, were carried out for conditions corresponding to the
focused waves in the experiments. The computations of wave
shapes at the focusing location with the free wave (linear)

ing Gaussian temporal variation of the surface elevation asurface elevation variation with time given by Eq. (7) were

the leading order was prescribed:
/\2
¢(t) = foexp— (—) cos(wot) (7
mTo

www.nat-hazards-earth-syst-sci.net/13/2101/2013/

performed up to the third order in wave steepnesssing
Egs. (4)—(6). The resulting contributions to the instantaneous
surface elevation of the first order (proportionalBd, sec-
ond order ¢ B’) and third order{ B”), as well as the total
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Fig. 2. Surface velocity at the focusing location fer= 0.3 and

Fig. 1. Variation of the surface elevation with time fer=0.3: . )
Ty = 2.8 s:(a) horizontal component; (b) vertical componeniy.

(a) Ty = 2.8 s, dominant wave lengtly = 12.1 m; (b) Ty = 4.34s;
A0 =25.0m.

The computed horizontal velocities at the wave crest for

surface elevatiog(¢) at the third order, are plotted in Fig. 1 the nonlinearity parameter= 0.3 areumax= 1.69ms 1 for
for e = 0.3. The nonlinear bound waves are clearly visible in the wave group with shorter dominant wavg,= 2.8 s, and
this figure; they manifest themselves in higher and sharpetimax= 3.09 ms™* for T = 4.34 s. These results can be com-
crests and shallower troughs of the focused wave. The effegbared with the corresponding wave propagation velocities.
of this variation of the wave’s shape on the velocities andFor relatively deep water case @f = 2.8 s, the dominant
accelerations is now studied. wave’s phase velocity according to the linear dispersion rela-

The temporal variation of two components of water velo- tion is ¢, = 4.32ms1, and the group velocity only slightly
city at the focusing location is plotted in Fig. 2. The contri- exceeds the deep water reIatiog: cp/2; the calculated
butions to the total horizontal velocity at the crest(0) at  for this wave periodg = 2.29 ms . The corresponding va-
all orders are positive; as expected, all vertical velocity con-lues of the longer wavelt) = 4.34 s) arep = 5.76 msland
tributions at the crest vanish. Higher order contributions tocg = 4.06 ms 1. The phase and group velocities, however,
horizontal velocity are relatively more significant than those can serve as characterizing parameters only for wave groups
for the wave shape in Fig. 1. Note also that for the condi-with narrow spectra. As stressed in Shemer et al. (2007), ap-
tions of Fig. 2, the third-order contribution to the horizontal pearance of extremely steep waves by focusing mechanism is
velocity u in the vicinity of the crest is not very different a result of constructive interference of numerous harmonics
from that at the second order. For longer dominant wave peand thus requires a broad spectrum. Therefore both phase
riod, To = 4.34 s, corresponding to effectively shallower wa- and groupcg velocities calculated for the dominant wave are
ter, and the same steepness ef 0.3, the temporal variation not directly related to the actual crest propagation velocities
of both velocity components at all orders is qualitatively sim- u¢,. As can be seen from Fig. 1, the higher order contribu-
ilar to that of Fig. 2 and for that reason not presented here. Irtions do not affect the instant at which the steepest wave ap-
this case, the contributions of the second and third order tgears. The velocity of the crest was therefore determined by
the horizontal velocity at the crest are practically equal andcomputing the instantaneous wave forms at several instants
even more important, each contributing to the total horizon-in the vicinity of the focusing at = 0 at the leading order
tal velocity at the crest more than 25 % of the leading orderyielding ccr = 3.6 ms™t for 7o =2.8s andce =5.0ms™t
part. For a wave group in water of intermediate depth, thefor 7o = 4.34s. In both these cases the crest veloegy
extreme value of the horizontal velocity is thus increased byof the broad-spectrum wave group is significantly different
more than 50 % as compared to the linear solution. from both the phasep and the groupg velocities of the
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dominant wave and satisfies the conditign< c¢r < cp. For @ 4

the dominant wave lengths considered, the maximum veloc ,
ities at the crest containing terms up to the third order are

significantly lower thareg,:

2ot mis?

and

umax/ccr = 0.62 for shallower water withTy = 4.34s

Vertical accelerations are considered next. Since the em- .

phasis of this study is on nonlinear effects that are more prog, ,
nounced in intermediate depth, the results corresponding tc ,

the longer wave case are mainly presented in sequel. It is

instructive to compare different relevant accelerations quan-

titatively. The contributions at different orders to the “ap-

awlat, mis?

parent” vertical acceleratiod?; /312 that can be relatively

2 N 7
AN /]
0 = \“ y —
~__ \\ /] ~  —
®) /]
7
-4
— 1% order
—2" order
-6 rd
— 3" order
— Total \/
8|
4 -3 2 -1 ) 1 2 3 4
Time, s
3
1
0 e X g - —
~— _ \\ /// _ ]
-1 — . /
AN/
/
N

easily estimated in experiments from the data recorded by &

fixed wave gauge are plotted in Fig. 3a. A similar plot of the

— 1% order
—2" order

/

Eulerian vertical acceleration componegt= dw/dt is pre-

—3" order
—Total

/

sented in Fig. 3b. In the linear approximation these two accel-

erations are indeed identical. Contributions at higher orders,
however, are quite different in Fig. 3a and b and are compa-

4 3 2

El

0
Time, s

1

2 3

4

rable with the linear term, in particular in Fig. 3a. The impor- Fig- 3. (&) The “apparent” vertical acceleratici?/3:% and (b)
tance of higher order terms in computations of acceleratiorf’® Eulerian vertical acceleratidnw/dz for e = 0.3, To = 4.34;

stems from the more significant role of the high frequency’\0 =
part of the spectrum as compared to the total velocity (see

2.5

250m.

Fig. 2). The “apparent” and the Eulerian accelerations accu®
rate to the third order differ considerably, both qualitatively -

and quantitatively. The negative “apparent” acceleration at

1.5

— U, Owlox,
—— U, oWlox,

the wave crest exceeds 8 nfs quite close to the accelera-
tion of gravity g. The value ofag in Fig. 3b is only about

—u, owlox,
7(uaiv/€x)3

& 1
-5.5ms? at this instant; it should be stressed though that it s

—Total uaw/ox

still exceeds; /2. 0s
As stressed above, the physical reasoning behind the dy

N

namic criterion by Phillips implies that the negative vertical

acceleration of any water particle cannot excgedo ve- 5

rify whether this criterion is applicable for the experimental ) 1
conditions considered, Lagrangian acceleratiphas to be
calculated. For unidirectional waves, is a sum ofag and

the convective acceleration:

a. =Dw/Dt =90w/dt +udw/dx +w dw/0z. (8)

—w,owloz,
\ — (wowioz),
\ — Total wow/oz|

wow/oz
o
o

The convective acceleration only contributes at the seconc

//

order and higher. To compute the corresponding terms with °
the third-order accuracy, it is sufficient to calculate both velo-
city components, and their spatial derivatives have up to the .

second order. The convective acceleration terms in Eq. (8)

-4 -3 -2

-1

0
Time, s

4

at the second and the third order are plotted in Fig. 4. Thesig 4 Terms contribution to the convective vertical acceleration for
indices in the legends denote the order of the correspondinghe conditions of Fig. 3¢a) udw/dx; (b) w dw/dz.

terms. Itis obvious that in general, in spite of the fact that the
convective acceleration is a quantity of higher order, for steep

waves it cannot be disregarded. Although the contribution ofmay become quite larger at other instants. Even more impor-

the termw-dw/dz at the wave crest is zero at all orders (see tant for the present discussion is the fact that-at0 the con-
Fig. 4b) since the vertical velocity vanishes at 0, thisterm  tributions at all terms ta-dw/dx in Fig. 4a are positive and

www.nat-hazards-earth-syst-sci.net/13/2101/2013/
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relatively large. The essentially positive convectional acce-@ 3 —
leration at the wave crest therefore reduces considerably the o order
maximum value of the negative vertical acceleration as com- M\\ //{ e

, )

pared tazg. Itis also worth noting that at= 0, the contribu-
tion of the second-order term (0w /0x)1 is nearly identical
to the total third-order term; (dw/9x)2 + u5(dw/dx)1.

Dw/Dt m/é
L o
/)
|

The computed Lagrangian accelerations at the focusing lo- \ //
cation are plotted in Fig. 5 for both wave periods in the ex- \/
periments. The extreme negative value of the vertical com-
ponent of the Lagrangian acceleration attained at the wave
crest accurate to the third order in both cases is close to abou =~ * 3 2 T times z : 4

g/3, well below the value predicted by the Phillips dynamic ®)
criterion. Although higher order corrections are essential in
computations of the “apparent”, Eulerian and convective ac- )
celerations (see Figs. 3 and 4), their respective contribution:
effectively cancel out in computation of the Lagrangian acce- /
leration, so that the resulting temporal variationapfdoes
not differ substantially from the linear solution. A qualita-
tive and relatively minor difference can be noticed between — 1% order
the accelerations in the vicinity of the crest in Fig. 5aand b.
For koh = 2.6 in Fig. 5a, the total negative Lagrangian acce- —Total
leration atr =0 is smaller than the linear value, while for |
shallower water withkgh = 1.26 in Fig. 5b the opposite is T 3 2 T s 2 3 4
correct. This dissimilarity can be attributed to the increasing

contribution of higher order bound waves with decreasing di-Fig- 5- Lagrangian vertical acceleratian. at the focusing loca-

mensionless depttyh (cf. Fig. 2a and b). tzig%fr?]r £=03:(@)To=28s,A0=121m;(b) To =4.34s/40 =

(=)
|
|

Dw/Dt m/é
/
P4
/

4 Discussion and conclusions
lues of the “apparent” acceleratid?z /912 with nonlinear

In the present study an attempt is made to relate the kinematerms accounted for indeed exceed significantly those com-
ics of a wave group to experimentally observed wave breakputed in the linear approximation. The same is true regard-
ing events in a tank under controlled conditions (Shemer eing the Eulerian vertical acceleratiog = dw/dz, although
al. 2007). For wave steepnesssof 0.3, the steepest wave the extreme negative valuesqf are somewhat smaller than
in a focused wave group with a wide Gaussian-shaped spedhose of 92¢/3:2. The convective acceleration terms are,
trum wave (at the leading order) was observed to be on thdwowever, mostly positive and thus lead to even smaller nega-
verge of breaking for the shorter dominant wave length corretive Lagrangian acceleratian at the crest of a steep wave.
sponding takph = 2.6, and actually underwent breaking for It was observed that for the cases considered, even the value
a longer wave witltoh = 1.26. For the temporal variation of  of the “apparent” negative acceleratiéf; /9r2 at the crest
the surface elevation corresponding to that in the experimentsf the steepest possible wave at this order remains somewhat
at the focusing location, velocities and accelerations at thesmaller tharg. The nonlinear contributions decrease the ex-
surface are computed to the third orderinThe analysis is treme values of negative Eulerian and Lagrangian vertical ac-
based on the Zakharov (1968) equation. The various orderstelerations as comparedadz /1.
contributions to the surface elevation as well as to the hori- The Lagrangian acceleration is of particular importance
zontal and vertical velocity components are accounted for. Insince it is the appropriate quantity in the Phillips dynamic
general, the orbital velocities computed at the crest of steefreaking criterion. The present results show that the extreme
waves close to breaking are in agreement with recent directalues ofa; for waves on the verge of breaking remain well
measurements by Grue and Jensen (2012). below the gravity acceleratiop It appears that virtually all

In an effort to verify the applicability of the Phillips (1958) nonlinear additions to the maximum apparent negative ver-
dynamic criterion for wave breaking, particular attention is tical acceleration are effectively cancelled out by the posi-
given in the present study to computations of the verticaltive convective acceleration, so that the maximum negative
acceleration. Clear distinction is made between the “apparvalues of the Lagrangian acceleration accurate to the third
ent”, Eulerian &g) and Lagrangiang( ) accelerations. The order in the wave steepnessre in fact quite close to the
time dependence of all those accelerations for the focusedertical acceleration calculated in the linear approximation.
wave was obtained. It is shown that the extreme negative vaThis observation makes it plausible to assume that extension
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of computations to even higher order will not change signi- Gemmrich, J.: On occurence of wave breaking, in: Proc. Rogue
ficantly the resulting vertical component of . It thus ap- waves: “Aha Huliko” Hawaiian winter workshop, Univ. Hawaii
pears that the Phillips criterion cannot serve for prediction at Manoa, Honolulu, 123-130, 2005.

of wave breaking only for Stokes waves, as demonstrated bgrue, J. and Jensen, A.. Orbital velocity and breaking in
Longuet-Higgins (1985), or for more realistic wide-spectra  St€€p random waves, J. Geophys. Res., 117, CO07013,
nonlinear wave groups. doi:10.1029/2012JC008022012.

This failure of the dynamic criterion prompts a closer look Jensen, A., Clamond, D., H.useby' M., and Grue, J.: On local and
. ) X L convective accelerations in steep wave events, Ocean Eng., 34,

at the kmgmaﬂc wave break'lng criteria that r(_alate the.\'/va— 426-435, doit0.1016/j.0ceaneng.2006.03.02807.

ter velocities at the surface with wave propagation velocities.johannessen, T. B.: Calculations of kinematics underneath mea-

The kinematic condition states that a wave breaks when the sured time histories of steep water waves, Appl. Ocean Res., 32,

water particle velocity at the crest of the wave exceeds the 391-403, doil0.1016/j.apor.2010.08.002010.
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