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Abstract. The growing number and effectiveness of Earth
observation satellite systems, along with the increasing re-
liability of remote sensing methodologies and techniques,
present a wide range of new capabilities in monitoring and
assessing droughts. A number of drought indices have been
developed based on NOAA-AVHRR data exploiting the re-
mote sensing potential at different temporal scales. In this
paper, the remotely sensed Reconnaissance Drought Index
(RDI) is employed for the quantification of drought. RDI en-
ables the assessment of hydro-meteorological drought, since
it uses hydrometeorological parameters, such as precipitation
and potential evapotranspiration. The study area is Thessaly,
central Greece, which is a drought-prone agricultural region
characterized by vulnerable agriculture. Several drought fea-
tures are analyzed and assessed by using monthly RDI im-
ages over the period 1981–2001: severity, areal extent, du-
ration, periodicity, onset and end time. The results show an
increase in the areal extent during each drought episode and
that droughts are classified into two classes, namely small
areal extent drought and large areal extent drought, respec-
tively, lasting 12 or 13 months coinciding closely with the
hydrological year. The onset of large droughts coincides with
the beginning of the hydrological year, whereas the onset of
small droughts is in spring. During each drought episode, the
maximum occurs usually in the summer and they all last un-
til the end of the hydrological year. This finding could justify
an empirical prognostic potential of drought assessment.

1 Introduction

Drought is a natural phenomenon that has been recurring at a
regional scale throughout history. Drought is also considered
as one of the major natural hazards with significant impact
to environment, society, agriculture and economy. Moreover,
drought is referred to as “non-event”, since its basic cause
is the lack of precipitation events in a region over a period
of time and can be regarded as an extreme climatic phe-
nomenon associated with water resources deficit. Droughts
occur in both high and low rainfall areas and virtually all
climate regimes. Drought impacts are very critical and es-
pecially costly affecting more people than any other type of
natural disaster universally (Kyeantash and Dracup, 2002). It
is difficult to determine the effects of drought as it constitutes
a complicated phenomenon, evolving gradually in any single
region.

The identification and quantification of drought is not an
easy task. It is recognized that there is no universally ac-
cepted definition of drought, because there is a wide vari-
ety of sectors affected by drought, its diverse spatial and
temporal distribution and the demand placed on water sup-
ply by human-used systems (Heim, 2002). Drought indica-
tors are variables that describe features of drought (Steine-
mann et al., 2005). Several indicators can also be synthe-
sized into a single indicator on a quantitative scale, called
a drought index. In fact, the monitoring and assessment of
drought conditions in a region is usually performed through
drought indices (Anderson et al., 2011; Ashok et al., 2011).
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In evaluating the overall utility of indices, a set of weighted
decision criteria is assigned to each index, which are based
on desirable properties of each index: robustness, tractability,
transparency, sophistication, expendability and dimensional-
ity (Keyantash and Dracup, 2002). It is clear that the above
criteria weights, which reflect the relative importance of the
evaluation criteria, are difficult to be precisely justified. The
list may be expanded or condensed, but the above criteria
provide a reasonable framework for the evaluation of drought
indices without excessive complication.

There are several drought indices based on ground (con-
ventional) and/or remotely sensed data (Kanellou et al.,
2011). Satellite images and data are consistently available
and can be used to detect several features. Remote sensing
has gradually become an important tool for the detection of
the spatial and temporal distribution and characteristics of
drought at different scales (Caccamo et al., 2011; Huang et
al., 2011). On the other hand, drought quantification methods
rely on conventional hydrometeorological data, which are
usually limited in a region, often inaccurate and most signif-
icant unavailable in near real-time (Thenkabail et al., 2004).
At the present time, the growing number and effectiveness of
pertinent Earth observation satellite systems present a wide
range of new capabilities, which can be used to assess and
monitor the effects of drought. Moreover, in order to assess
and monitor the drought phenomenon and to alleviate the im-
pacts of droughts, it is necessary to detect several drought
features such as severity, duration, periodicity, areal extent,
onset and end time and to link drought variability to cli-
mate and its variability (Dalezios et al., 2000; Piechota and
Dracup, 1996). Thus, it is clear that there is a need for proper
quantification of drought impacts and monitoring of drought
development is of critical importance in economically and
environmentally sensitive regions. Both are very significant
inputs in any drought preparedness and mitigation plan.

The objective of this paper consists of exploring the re-
mote sensing potential in terms of data and methods in order
to quantify drought and assess several drought features and
characteristics. In this paper, the Reconnaissance Drought
Index (RDI) is used, which is a new index suitable for hy-
drometeorological drought estimation (Tsakiris and Vange-
lis, 2005). RDI is properly adjusted to incorporate satellite
data. The paper is organized as follows: in Sect. 2 drought
types and remote sensing are explained. In Sect. 3 the study
area is described. In Sect. 4 the remotely sensed methodol-
ogy for RDI estimation is presented along with database, and
several drought features are described and estimated as well
as the evaluation procedure. Finally, in Sect. 5 results are an-
alyzed and discussed.

2 Drought types and remote sensing

If drought is considered as a phenomenon, it is certainly an
atmospheric phenomenon. Specifically, droughts have been

shown to be associated with the persistence of ridges or cen-
ters of high pressure systems at middle level in the tropo-
sphere. Furthermore, the corresponding reduced cloud cover
results in positive temperature anomalies in the lower atmo-
sphere, which produces the middle-level pressure anomaly
and favours subsidence at the high level keeping the at-
mosphere significantly drier and more stable than normal
(Dalezios et al., 2009). Studies in several parts of the world
have shown that drought periods are often characterized by
large decrease in the amount of rainfall per day, by an in-
crease in the continentality of the clouds and a lack of rain-
producing clouds.

Usually, drought is considered as a hazard, and there is a
tendency to classify drought types into three categories: me-
teorological or climatological, agrometeorological or agri-
cultural and hydrological drought, including as a fourth class
the socioeconomic impacts (Keyantash and Dracup, 2002).
A brief description follows.

– Meteorological or climatological drought is generally
characterized by a precipitation anomaly being lower
than average in a region for some period of time and
by prolonged and abnormal moisture deficiency.

– Agrometeorological or agricultural drought is described
in terms of crop failure and exists when soil moisture is
depleted so that crop yield is reduced considerably.

– Hydrological drought is considered to be a period dur-
ing which the actual water supply, either surface water
or groundwater, is less than the minimum water supply
necessary for normal operations in a particular region
(watershed).

– Socioeconomic impacts of drought are defined in terms
of loss from an average or expected return and can
be measured by both social and economic indicators
(McVicar and Jupp, 1998).

The relationship between the different drought types is com-
plex. For example, streamflow is the key variable for many
water supply activities in a semi-arid region, such as hy-
dropower generation, recreation and irrigated agriculture,
where crop growth and yield are largely dependent on water
availability (Heim, 2002). A single unifying technique is not
usually sufficient to quantify drought severity. Even within
an individual category, the supremacy of a specific index is
not immediately clear.

The application and utility of remote sensing to drought
assessment is growing rapidly, mainly due to the increasing
number of pertinent satellite systems and their capabilities
and impacts to climatic variability and/or change. Remote
sensing methodologies and techniques can be employed in
several aspects of drought, such as vulnerability and dam-
age assessment and warning (Du et al., 2012; Rhee at al.,
2010). The possible contribution of remote sensing could
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Table 1.Satellite-based drought indices and corresponding drought
type.

Index Type of drought

1. Normalized Difference Vegetation Index (NDVI) Agricultural
2. DeviationNDVI Index Agricultural
3. Enhanced Vegetation Index (EVI) Agricultural
4. Vegetation Condition Index (VCI) Agricultural
5. Monthly Vegetation Condition Index Agricultural
6. Temperature Condition Index (TCI) Agricultural
7. Vegetation Health Index (VHI) Agricultural
8. Normalised Difference Temperature Index (NDTI) Agricultural
9. Crop Water Stress Index (SWSI) Hydrological
10. Drought Severity Index (DSI) Hydrological
11. Temperature-Vegetation Dryness Index (TVDI) Agricultural
12. Normalized Difference Water Index (NDWI) Hydrological
13. Reconnaissance Drought Index (RDI) Hydrological

be focused on relief and, possibly, preparedness or warning
(Williams, 1993; Foot, 1993), although in many cases remote
sensing can make a valuable contribution to disaster preven-
tion, where frequency of observation is not such a prohibitive
limitation.

A major consideration for development of remote sens-
ing for drought assessment and disaster reduction is the ex-
tent to which operational users can rely on a continued sup-
ply of data (Colwell, 1984). In this context there are two
types of remote sensing systems for drought assessment: me-
teorological and environmental (or resource) satellites. Me-
teorological satellites have also two types, namely geosta-
tionary such as METEOSAT and geosynchronous such as
NOAA/AVHRR, and can contribute to operational monitor-
ing and assessment of drought (Caccamo et al., 2011; Zhou et
al., 2012). Similarly, environmental satellites such as LAND-
SAT, SPOT and recently IKONOS, WV2 with high to very
high resolution, but low frequency of coverage, can con-
tribute to land-use classification and qualitative features of
drought and less to quantitative assessments (Peled et al.,
2010). Table 1 presents an indicative list of internationally
used remotely sensed drought indices. There is also a larger
list of conventional drought indices (Kanellou et al., 2011),
where most of them can be adjusted to incorporate remotely
sensed data.

In this paper, the Reconnaissance Drought Index (RDI) is
used for the quantification of drought based on remote sens-
ing. RDI is a new index, which is used for hydrometeorologi-
cal drought estimation (Tsakiris and Vangelis, 2005; Tsakiris
et al., 2007). RDI is a physically based and general index and
can be used in a variety of climatic conditions. Moreover,
RDI provides information for the water deficit in an area as it
is based not only on precipitation, but also on potential evap-
otranspiration. In order to assess and monitor drought, it is
also necessary to detect several drought features. In fact, re-
mote sensing data and methods can delineate the spatial and
temporal variability of several drought features in quantita-
tive terms.
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Figure1. Geophysical map of Thessaly region. 3 

4 

Fig. 1.Geophysical map of Thessaly region.

3 Study area

Thessaly is one of the thirteen hydrological districts of
Greece located in the central part of the country. Thessaly has
a total area of 14.036 km2, which roughly represents 10.6 %
of the whole country. Moreover, in Thessaly 36 % of the land
is flat, 17.1 % is semi-mountainous, whereas the remaining
44.9 % is mountainous. The region of Thessaly is character-
ized by a highly variable landscape, and the terrain is such
that high mountains surround the plain, which is the largest
in the country (Fig. 1).

The plain of Thessaly is crossed by Pinios River. Thes-
saly water district is divided into three watersheds, where
the main one is the Pinios basin with 9500 km2 in size, Lake
Karla basin with 1050 km2 in size, and the remaining basins
and subbasins cover an area of 2827 km2. Pinios River af-
ter the mountainous terrain crosses the alluvial basin of the
Thessaly plain, which is then divided into two parts, with
the main tributaries being Titarisios, Enipeas, Kalentzis and
Litheos. The main part of the Pinios watershed includes a
mountainous terrain with altitudes higher than 2000 m, as
in Olympus (north) and Pindos (west), agricultural plains
(the Thessaly plain) and urban areas with mean elevation of
285 m. The alluvial plain of Pinios River is a sensitive and
complex hydrogeological environment. Surface and ground-
water resources are jointly used to cover rural, urban and in-
dustrial water needs, as well as preservation of wetland in
the region. Impermeable geological structures cover 30.6 %
of the total area, karstic aquifers 14.5 % and permeable struc-
tures, which occur mainly on the plain, cover 42.7 %.

The climate of Thessaly is continental in the west part
with cold winters, hot summers and large seasonal temper-
ature range. In the east part of Thessaly, the climate is typ-
ical Mediterranean. In Thessaly, summers are usually hot
and dry with temperatures occasionally reaching 40◦C in
July and August. Mean annual precipitation over Thessaly
is about 700 mm, unevenly distributed in space and time,
varying from about 400 mm at the central plain to more than
1850 mm at the western mountain peaks. The mountain areas
receive significant amounts of snow during winter months.
At the Thessaly plain, around Larissa and Karla basin, the
mean annual precipitation ranges between 250 and 500 mm,
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having reduced over the last 30 years about 20 %. Moreover,
since rainfall is, in general, rare from June to August, the re-
sulted water deficit is replaced by irrigation in order to satisfy
agricultural water needs.

The Thessaly plain constitutes the main agricultural area
of the country, with cotton being still the major crop; how-
ever, wheat, sugar beets, maize, barley, horticulture, fruits,
olive trees and recently energy crops are also cultivated in
the region. At the present time, in practical terms, the annual
water availability is about 1023 million m3, consisting of
surface (623 million m3) and groundwater (400 million m3),
whereas the annual water needs amount to 1836 million m3.
There is, thus, an annual water deficit of 813 million m3. Part
of it (about 600 million m3) is expected to be covered from
Acheloos dam. Moreover, the amount of water used for irri-
gation purposes accounts for about 96 % and the remaining
about 3.3 % of the total water consumption is used for other
water needs in the catchment. Furthermore, the irrigated ar-
eas have significantly increased over the last decades reach-
ing about 252 500 ha in recent years. The irrigated areas are
expected to further increase in Thessaly. Thus, the future wa-
ter needs are also expected to increase despite scheduled crop
restructuring programs.

Thessaly is characterized by vulnerable agriculture, since
extreme hydrometeorological events such as floods, hail and
droughts are quite common in the catchment, but also due to
the existing water deficit for agriculture. Thessaly is consid-
ered as one of the most important agricultural regions in the
country, and drought episodes could have enormous environ-
mental and socioeconomic impacts. Droughts occur mainly
due to reduced precipitation causing lack of soil moisture,
increased evapotranspiration, runoff reduction, decrease in
streamflow levels in rivers, lakes and dams, lowering of the
groundwater table, thus resulting in water deficit for agricul-
ture. Drought is the subject of this paper and several drought
features are explored through remote sensing and analysed
and presented in subsequent sections.

4 Methodology

The methodology includes drought quantification by the use
of RDI, extraction and computation of several drought fea-
tures, as well as evaluation. The estimation of RDI is based
on remote sensing data and techniques. In the computa-
tion of RDI, the innovation consists of employing Blaney-
Criddle method for potential evapotranspiration instead of
Thornthwaite method, since it is more appropriate for the
Mediterranean region with dry and hot summers (Blaney and
Criddle, 1950). Furthermore, in this paper Blaney-Criddle
method is based on land surface temperature (LST), which
is derived from satellite data (Kanellou et al., 2009).

4.1 Remotely sensed estimation of RDI

The estimation of RDI from remotely sensed data on a
monthly and annual basis follows certain steps. At first, pre-
processing of satellite images is implemented, which in-
cludes geometric and atmospheric correction of all images.
Then, from 10-day BT and NDVI images, on a pixel ba-
sis, land surface temperature (LST) images are produced,
which then through regression analysis lead to air temper-
ature (Tair) estimation on a pixel basis. The next step con-
sists of the estimation of potential evapotranspiration on a
pixel basis again using Blaney-Griddle method and satellite-
derived Tair. Then rainfall maps are used as provided by JRC,
Ispra. Finally, all the above are incorporated into the model
to produce RDI estimates on a pixel basis. A brief description
follows.

4.1.1 Calculation of air temperature

The procedure for the extraction of LST includes the use of
the following empirical Eq. (1) (Kanellou et al., 2011):

T = (image pixel+ 31 990) ∗ 0.005, (1)

where image pixel is the pixel value from the thermal band
andT is temperature in kelvin (K), which is then converted
to values of degrees celsius (◦C). For the elimination of the
water vapour effect in infra-red radiation and the transmitted
radiation from the surface, the algorithm of “split window”
(Becker and Li, 1990) is employed. This method achieves
atmospheric correction of the satellite data including water
vapour absorption. The equation of Becker and Li is given
by Eq. (2):

T = 1.274+ (T4 + T5)/2[1+ 0.15616{(1− e)/e}

− 0.482de/e ∗ ∗2] + (T4 − T5)/2[6.26+ 3.989{(1− e)/e}

+ 38.33de/e ∗ ∗2] (2)

whereT is the land surface temperature (LST) in◦C, andT4
andT5 are the values of thermal bands 4 and 5 of the satellite,
respectively. The variablese andde of Eq. (2) are defined by

e = (e4 + e5)/2 (3)

de = e4 − e5 (4)

wheree4 ande5 are the reflection values of bands 4 and 5,
respectively, which estimate the transmission of infrared ra-
diation from the surface and are given by Van de Griend and
Owe (1993) empirical equations:

e4 = 1.0094+ 0.047ln(NDVI) (5)

e5 = e4 + 0.01 (6)

where NDVI is the values of the index.
A regression analysis is conducted between the derived

monthly LST values from Eq. (2) and the corresponding
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Fig. 2.LST and air temperature (Tair) for Larissa (◦C).

monthly air temperature (Tair) values from Larissa station
for the 20-yr period (1981–2001). The resulting empirical
Eq. (7) is given below, along with the plotted values (Fig. 2).
Finally, from Eq. (7) monthly air temperature maps (images)
of Thessaly are produced on a pixel basis.

Tair = 0.6143− LST+ 7.3674 R2
≈ 0.82 (7)

4.1.2 Estimation of potential evapotranspiration

In this paper potential evapotranspiration is estimated with
the use of Blaney-Criddle method, which has been originally
applied in California. This method is selected in this paper,
since it is appropriate for subtropical climates with dry and
hot summers such as Mediterranean region. Blaney and Crid-
dle (1950) method estimates the potential evapotranspiration
(PETk) for the monthk in mm, through Eq. (8):

PETk = kc ∗ [0.46T + 8.16] ∗ p (8)

whereT is the mean monthly air temperature for monthk, p

is the monthly daytime sunshine duration, which depends on
the latitude of the area, andkc is the crop coefficient, differ-
ent for each cultivation, vegetation type and land use. Maps
of mean monthly crop coefficients for each vegetation type
and land use in 500× 500 m2 pixel size, as well as maps of
daytime sunshine duration (p) for each monthly value for
the Thessaly water district (39.39◦ N) are extracted in a GIS
environment (Kanellou et al., 2009). The monthly crop coef-
ficient and the maps of daytime sunshine duration are com-
bined with the air temperature maps for the whole data set in
order to extract Blaney-Criddle potential evapotranspiration
for each month in the time series (1981–2001).

4.1.3 Rainfall mapping

Rainfall maps over Thessaly on a monthly basis are pro-
duced. The initial data are daily rainfall measurements from

numerous stations all over Europe provided by JRC, IS-
PRA for the period 1975–2005. Cumulative monthly rain-
fall values are computed per station. Then rainfall maps of
50× 50 km2 grids are produced per region using linear in-
terpolation techniques. In this way monthly rainfall maps are
extracted for the region of Thessaly.

4.1.4 RDI estimation

The calculation of RDI starts with the estimation ofak coef-
ficient (Tsakiris et al., 2007), as it is given by the equation:

ak =

j=k∑
j=1

Pj

j=k∑
j=1

PETj

(9)

wherePj and PETj are the precipitation and potential evap-
otranspiration, respectively, of thej -th month of the hydro-
logical year. The hydrological year for the Mediterranean re-
gion starts in October; hence, for Octoberk = l. Monthly
rainfall maps (Pj ) of Thessaly are used as described above
(Sect. 4.1.3). Similarly, monthly potential evapotranspiration
maps (PETj ) of Thessaly are used based on monthly tem-
perature maps, crop coefficient (kc) maps, daytime sunshine
duration maps (p) as explained above (Sect. 4.1.2). The nor-
malized RDIn is given by

RDIn(k) =
ak

ak

− 1 (10)

The standardized RDI (RDlst), which is used in this study,
is given by

RDIst(k) =
yk − yk

∧
σk

(11)

whereyk is the lnak, yk is its arithmetic mean and
∧
σk is its

standard deviation.
The drought classes based on RDI are shown in Table 2,

along with the corresponding drought class number.

4.2 Database

For the RDI estimation the following data is utilized:

– daily precipitation of Thessaly water district in 50×

50 km2 spatial analysis derived by ground measure-
ments provided by the Joint Research Center (JRC) of
EC, Ispra, Italy.

– crop coefficients maps extracted by Corine Hellas 2000
for each month of the year (12 maps).

– monthly maps of daytime sunshine duration for
39.39◦ N of Thessaly (12 maps).
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Table 2. Drought classes based on RDI (Tsakiris and Vangelis,
2005).

RDI RDI Class RDI
Classes Number Values

Extremely Wet > 2.00
Very Wet 1.50 to 1.99
Moderately Wet 1.00 to 1.49
Near Normal (mild drought) 1 −0.99 to 0.99
Moderate Drought 2 −1.00 to−1.49
Severe Drought 3 −1.50−1.99
Extreme Drought 4 < −2.00

– a time series of 10-day brightness temperature (BT) im-
ages extracted from Channels 4 and 5 for 20 consecutive
hydrological years (October 1981–September 2001) 8×

8 km2 provided by NOAA.

– a time series of 10-day normalized difference vegeta-
tion index (NDVI) extracted from Channels 1 and 2
for 20 consecutive hydrological years (October 1981–
September 2001) 8× 8 km2 provided by NOAA.

4.3 Drought features

As already mentioned, in order to assess and monitor
drought, it is necessary to detect several drought features.
Moreover, remote sensing data and methods can delineate the
spatial and temporal variability of several drought features in
quantitative terms. A description of some key features fol-
lows (Palmer, 1965; Kanellou et al., 2011).

Severity:severity or intensity of drought is defined as
escalation of the phenomenon into classes from mild,
moderate, severe and extreme. The severity is usu-
ally determined through drought indicators and indices,
which include the above-mentioned classes. In the RDI
estimation of severity, the above four classes are used
(Table 2).

Duration: duration of a drought episode is defined as
the time interval from the start and end time, usually
in months. Drought duration using RDI is estimated by
counting the number of successive months with negative
pixel values for all the above-described severity classes.

Onset: the beginning of drought is determined by the
occurrence of a drought episode. The beginning of a
drought is assessed through indicators or indices reach-
ing certain threshold value. The onset of drought using
RDI coincides with the first negative pixel value.

End time:end time of a drought episode signifies the
termination of drought based again on threshold values
of indicators or indices. The end time of drought using
RDI coincides with the last negative pixel value in suc-
cessive monthly RDI values.

Areal extent:areal extent of drought is considered the
spatial coverage of the phenomenon as is quantified in
classes by indicators or indices. Areal extent varies in
time and remote sensing has contributed significantly in
the delineation of this parameter by counting the num-
ber of pixels in each class, which is followed in the
present study using RDI.

Periodicity: Periodicity is considered the recurrence in-
terval of drought. In this paper, periodicity analysis of
the monthlyZ-index values of Palmer (Palmer, 1965) at
all stations in Thessaly is implemented by power spec-
trum analysis (Loukas et al., 2002). The power spectra
are obtained by applying the discrete Fourier transform
algorithm to the correlation functions derived from the
time series (Jenkins and Watts, 1968) taking as smooth-
ing function a classical Hamming window (Percival and
Walden, 1993). In this paper, it is assumed that the time
series could be derived by an autoregressive process of
order one (Markov red-noise process as the null hypoth-
esis) and the significance of the periodicities was tested
at the 1 % level.

4.4 Evaluation

The accuracy of the remotely sensed estimated monthly RDI
series should be assessed and evaluated. The evaluation is
based on the comparison between the remotely sensed and
the corresponding ground-truth RDI estimations at Larissa
station for the period 1981–2001 through several error statis-
tics. The rationale of using several statistics as possible in-
dicators of the magnitude of errors in drought analysis and
estimation comes from the fact that there is no generally ac-
cepted “best” statistics to describe the errors. In this study,
four well-known and widely used error statistics are em-
ployed: the efficiency coefficient (Nash and Sutcliffe, 1970),
the coefficient of determination, the statistical bias and the
root-mean-square error (Dalezios, 1988). A brief description
follows.

1. Efficiency coefficient (Nash and Sutcliffe, 1970)

Eff = 1−

n∑
i=1

(
RDIground− RDIsatellite

)2

n∑
i=1

(
RDIground− RDIground

)2
(12)

where RDIground are ground-based values of RDI,
RDIsatellite are satellite-based values of RDI,RDIground
are mean ground-based values of RDI,n is the number
of cases, i.e. monthly values for 20 yr (1981–2001). The
efficiency coefficient ranges between one and−∞ and
for a perfect technique should be equal to one (Table 3).
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Table 3.The results of error statistics (monthly RDI).

Error Estimated Range Perfect
statistics values of fit fit

EFF 0.7 1 to−∞ 1
R2 0.87 0 to 1 1
BIAS −0.15 ≈ 0 0
RMSE from conventional data 0.98 ≈ 0 0
RMSE from satellite data 0.95 0

2. Coefficient of determination (R2)

R2
=


n∑

i=1

(
RDIground− RDIground

)(
RDIsatellite− RDIsatellite

)
√√√√ n∑

i=1

(
RDIground− RDIground

)2

√
n∑

i=1

(
RDIsatellite− RDIsatellite

)2



2

(13)

where RDIground are ground-based values of RDI,
RDIsatelliteare satellite-based values of RDI ,RDIground

are mean ground-based values of RDI,RDIsatellite are
mean satellite-based values of RDI, andn is the num-
ber of cases, i.e. monthly values for 20 yr (1981–2001).
The coefficient of determination ranges between zero
and one, and for a perfect technique should be equal to
one (Table 3).

3. Statistical bias (BIAS) (Dalezios, 1988)

BIAS =
1

N

n∑
i=1

(
RDIground− RDIsatellite

)
(14)

where RDIground are ground-based values of RDI,
RDIsatelliteare satellite-based values of RDI, andn is the
number of cases. For a perfect technique, the statistical
bias should be equal to zero (Table 3).

4. Root-mean-square error (RMSE) (Dalezios, 1988)

RMSE=

√√√√√ n∑
i=1

(
RDIground− RDIground

)2

n
(15)

where RDIgroundare ground-based values of RDI,
RDIground are mean ground-based values of RDI andn

is the number of cases. For a perfect technique the root-
mean-square error should be equal to zero (Table 3).

5 Results and discussion

The results include quantification of drought through RDI es-
timation on a monthly and annual basis for a period of 20 yr
(1981–2001) using conventional and satellite data. The anal-
ysis of results also involves evaluation and validation of the
remotely sensed drought estimation, as well as extraction of
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 21 

 22 

Figure 3. Annual (October to September) RDI of Larissa for 1981-200.  23 

24 

Fig. 3. Annual (October to September) RDI of Larissa for 1981–
2001.

several features from drought episodes, which lead to use-
ful inferences. The results are presented in Tables 3 to 7 and
Figs. 3 to 6.

Figure 3 delineates the time series of annual RDI for
Larissa (1981–2001) estimated from both conventional and
remotely sensed data. This Fig. 3 initially shows that both
estimation methods are in good agreement. Validation of the
remotely sensed RDI estimation is attempted through the
computation of several widely used error statistics: the ef-
ficiency coefficient (EFF), the coefficient of determination
(R2), the statistical bias (BIAS) and the root-mean-square
error (RMSE). The results are presented in Table 3 and are
considered quite satisfactory being close to the perfect values
for all the four error statistics. It should be mentioned that the
better a technique is, the closer the value of each error statis-
tic to the perfect fit value. Specifically, the efficiency coef-
ficient is 0.7, which is close to the perfect fit value of one.
Similarly, the coefficient of determination is 0.87, which is
also very close to the perfect fit value of one. Moreover, the
statistical bias is−0.15, which is equally very close to the
perfect fit value of one. Finally, the root-mean-square error
is 0.98 for conventional data and 0.95 for satellite data, re-
spectively, which are again close to the perfect fit value of
zero.

Periodicity analysis has been conducted for Greece in a
previous study (Loukas et al., 2002) based on power spec-
trum analysis ofZ-index from Palmer’s method (Palmer,
1965), where the statistical significance of the periodicities
is tested at 1 % level. Table 4 presents the results of peri-
odicity analysis, which is referred to stations in Thessaly,
namely Larissa, Volos and Trikala, respectively. The results
of Table 4 are in months and indicate short periodicity cy-
cles ranging from two to eight months for the central part of
Thessaly (Larissa station) and medium-long to long cycles
ranging from 20 to 38 months and longer for coastal (Volos
station) and mountainous (Trikala station) parts of Thessaly,
respectively.

In these 20-yr time series of annual RDI, eight drought
episodes are identified (Fig. 3). Analysis of the monthly RDI
maps specifies the onset, the end time and the duration of

www.nat-hazards-earth-syst-sci.net/12/3139/2012/ Nat. Hazards Earth Syst. Sci., 12, 3139–3150, 2012
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Table 4.Drought periodicities using theZ-index.

Station L= Long cycles ML= Medium-Long M= Medium cycles S= Short cycles
(> 38 months) cycles (20–38 months) (9–19 months) (2–8 months)

Larissa 14.6 7.3, 3.1, 2.8
Volos 37.3, 25.8 3.1, 2.8
Trikala 108 25.8, 22.4 6.1

Table 5.Duration of drought episodes (in months in Thessaly).

Drought Years Start End Duration

Oct 1984–Oct 1985 Oct 1984 Oct 1985 13
Oct 1987–Oct 1988 Oct 1987 Oct 1988 13
Sep 1989–Oct 1990 Sep 1989 Oct 1990 13
Oct 1991–Sep 1992 Oct 1991 Sep 1992 12
Oct 1992–Oct 1993 Oct 1992 Oct 1993 13
Oct 1996–Sep 1997 Oct 1996 Sep 1997 12
Oct 1999–Sep 2000 Oct 1999 Sep 2000 12
Oct 2000–Sep 2001 Oct 2000 Sep 2001 12

each drought episode in Thessaly as summarized in Table 5.
This Table 5 shows that the duration of each episode varies
between 12 and 13 months coinciding with the correspond-
ing hydrological years. In particular, Table 5 presents the
drought periods, their duration along with the start and end
times based on RDI monthly estimates.

Further analysis of the monthly remotely sensed RDI im-
ages of Thessaly of the eight drought years leads to Tables 6
and 7. These Tables 6 and 7 present the monthly drought
areal extent in terms of number of pixels for each of the four
drought severity classes (Table 2), as well as the total for all
the classes and for each month. These Tables 6 and 7 show
that the majority of pixels are accumulated between mild to
moderate drought severity classes indicating a significant de-
crease in the number of pixels from mild to extreme drought
classes for all the months. Similarly, from Tables 6 and 7, it
is noticed that the total areal extent in Thessaly for all the
drought years ranges within the same order of magnitude.

From these Tables 6 and 7, several comments can be made
about drought spatiotemporal behaviour. In particular, the cu-
mulative monthly areal extent (Table 2) for all the drought
severity classes shows the same slightly increasing trend
from mild class to extreme class for all the drought years.
From Tables 6 and 7, it is also shown that there is no sig-
nificant increase in the areal extent from mild class to ex-
treme class, since, as already mentioned, most of the pixels
are accumulated between mild to moderate severity classes.
Similarly, from Tables 6 and 7 the cumulative monthly areal
extent for all the drought hydrological years shows the same
increasing trend throughout each hydrological year for all
drought years. Specifically, Tables 6 and 7 indicate also that
there are drought years with very small areal extent at the
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 27 

Figure 4. Cumulative Large Areal Extent (No of pixels 8X8 km
2
) of extreme drought (>2.0) 28 

during drought years based on remotely sensed RDI. 29 

30 

Fig. 4. Cumulative large areal extent (number of pixels 8X8 km2)

of extreme drought (>2.0) during drought years based on remotely
sensed RDI.
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 31 

 32 

 33 

Figure 5. Cumulative Small Areal Extent (No of pixels 8X8 km2) of extreme drought (>2.0) 34 

during drought years based on remotely sensed RDI. 35 

36 

Fig. 5. Cumulative small areal extent (number of pixels 8X8 km2)
of extreme drought (>2.0) during drought years based on remotely
sensed RDI.

beginning of the hydrological year reaching smaller total
areal extent at the end of the hydrological year than other
drought years with larger areal extent at the beginning reach-
ing equally larger total areal extent at the end of the hydro-
logical year.

If only the extreme drought class (class 4) of Tables 6 and
7 is considered, it can be assessed that the eight drought
episodes can be classified based on areal extent and sever-
ity in two major classes: large areal extent drought with
three cases (1984–1985, 1989–1990, 1991–1992) and small
areal extent drought with five cases (1987–1988, 1992–1993,
1996–1997, 1999–2000, 2000–2001). By plotting the cumu-
lative monthly areal extent values of the extreme drought
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class (class 4) for all drought years, two figures are produced:
Fig. 4 for large areal extent drought and Fig. 5 for small
areal extent drought, respectively. Furthermore, curve fitting
is conducted for each of these figures resulting in the fol-
lowing polynomials: Eq. (16) for large areal extent drought
and Eq. (17) for small areal extent drought, respectively, both
with high coefficient of determination.

y = 0.4771x3
− 9.7934x2

+ 78.221x − 36.078

(R2
= 0.9676) (16)

y = 0.4868x2
− 3.3415x + 4.78(R2

= 0.9618) (17)

It is worth noticing that, for the large areal extent case
(Fig. 4), drought starts during the first three months of the
hydrological year, whereas, for the small areal extent case
(Fig. 5), drought starts in spring (April). This finding signi-
fies the possibility of using the fitted curves for monitoring
and assessing drought in a region. Specifically, from Fig. 4
it is clear that, if at the beginning of the hydrological year
and in particular the first three months (October–December),
there is a sufficient number of pixels with extreme drought
values of RDI (> 2.0), then this is an indication of a hydro-
logical year with large areal extent drought with the maxi-
mum occurring during the summer. On the other hand, from
Fig. 5 it is obvious that, if at the beginning of the hydro-
logical year (October–December) the number of pixels with
extreme drought values of RDI (> 2.0) is zero or negligible,
then it is expected that, if drought occurs, it starts in spring
with maximum again in the summer, but with small total
areal extent. This finding justifies the use of the fitted curves
of Figs. 4 and 5 along with the corresponding Eqs. (16) and
(17), respectively, for drought prognostic assessment or early
warning. By increasing the database with the inclusion of
more drought episodes (years), it is expected that the fitted
curves and the corresponding models can provide more reli-
able drought prognostic assessments and/or early warnings.

Finally, Fig. 6a is a sample annual composite maximum
RDI map of Thessaly for the drought year 1984–1985. Sim-
ilarly, Fig. 6b is the annual composite maximum RDI map
of Thessaly for all the eight drought years. This Figure 6b
shows the spatial variability of drought severity delineating
also the areas of drought persistence within Thessaly.

6 Conclusions

The results show that drought episodes are very often in
Thessaly (Table 5). Assessment of drought quantification for
the evaluation of the remotely sensed RDI estimation is con-
ducted through the use of four widely used and well-accepted
error statistics: the efficiency coefficient, the coefficient of
determination, the statistical bias and the root-mean-square
error. The results (Table 3) are close to the perfect fit values
for all the four error statistics, thus being considered quite

 32  

  37 

 38 

(a) Drought year 1984-1985        (b) All drought years 39 

Figure 6. Annual Remotely Sensed RDI composite (max) map of Thessaly.    40 

(a) Drought year 1984–1985 (b) All drought years.

Fig. 6. Annual remotely sensed RDI composite (max) map of Thes-
saly.

satisfactory. It is clear that remote sensing has indicated some
new capabilities in assessing and monitoring the spatiotem-
poral variability of drought episodes. Several drought fea-
tures are analysed from the remotely sensed monthly RDI
images: severity, duration, areal extent, onset and end time.
For the severe and extreme droughts, the start usually coin-
cides with the beginning of the hydrological year (October),
whereas for moderate droughts the start is usually in spring
(April), both lasting until the end of the hydrological year
(September). There is also an increase in the areal extent
of drought during each drought period with the maximum
occurring usually in the summer. The findings also indicate
that, in years of large areal extent, drought starts during the
first three months of the hydrological year, whereas, in the
years of small areal extent, drought starts in spring (April).
This finding also signifies the possibility for first-guess pre-
dictive drought assessment.
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