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Abstract. The growing number and effectiveness of Earth 1 Introduction
observation satellite systems, along with the increasing re-

liability of remote sensing methodologies and techniques, ) .
present a wide range of new capabilities in monitoring andProught is a natural phenomenon that has been recurring at a

assessing droughts. A number of drought indices have beefggional scale throughout history. Drought is also considered
developed based on NOAA-AVHRR data exploiting the re- @S one of the major natural hazards with significant impact
mote sensing potential at different temporal scales. In thig@ €nvironment, society, agriculture and economy. Moreover,
paper, the remotely sensed Reconnaissance Drought Ing&rought is referred to as “non-event”, since its basic cause
(RDI) is employed for the quantification of drought. RDI en- is the lack of precipitation events in a region over a period
ables the assessment of hydro-meteorological drought, sinc@f time and can be regarded as an extreme climatic phe-
it uses hydrometeorological parameters, such as precipitatioRomenon associated with water resources deficit. Droughts
and potential evapotranspiration. The study area is Thessal@ccur in both high and low rainfall areas and virtually all
central Greece, which is a drought-prone agricultural regionclimate regimes. Drought impacts are very critical and es-
characterized by vulnerable agriculture. Several drought feaPecially costly affecting more people than any other type of
tures are analyzed and assessed by using monthly RDI imPatural disaster universally (Kyeantash and Dracup, 2002). It
ages over the period 1981-2001: severity, areal extent, dus difficult to determine the effects of drought as it constitutes
ration, periodicity, onset and end time. The results show ar complicated phenomenon, evolving gradually in any single
increase in the areal extent during each drought episode an&9!0n.

that droughts are classified into two classes, namely small The identification and quantification of drought is not an
areal extent drought and large areal extent drought, respe&@asy task. It is recognized that there is no universally ac-
tively, lasting 12 or 13 months coinciding closely with the cepted definition of drought, because there is a wide vari-
hydrological year. The onset of large droughts coincides with€ty of sectors affected by drought, its diverse spatial and
the beginning of the hydrological year, whereas the onset ofémporal distribution and the demand placed on water sup-
small droughts is in spring. During each drought episode, thePly by human-used systems (Heim, 2002). Drought indica-
maximum occurs usually in the summer and they all last un-fors are variables that describe features of drought (Steine-
til the end of the hydrological year. This finding could justify Mmann et al., 2005). Several indicators can also be synthe-

a drought index. In fact, the monitoring and assessment of

drought conditions in a region is usually performed through
drought indices (Anderson et al., 2011; Ashok et al., 2011).
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3140 N. R. Dalezios et al.: Assessment of remotely sensed drought features in vulnerable agriculture

In evaluating the overall utility of indices, a set of weighted shown to be associated with the persistence of ridges or cen-
decision criteria is assigned to each index, which are baseters of high pressure systems at middle level in the tropo-
on desirable properties of each index: robustness, tractabilitygphere. Furthermore, the corresponding reduced cloud cover
transparency, sophistication, expendability and dimensionalresults in positive temperature anomalies in the lower atmo-
ity (Keyantash and Dracup, 2002). It is clear that the abovesphere, which produces the middle-level pressure anomaly
criteria weights, which reflect the relative importance of the and favours subsidence at the high level keeping the at-
evaluation criteria, are difficult to be precisely justified. The mosphere significantly drier and more stable than normal
list may be expanded or condensed, but the above criterigDalezios et al., 2009). Studies in several parts of the world
provide a reasonable framework for the evaluation of droughthave shown that drought periods are often characterized by
indices without excessive complication. large decrease in the amount of rainfall per day, by an in-
There are several drought indices based on ground (corerease in the continentality of the clouds and a lack of rain-
ventional) and/or remotely sensed data (Kanellou et al.producing clouds.
2011). Satellite images and data are consistently available Usually, drought is considered as a hazard, and there is a
and can be used to detect several features. Remote sensitendency to classify drought types into three categories: me-
has gradually become an important tool for the detection ofteorological or climatological, agrometeorological or agri-
the spatial and temporal distribution and characteristics ofcultural and hydrological drought, including as a fourth class
drought at different scales (Caccamo et al., 2011; Huang ethe socioeconomic impacts (Keyantash and Dracup, 2002).
al., 2011). On the other hand, drought quantification method<\ brief description follows.
rely on conventional hydrometeorological data, which are

usually limited in a region, often inaccurate and most signif- — Meteorological or climatological drought is generally

icant unavailable in near real-time (Thenkabail et al., 2004).
At the present time, the growing number and effectiveness of
pertinent Earth observation satellite systems present a wide

characterized by a precipitation anomaly being lower
than average in a region for some period of time and
by prolonged and abnormal moisture deficiency.

range of new capabilities, which can be used to assess and
monitor the effects of drought. Moreover, in order to assess
and monitor the drought phenomenon and to alleviate the im-
pacts of droughts, it is necessary to detect several drought
features such as severity, duration, periodicity, areal extent,
onset and end time and to link drought variability to cli-
mate and its variability (Dalezios et al., 2000; Piechota and
Dracup, 1996). Thus, it is clear that there is a need for proper
quantification of drought impacts and monitoring of drought
development is of critical importance in economically and

environmentally sensitive regions. Both are very significant — Socioeconomic impacts of drought are defined in terms
inputs in any drought preparedness and mitigation plan. of loss from an average or expected return and can
The objective of this paper consists of exploring the re-  be measured by both social and economic indicators
mote sensing potential in terms of data and methods in order  (McVicar and Jupp, 1998).
to quantify drought and assess several drought features and
characteristics. In this paper, the Reconnaissance Droughithe relationship between the different drought types is com-
Index (RDI) is used, which is a new index suitable for hy- plex. For example, streamflow is the key variable for many
drometeorological drought estimation (Tsakiris and Vange-water supply activities in a semi-arid region, such as hy-
lis, 2005). RDI is properly adjusted to incorporate satellite dropower generation, recreation and irrigated agriculture,
data. The paper is organized as follows: in Sect. 2 droughtvhere crop growth and yield are largely dependent on water
types and remote sensing are explained. In Sect. 3 the studgvailability (Heim, 2002). A single unifying technique is not
area is described. In Sect. 4 the remotely sensed methodoltsually sufficient to quantify drought severity. Even within
ogy for RDI estimation is presented along with database, andn individual category, the supremacy of a specific index is
several drought features are described and estimated as welbt immediately clear.
as the evaluation procedure. Finally, in Sect. 5 results are an- The application and utility of remote sensing to drought
alyzed and discussed. assessment is growing rapidly, mainly due to the increasing
number of pertinent satellite systems and their capabilities
and impacts to climatic variability and/or change. Remote
sensing methodologies and techniques can be employed in
several aspects of drought, such as vulnerability and dam-
If drought is considered as a phenomenon, it is certainly arage assessment and warning (Du et al., 2012; Rhee at al.,
atmospheric phenomenon. Specifically, droughts have beef010). The possible contribution of remote sensing could

— Agrometeorological or agricultural drought is described
in terms of crop failure and exists when soil moisture is
depleted so that crop yield is reduced considerably.

— Hydrological drought is considered to be a period dur-
ing which the actual water supply, either surface water
or groundwater, is less than the minimum water supply
necessary for normal operations in a particular region
(watershed).

2 Drought types and remote sensing
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Table 1. Satellite-based drought indices and corresponding drough
type.

Index Type of drought

1. Normalized Difference Vegetation Index (NDVI) Agricultural

2. Deviationypy Index Agricultural

3. Enhanced Vegetation Index (EVI) Agricultural

4. Vegetation Condition Index (VCI) Agricultural

5. Monthly Vegetation Condition Index Agricultural

6. Temperature Condition Index (TCI) Agricultural

7. Vegetation Health Index (VHI) Agricultural

8. Normalised Difference Temperature Index (NDTI)  Agricultural Fig. 1. Geophysical map of Thessaly region.
9. Crop Water Stress Index (SWSI) Hydrological

10. Drought Severity Index (DSI) Hydrological

11. Temperature-Vegetation Dryness Index (TVDI) Agricultural

12. Normalized Difference Water Index (NDWI) Hydrological 3 Study area
13. Reconnaissance Drought Index (RDI) Hydrological

Thessaly is one of the thirteen hydrological districts of

] ] _ Greece located in the central part of the country. Thessaly has
be focused on relief and, possibly, preparedness or warning tota| area of 14.036 kfpwhich roughly represents 10.6 %
(Williams, 1993; Foot, 1993), although in many cases remotéf the whole country. Moreover, in Thessaly 36 % of the land
sensing can make a valuable contribution to disaster preveng flat, 17.1% is semi-mountainous, whereas the remaining
tion, where frequency of observation is not such a prohibitive44 g o4, is mountainous. The region of Thessaly is character-
limitation. _ _ ized by a highly variable landscape, and the terrain is such
~ A major consideration for development of remote Sens-tnat high mountains surround the plain, which is the largest
ing for drought assessment and disaster reduction is the exp the country (Fig. 1).
tent to which operational users can rely on a continued sup- Tpe plain of Thessaly is crossed by Pinios River. Thes-
ply of data (Colwell, 1984). In this context there are tWo sajy water district is divided into three watersheds, where
types of remote sensing systems for drought assessment: Me main one is the Pinios basin with 9500%im size, Lake
teorolog!cal and e'nvwonmental (or resource) satellites. Mexarla basin with 1050 kifin size, and the remaining basins
teorological satellites have also two types, namely geostazng supbasins cover an area of 2827k#inios River af-
tionary such as METEOSAT and geosynchronous such ager the mountainous terrain crosses the alluvial basin of the
NOANAVHRR, and can contribute to operational monitor- Thessaly plain, which is then divided into two parts, with
ing and assessment of drought (Caccamo et al., 2011; Zhou ke main tributaries being Titarisios, Enipeas, Kalentzis and
al., 2012). Similarly, environmental satelhtes', suc.h as LAND- | jtheos. The main part of the Pinios watershed includes a
SAT, SPOT and recently IKONOS, WV2 with high to very mountainous terrain with altitudes higher than 2000m, as
high resolution, but low frequency of coverage, can con-in Olympus (north) and Pindos (west), agricultural plains
tribute to land-use classification and qualitative features of(ie Thessaly plain) and urban areas with mean elevation of
drought and less to quantitative assessments (Peled et aEBS m. The alluvial plain of Pinios River is a sensitive and
2010). Table 1 presents an |nd.|ca_t|ve list of mternauonally complex hydrogeological environment. Surface and ground-
used remotely sensed drought indices. There is also a larggfater resources are jointly used to cover rural, urban and in-
list of conventional drought indices (Kanellou et al., 2011), qustrial water needs, as well as preservation of wetland in
where most of them can be adjusted to incorporate remotelyye region. Impermeable geological structures cover 30.6 %
sensed data. _ _of the total area, karstic aquifers 14.5 % and permeable struc-

In this paper, the Reconnaissance Drought Index (RDI) isyyres. which occur mainly on the plain, cover 42.7 %.

used for the quantification of drought based on remote sens- The climate of Thessaly is continental in the west part
ing. RDI'is a new index, which is used for hydrometeorologi- yith cold winters, hot summers and large seasonal temper-
cal drought estlmz_itlon (Tsz_iklrls and Vangelis, 20055 Tsakirisgtre range. In the east part of Thessaly, the climate is typ-
etal., 2007). RDlis a physically based and general index andcg| Mediterranean. In Thessaly, summers are usually hot
can be used in a variety of climatic conditions. Moreover, gq dry with temperatures occasionally reaching@an
RDI provides information for the water deficit in an area as it\]u|y and August. Mean annual precipitation over Thessaly
is based not only on precipitation, but also on potential evapis apout 700 mm, unevenly distributed in space and time,
otranspiration. In order to assess and monitor drought, it ISyarying from about 400 mm at the central plain to more than
also necessary to detect several drought features. In fact, r§gs0 mm at the western mountain peaks. The mountain areas
mote sensing data and methods can delineate the spatial apgceive significant amounts of snow during winter months.
tgmporal variability of several drought features in quantita- ot the Thessaly plain, around Larissa and Karla basin, the
tive terms. mean annual precipitation ranges between 250 and 500 mm,
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having reduced over the last 30 years about 20 %. Moreove®.1 Remotely sensed estimation of RDI
since rainfall is, in general, rare from June to August, the re-
sulted water deficit is replaced by irrigation in order to satisfy The estimation of RDI from remotely sensed data on a
agricultural water needs. monthly and annual basis follows certain steps. At first, pre-
The Thessaly plain constitutes the main agricultural areaProcessing of satellite images is implemented, which in-
of the country, with cotton being still the major crop; how- cludes geometric and atmospheric correction of all images.
ever, wheat, sugar beets, maize, barley, horticulture, fruitsThen, from 10-day BT and NDVI images, on a pixel ba-
olive trees and recently energy crops are also cultivated irsis, land surface temperature (LST) images are produced,
the region. At the present time, in practical terms, the annualvhich then through regression analysis lead to air temper-
water availability is about 1023 million¥n consisting of ~ ature (Tair) estimation on a pixel basis. The next step con-
surface (623 million d) and groundwater (400 million#, sists of the estimation of potential evapotranspiration on a
whereas the annual water needs amount to 1836 millfbon m Pixel basis again using Blaney-Griddle method and satellite-
There is, thus, an annual water deficit of 813 milliohmart ~ derived Tair. Then rainfall maps are used as provided by JRC,
of it (about 600 million n) is expected to be covered from Ispra. Finally, all the above are incorporated into the model
Acheloos dam. Moreover, the amount of water used for irri-to produce RDI estimates on a pixel basis. A brief description
gation purposes accounts for about 96 % and the remaininépllows.
about 3.3 % of the total water consumption is used for other

water needs in the catchment. Furthermore, the irrigated ar?-1-1 ~Calculation of air temperature

eas have significantly.increased over the "?‘S.‘ decades reacl:}-he procedure for the extraction of LST includes the use of
ing about 252 500 ha in recent years. The irrigated areas arg following empirical Eq. (1) (Kanellou et al., 2011):

expected to further increase in Thessaly. Thus, the future wa-
ter needs are also expected to increase despite scheduled crep_ (image pixeH- 31 990 0.005, 1)
restructuring programs.

Thessaly is characterized by vulnerable agriculture, sincevhere image pixel is the pixel value from the thermal band
extreme hydrometeorological events such as floods, hail andnd 7 is temperature in kelvin (K), which is then converted
droughts are quite common in the catchment, but also due tgo values of degrees celsiud)). For the elimination of the
the existing water deficit for agriculture. Thessaly is consid-water vapour effect in infra-red radiation and the transmitted
ered as one of the most important agricultural regions in theradiation from the surface, the algorithm of “split window”
country, and drought episodes could have enormous environBecker and Li, 1990) is employed. This method achieves
mental and socioeconomic impacts. Droughts occur mainlyatmospheric correction of the satellite data including water
due to reduced precipitation causing lack of soil moisture,vapour absorption. The equation of Becker and Li is given
increased evapotranspiration, runoff reduction, decrease ipy Eq. (2):
streamflow levels in rivers, lakes and dams, lowering of the
groundwater table, thus resulting in water deficit for agricul- T = 1.274+4 (Ta + T5)/2[1+ 0.1561G (1 — e) /e}
ture. Drought is the subject of this paper and several drought _ 0.4824¢ /e x %2] + (T4 — T5)/2[6.26+ 3.98% (1 — ¢) /e}
features are explored through remote sensing and analysed+38_33de/e «%2] @)
and presented in subsequent sections.

whereT is the land surface temperature (LSTY 1, andT;
andTs are the values of thermal bands 4 and 5 of the satellite,
respectively. The variablesandde of Eq. (2) are defined by

The methodology includes drought quantification by the use
of RDI, extraction and computation of several drought fea- €~ (ea+e5)/2 )
tures, as well as evaluation. The estimation of RDI is basedle = €4 —es (4)

on remote sensing data and techniques. In the computa- )

tion of RDI, the innovation consists of employing Blaney- wherees andes are the reflection values of bands 4 and 5,

Criddle method for potential evapotranspiration instead of'€SPeCtively, which estimate the transmission of infrared ra-
Thornthwaite method, since it is more appropriate for thedlatlon from the gqrface andi are.glven by Van de Griend and
Mediterranean region with dry and hot summers (Blaney andoWe (1993) empirical equations:

Criddle, 1950). Furthermore, in this paper Blaney-Criddle

method is based on land surface temperature (LST), whicht* 1.0094+0.047In(NDV1) ©)
is derived from satellite data (Kanellou et al., 2009). es =e4+0.01 (6)

4 Methodology

where NDVI is the values of the index.
A regression analysis is conducted between the derived
monthly LST values from Eq. (2) and the corresponding
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35,00 numerous stations all over Europe provided by JRC, IS-
L e PRA for the period 1975-2005. Cumulative monthly rain-
& _' fall values are computed per station. Then rainfall maps of
= 2000 50 x 50 km? grids are produced per region using linear in-
g 20,00 + terpolation techniques. In this way monthly rainfall maps are
T 15,00 - extracted for the region of Thessaly.
10004 4.1.4 RDI estimation
5,00
0,00 - The calculation of RDI starts with the estimationafcoef-
- 60 ficient (Tsakiris et al., 2007), as it is given by the equation:
500 L i
LSTvalues (in°c)
j=k
. . . . > P
Fig. 2.LST and air temperature (Tair) for Lariss&). j=1 ©)
ag=——
j=k
> PET;
monthly air temperature (Tair) values from Larissa station j=1

for the 20-yr period (1981-2001). The resulting empirical
Eq. (7) is given below, along with the plotted values (Fig. 2).
Finally, from Eq. (7) monthly air temperature maps (images)
of Thessaly are produced on a pixel basis.

whereP; and PET; are the precipitation and potential evap-

otranspiration, respectively, of thieth month of the hydro-

logical year. The hydrological year for the Mediterranean re-

gion starts in October; hence, for Octobes /. Monthly

Tair = 0.6143— LST+7.3674 R2~0.82 (7y  rainfall maps @;) of Thessaly are used as described above
(Sect. 4.1.3). Similarly, monthly potential evapotranspiration
maps (PET) of Thessaly are used based on monthly tem-
perature maps, crop coefficiert.{ maps, daytime sunshine

4.1.2 Estimation of potential evapotranspiration duration mapsg) as explained above (Sect. 4.1.2). The nor-

. . o . _malized RDIn is given by
In this paper potential evapotranspiration is estimated with

the use of Blaney-Criddle method, which has been originaIIyRD|n(k) _ % _q (10)
applied in California. This method is selected in this paper, ax

since it is appropriate for subtropical climates with dry and The standardized RDI (RE), which is used in this study,
hot summers such as Mediterranean region. Blaney and Crio%—S iven b ' '
dle (1950) method estimates the potential evapotranspiration 9 y
PET;) for the monthk in mm, through Eq. (8): —

(PETy) gh Eq. (8) RDIl (k) = 2 Ayk (11)

PET; = ke * [0.46T +8.16] * p (8) ok

whereT is the mean monthly air temperature for mokflp ~ wherey is the Ina, 7 is its arithmetic mean and, is its

is the monthly daytime sunshine duration, which depends orstandard deviation.

the latitude of the area, arid is the crop coefficient, differ- The drought classes based on RDI are shown in Table 2,
ent for each cultivation, vegetation type and land use. Mapslong with the corresponding drought class number.

of mean monthly crop coefficients for each vegetation type

and land use in 508 500 n? pixel size, as well as maps of 4.2 Database

daytime sunshine duratiorp) for each monthly value for
the Thessaly water district (39.38l) are extracted in a GIS
environment (Kanellou et al., 2009). The monthly crop coef-
ficient and the maps of daytime sunshine duration are com-
bined with the air temperature maps for the whole data set in
order to extract Blaney-Criddle potential evapotranspiration
for each month in the time series (1981-2001).

For the RDI estimation the following data is utilized:

— daily precipitation of Thessaly water district in 50
50kn? spatial analysis derived by ground measure-
ments provided by the Joint Research Center (JRC) of
EC, Ispra, Italy.

. _ — crop coefficients maps extracted by Corine Hellas 2000
4.1.3 Rainfall mapping for each month of the year (12 maps).

Rainfall maps over Thessaly on a monthly basis are pro- — monthly maps of daytime sunshine duration for
duced. The initial data are daily rainfall measurements from 39.39 N of Thessaly (12 maps).

www.nat-hazards-earth-syst-sci.net/12/3139/2012/ Nat. Hazards Earth Syst. Sci., 12, 318%49 2012
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Table 2. Drought classes based on RDI (Tsakiris and Vangelis, Areal extent:areal extent of drought is considered the

2005). spatial coverage of the phenomenon as is quantified in
classes by indicators or indices. Areal extent varies in

RDI RDI Class  RDI time and remote sensing has contributed significantly in
Classes Number  Values the delineation of this parameter by counting the num-
Extremely Wet -~ 200 ber of pixels in each class, which is followed in the
Very Wet 1.50 to 1.99 present study using RDI.
Moderately Wet 1.00to0 1.49
Near Normal (mild drought) 1 —0.99100.99 o o ] )
Moderate Drought 2 _1.00to—1.49 Periodicity: Periodicity is considered the recurrence in-
Severe Drought 3 -1.50—1.99 terval of drought. In this paper, periodicity analysis of
Extreme Drought 4 <-200 the monthlyZ-index values of Palmer (Palmer, 1965) at

— atime series of 10-day brightness temperature (BT) im-
ages extracted from Channels 4 and 5 for 20 consecutive
hydrological years (October 1981-September 20064) 8
8 km? provided by NOAA.

— a time series of 10-day normalized difference vegeta-
tion index (NDVI) extracted from Channels 1 and 2

all stations in Thessaly is implemented by power spec-
trum analysis (Loukas et al., 2002). The power spectra
are obtained by applying the discrete Fourier transform
algorithm to the correlation functions derived from the
time series (Jenkins and Watts, 1968) taking as smooth-
ing function a classical Hamming window (Percival and
Walden, 1993). In this paper, it is assumed that the time
series could be derived by an autoregressive process of
order one (Markov red-noise process as the null hypoth-

for 20 consecutive hydrological years (October 1981—

° esis) and the significance of the periodicities was tested
September 2001) 8 8 kn? provided by NOAA.

at the 1% level.
4.3 Drought features
4.4 Evaluation

As already mentioned, in order to assess and monitor
drought, it is necessary to detect several drought featuresThe accuracy of the remotely sensed estimated monthly RDI
Moreover, remote sensing data and methods can delineate tiseries should be assessed and evaluated. The evaluation is
spatial and temporal variability of several drought features inbased on the comparison between the remotely sensed and
guantitative terms. A description of some key features fol-the corresponding ground-truth RDI estimations at Larissa
lows (Palmer, 1965; Kanellou et al., 2011). station for the period 1981-2001 through several error statis-
Severity:severity or intensity of drought is defined as ti_cs. The rationale of.using several _statistics as possi_ble in-

dicators of the magnitude of errors in drought analysis and

escalation of the phenomenon into classes from mild'estimation comes from the fact that there is no generally ac
moderate, severe and extreme. The severity is usu- g y

. - L cepted “best” statistics to describe the errors. In this study,
ally determined through drought indicators and indices, . i
o : four well-known and widely used error statistics are em-
which include the above-mentioned classes. In the RDI

L . loyed: the efficiency coefficient (Nash and Sutcliffe, 1970),
estimation of severity, the above four classes are use - L o :
(Table 2). he coefficient of determination, the statistical bias and the

root-mean-square error (Dalezios, 1988). A brief description
Duration: duration of a drought episode is defined as follows.

the time interval from the start and end time, usually

in months. Drought duration using RDI is estimated by 1. Efficiency coefficient (Nash and Sutcliffe, 1970)
counting the number of successive months with negative
pixel values for all the above-described severity classes.

é 2
RDI d— RDlsatelii
Onset:the beginning of drought is determined by the Eff—1— El( gromn sate 'te) (12)
occurrence of a drought episode. The beginning of a - n - 2
drought is assessed through indicators or indices reach- igl(RDlngU”d_ RDIQVOU”C’)

ing certain threshold value. The onset of drought using

RDI coincides with the first negative pixel value. where RDjroung are ground-based values of RDI,

RDlsatelite are satellite-based values of RIRDIground

are mean ground-based values of RIs the number

of cases, i.e. monthly values for 20 yr (1981-2001). The
efficiency coefficient ranges between one ansb and

for a perfect technique should be equal to one (Table 3).

End time:end time of a drought episode signifies the
termination of drought based again on threshold values
of indicators or indices. The end time of drought using
RDI coincides with the last negative pixel value in suc-
cessive monthly RDI values.

Nat. Hazards Earth Syst. Sci., 12, 313®815Q 2012 www.nat-hazards-earth-syst-sci.net/12/3139/2012/
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Table 3 The resu”s Of error Statlsucs (monthly RDI) Annual RDI of Larissa for 1981-2001 (October to September)
Error Estimated Range Perfect B
statistics values of fit fit .
EFF 07 1lto-oo 1 ‘.
R? 0.87 Oto1 1 B
BIAS -0.15 ~0 0 2
RMSE from conventional data 0.98 ~0 0 3

RMSE from satellite data 0.95 0

861 - 1861

1002 - 000T

L861 - 9861
8861 - L8GL
000T ¢

2861 - 1861
9861 - S861

©  Hydrological years

Fig. 3. Annual (October to September) RDI of Larissa for 1981—

2. Coefficient of determinationk?)
2001.

B

(RD|ground— m) (RD|satellne— m)

o | iz (13)

ij(RDlgmund—mlgmd)z 3" (RDlsatlie— RDlaaraig)’ several features from drought episodes, which lead to use-

i=1 i=1 ful inferences. The results are presented in Tables 3 to 7 and

Figs. 3to 6.
where RDbround are ground-based vaIues—ofRDI, gIlzigure 3 delineates the time series of annual RDI for
RDlsateliteare satellite-based values of RERDlground | arigsa (1981-2001) estimated from both conventional and
are mean ground-based values of RBDlsatelite 8T€  remotely sensed data. This Fig. 3 initially shows that both
mean satellite-based values of RDI, ands the num-  ggiimation methods are in good agreement. Validation of the
ber of cases, i.e. monthly values for 20yr (1981-2001).;emotely sensed RDI estimation is attempted through the
The coefficient of determination ranges between zerocqmnpytation of several widely used error statistics: the ef-
and one, and for a perfect technique should be equal tjciency coefficient (EFF), the coefficient of determination

one (Table 3). (R?), the statistical bias (BIAS) and the root-mean-square
3. Statistical bias (BIAS) (Dalezios, 1988) error_(RMSE)._ The r_esults are presented in Table 3 and are
considered quite satisfactory being close to the perfect values
n for all the four error statistics. It should be mentioned that the
BIAS = N Z (RD|gr0und— RD|sate"ite) (14) better a technique is, the closer the value of each error statis-
i=1 tic to the perfect fit value. Specifically, the efficiency coef-

where RD}yound are ground-based values of RDI, ficient is 0.7, which is close to the perfect fit value of one.
RDlgatelieare satellite-based values of RDI, ans the ~ Similarly, the coefficient of determination is 0.87, which is

number of cases. For a perfect technique, the Statisticaa'SO very close to the perfect fit value of one. Moreover, the

bias should be equal to zero (Table 3). statistical bias is-0.15, which is equally very close to the
_ perfect fit value of one. Finally, the root-mean-square error
4. Root-mean-square error (RMSE) (Dalezios, 1988) is 0.98 for conventional data and 0.95 for satellite data, re-
spectively, which are again close to the perfect fit value of
¢ 2 zero.
RDI —RDI )
RMSE— El( ground ground (15) Periodicity analysis has been conducted for Greece in a

previous study (Loukas et al., 2002) based on power spec-
trum analysis ofZ-index from Palmer’s method (Palmer,
where RDlroungare ground-based values of RDI, 1965), where the statistical significance of the periodicities
RDlground @re mean ground-based values of RDI and s tested at 1% level. Table 4 presents the results of peri-
is the number of cases. For a perfect technique the rootodicity analysis, which is referred to stations in Thessaly,
mean-square error should be equal to zero (Table 3). namely Larissa, Volos and Trikala, respectively. The results
of Table 4 are in months and indicate short periodicity cy-
cles ranging from two to eight months for the central part of
5 Results and discussion Thessaly (Larissa station) and medium-long to long cycles
ranging from 20 to 38 months and longer for coastal (Volos
The results include quantification of drought through RDI es- station) and mountainous (Trikala station) parts of Thessaly,
timation on a monthly and annual basis for a period of 20 yrrespectively.
(1981-2001) using conventional and satellite data. The anal- In these 20-yr time series of annual RDI, eight drought
ysis of results also involves evaluation and validation of theepisodes are identified (Fig. 3). Analysis of the monthly RDI
remotely sensed drought estimation, as well as extraction ofaps specifies the onset, the end time and the duration of

n
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Table 4. Drought periodicities using th&-index.

Station L=Long cycles ML=Medium-Long M= Medium cycles S Short cycles

(> 38 months)  cycles (20—38 months) (9-19 months) (2-8 months)
Larissa 14.6 7.3,31,28
\olos 37.3,25.8 3.1,2.8
Trikala 108 25.8,22.4 6.1
Table 5. Duration of drought episodes (in months in Thessaly). _ 500y =0A77 1% 8,79k + 78,2215 - 36,078
% 450 Fe= (RS layial —
Drought Years Start End Duration £ 400 —
Oct 1984-0Oct 1985 Oct 1984 Oct 1985 13 = ESE P —1984-1885
Oct 1987—0Oct 1988 Oct 1987 Oct 1988 13 % 250 — 19651500
Sep 1989-Oct 1990  Sep 1989  Oct 1990 13 5o P st
Oct 1991-Sep 1992 Oct1991 Sep 1992 12 5 120 _,fp—”/ 1881-1992
Oct 1992-0Oct 1993 Oct 1992 Oct 1993 13 " curee fitting
¢ 100
Oct 1996-Sep 1997 Oct 1996  Sep 1997 12 P A i
Oct 1999-Sep 2000 Oct 1999 Sep 2000 12 0l 4 |
Oct 2000-Sep 2001  Oct 2000 Sep 2001 12 5 ZuEe2E55r53 908
O=Z0 2w =ETC =9 I i

Fig. 4. Cumulative large areal extent (number of pixels 8X8%m

each drought episode in Thessaly as summarized in Table @f extreme drought%2.0) during drought years based on remotely

. . . - Sensed RDI.
This Table 5 shows that the duration of each episode varies
between 12 and 13 months coinciding with the correspond-
ing hydrological years. In particular, Table 5 presents the %0 y = 0,4868x” - 3,3415x + 4,78

drought periods, their duration along with the start and end j; jg e /'_

times based on RDI monthly estimates. & T i987ses
Further analysis of the monthly remotely sensed RDI im- 5 50 / ——1992-1993

ages of Thessaly of the eight drought years leads to Tables 2 ——1996-1997

and 7. These Tables 6 and 7 present the monthly drougr § 30 /ﬁ# ——1999-2000

areal extent in terms of number of pixels for each of the four = 2 / 5000-2001

drought severity classes (Table 2), as well as the total for al § 12 — - —f— cune fiting

the classes and for each month. These Tables 6 and 7 shc 10 |

that the majority of pixels are accumulated between mild to $:s58:i53553¢2¢%8

moderate drought severity classes indicating a significant de-
crease in the number of pixels from mild to extreme droughtrig. 5. Cumulative small areal extent (number of pixels 8X8 km2)
classes for all the months. Similarly, from Tables 6 and 7, itof extreme drought=2.0) during drought years based on remotely
is noticed that the total areal extent in Thessaly for all thesensed RDI.
drought years ranges within the same order of magnitude.

From these Tables 6 and 7, several comments can be made
about drought spatiotemporal behaviour. In particular, the cubeginning of the hydrological year reaching smaller total
mulative monthly areal extent (Table 2) for all the drought areal extent at the end of the hydrological year than other
severity classes shows the same slightly increasing trendrought years with larger areal extent at the beginning reach-
from mild class to extreme class for all the drought years.ing equally larger total areal extent at the end of the hydro-
From Tables 6 and 7, it is also shown that there is no sigdogical year.
nificant increase in the areal extent from mild class to ex- If only the extreme drought class (class 4) of Tables 6 and
treme class, since, as already mentioned, most of the pixelg is considered, it can be assessed that the eight drought
are accumulated between mild to moderate severity classegpisodes can be classified based on areal extent and sever-
Similarly, from Tables 6 and 7 the cumulative monthly areal ity in two major classes: large areal extent drought with
extent for all the drought hydrological years shows the samehree cases (1984-1985, 1989-1990, 1991-1992) and small
increasing trend throughout each hydrological year for allareal extent drought with five cases (1987-1988, 1992-1993,
drought years. Specifically, Tables 6 and 7 indicate also that 996—1997, 1999-2000, 2000—2001). By plotting the cumu-
there are drought years with very small areal extent at thdative monthly areal extent values of the extreme drought
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Table 7. Monthly areal extent of drought of hydrological years 1992—-1993, 1996-1997, 1999-2000, 2000—2001.

Drought Year 1992-1993 1996-1997 1999-2000 2000-2001

Month Class1 Class2 Class3 Class4 Aowwo_mmm 1 Class2 Class3 Class4 Aowmo_mwm 1 Class2 Class3 Class4 Aowwo_mmm 1 Class2 Class3 Class4 Total
Oct 111.1 0.0 0.0 0.0 1112 2.6 0.0 0.0 0.0 2.6 26.0 0.0 0.0 0.0 26.0 16.7 0.0 0.0 0.0 16.7
Nov 107.6 20.7 0.0 0.0 128.3 29.8 139.2 38.8 0.0 207.8 8.4 0.0 0.0 0.0 8.4 0.2 68.3 135.3 3.9 207.7
Dec 192.3 10.9 0.0 0.0 203.2 45.3 0.0 0.0 0.0 454 70.3 3.9 0.0 0.0 742 161.1 30.2 14.0 0.0 205.3
Jan 199.0 0.0 0.0 0.0 199.0 72.4 0.1 0.0 0.0 724 199.3 0.0 0.0 0.0 199.3 41.0 0.0 0.0 0.0 410
Feb 45.3 0.0 0.0 0.0 453 197.3 2.0 0.0 0.0 1994 22.1 0.0 0.0 00 221 138.2 26.2 0.0 0.0 164.5
Mar 199.4 0.3 0.0 0.0 199.7| 201.4 0.0 0.0 0.0 201.4| 164.8 37.0 5.7 0.0 207.4 43.8 149.8 14.0 0.0 207.6
Apr 138.7 67.7 0.0 0.0 206.4 0.4 0.0 0.0 0.0 0.4 143.0 60.8 0.0 0.0 203.7 4.8 0.0 0.0 0.0 4.8
May 0.1 0.0 0.0 0.0 0.1 38.1 143.5 0.0 26.2 207.8| 144.0 0.0 1.8 39.5 185.3 14.0 0.0 0.0 0.0 140
Jun 1149 0.0 0.0 0.0 1149 16.7 0.0 0.0 0.0 16.7 12.3 0.0 0.0 0.0 12.3 94.5 37.0 0.0 25 1340
Jul 185.0 25 0.0 14.0 2015 63.7 82.9 0.0 0.0 146.6| 131.7 37.0 25 0.0 171.3 0.1 0.0 0.0 0.0 0.1
Aug 188.1 0.0 0.0 3.9 1920 0.1 0.0 0.0 0.0 0.1 38.7 1115 0.0 43.3 193.6 40.7 8.3 0.0 0.0 491
Sep 36.1 0.0 1.8 43.3 813 135.2 68.6 0.0 0.0 203.8 53.2 8.6 13.8 0.0 756 155.0 44.3 0.0 0.0 199.3
Total 1517.9 102.1 1.8 61.2 Hmmm.v 803.0 436.2 38.8 26.2 Hwon.w 1013.7 258.7 23.8 82.8 1379/1 710.1 364.2 163.4 6.4 1244.0

Legend: The values are in number of pixels (each pix@lx 8km?) per drought class (the classes are in numbers as in Table 2).

Class 1= mild, class 2= moderate, class3 severe, class 4 extreme.
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class (class 4) for all drought years, two figures are produced
Fig. 4 for large areal extent drought and Fig. 5 for small
areal extent drought, respectively. Furthermore, curve fitting
is conducted for each of these figures resulting in the fol-
lowing polynomials: Eq. (16) for large areal extent drought
and Eq. (17) for small areal extent drought, respectively, botr
with high coefficient of determination.

Annual RDI composite (max) Map of Thessaly (1984-1985)

Map oF Thessaly of all drought y

i

y = 047713 — 9.7934r? 4 78.221x — 36.078
(R?=0.9676 (16)
y = 0.4868c% — 3.3415¢ 4+ 4.78(R? = 0.9618 (17)

It is worth noticing that, for the large areal extent case
(Fig. 4), drought starts during the first three months of the
hydrological year, whereas, for the small areal extent case (a) Drought year 1984-1985  (b) All drought years.

(.Flg' 5), drou.gljF starts '.“ sprlng.(AprII). This finding .S'gf“' Fig. 6. Annual remotely sensed RDI composite (max) map of Thes-
fies the possibility of using the fitted curves for monitoring saly.

and assessing drought in a region. Specifically, from Fig. 4

it is clear that, if at the beginning of the hydrological year

and in particular the first three months (October-December)gatisfactory. It is clear that remote sensing has indicated some
there is a sufficient number of pixels with extreme drought new capabilities in assessing and monitoring the spatiotem-
values of RDI ¢ 2.0), then this is an indication of a hydro- poral variability of drought episodes. Several drought fea-
logical year with large areal extent drought with the maxi- tyres are analysed from the remotely sensed monthly RDI
mum occurring during the summer. On the other hand, fromimages: severity, duration, areal extent, onset and end time.
Fig. 5 it is obvious that, if at the beginning of the hydro- For the severe and extreme droughts, the start usually coin-
logical year (October—December) the number of pixels withcides with the beginning of the hydrological year (October),
extreme drought values of RD#(2.0) is zero or negligible, \whereas for moderate droughts the start is usually in spring
then it is expected that, if drought occurs, it starts in spring(Apr“)' both lasting until the end of the hydrological year
with maximum again in the summer, but with small total (September). There is also an increase in the areal extent
areal extent. This finding justifies the use of the fitted curvesyf drought during each drought period with the maximum
of Figs. 4 and 5 along with the corresponding Egs. (16) andoccurring usually in the summer. The findings also indicate
(17), respectively, for drought prognostic assessment or earlyhat, in years of large areal extent, drought starts during the
warning. By increasing the database with the inclusion offjrst three months of the hydrological year, whereas, in the
more drought episodes (years), it is expected that the fittegears of small areal extent, drought starts in spring (April).

curves and the corresponding models can provide more reliThjs finding also signifies the possibility for first-guess pre-
able drought prognostic assessments and/or early warninggictive drought assessment.

Finally, Fig. 6a is a sample annual composite maximum
RDI map of Thessaly for the drought year 1984-1985. Sim-AcknowledgementsThis research was funded by Pleiades, Smart
ilarly, Fig. 6b is the annual composite maximum RDI map and Hydrosense EC projects. The conventional meteorological data
of Thessaly for all the eight drought years. This Figure 6bwas provided by the National Meteorological Service of Greece.
shows the spatial variability of drought severity delineating The precipitation maps were provided by the Joint Research Center

also the areas of drought persistence within Thessaly. (JRC) of EC, Ispra, ltaly. The satellite data was provided by
NOAA. Software ERDAS Imagine 8.7 was used in the analysis.

6 Conclusions Edited by: A. M. Tarquis
Reviewed by: two anonymous referees

The results show that drought episodes are very often in

Thessaly (Table 5). Assessment of drought quantification for

the evaluation of the remotely sensed RDI estimation is con-

ducted through the use of four widely used and well-accepted

error statistics: the efficiency coefficient, the coefficient of

determination, the statistical bias and the root-mean-square

error. The results (Table 3) are close to the perfect fit values

for all the four error statistics, thus being considered quite
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