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Abstract. High water level at the coast may be the result
of different combinations of offshore hydrodynamic condi-
tions (e.g. wave characteristics, offshore water level, etc.).
Providing the contour of the “critical” set of offshore con-
ditions leading to high water level is of primary importance
either to constrain early warning networks based on hydro-
meteorological forecast or observations, or for the assess-
ment of the coastal flood hazard return period. The challenge
arises from the use of computationally intensive simulators,
which prevent the application of a grid approach consist-
ing in extracting the contour through the systematic evalu-
ation of the simulator on a fine design grid defined in the
offshore conditions domain. To overcome such a computa-
tional difficulty, we propose a strategy based on the kriging
meta-modelling technique combined with an adaptive sam-
pling procedure aiming at improving the local accuracy in
the regions of the offshore conditions that contribute the most
to the estimate of the targeted contour. This methodology is
applied to two cases using an idealized site on the Mediter-
ranean coast (southern France): (1) a two-dimensional case
to ease the visual analysis and aiming at identifying the
combination of offshore water level and of significant wave
height; (2) a more complex case aiming at identifying four
offshore conditions (offshore water level and offshore wave
characteristics: height, direction and period). By using a sim-
ulator of moderate computation time cost (a few tens of min-
utes), the targeted contour can be estimated using a cluster
composed of a moderate number of computer units. This ref-
erence contour is then compared with the results of the meta-
model-based strategy. In both cases, we show that the crit-
ical offshore conditions can be estimated with a good level
of accuracy using a very limited number (of a few tens) of
computationally intensive hydrodynamic simulations.

1 Introduction

Forty percent of the world population lives within 100 km
of a coastline, an area that accounts for only about twenty
percent of the land mass (UNEP, 2007). This urbanized area
is characterized by both increasing assets and increasing
coastal flooding risk induced either by extreme events and/or
by sea-level rise (Nicholls et al., 2006). Some recent events
like Katrina in 2005 or Xynthia in 2010 (see e.g. Bertin et
al., 2012) illustrate the present-day coastal damages and in-
juries that can affect the coastal area. Katrina was one of the
six most powerful hurricanes ever registered in the Atlantic,
leading to 1836 deaths and damages of about 80 billion USD,
whereas Xynthia was a mid-latitude storm that severely hit
low-lying coasts located in the central part of the Bay of Bis-
cay on the 27–28 February 2010, inducing 53 deaths and ma-
terial damages estimated at more than one billion EUR. From
a statistical point of view, the wave heights generated during
the Xynthia event could not be considered extremes, but what
makes this event “rare” is the combination of a high spring
tide with a large storm surge reaching its maximum around
the tide peak. The processes involved in such event are iden-
tified by Bertin et al. (2012) showing a strong influence of
waves in such high storm surges. This recent event provides
a vivid reminder of the complexity and of the strong cou-
pling between different hydro-meteorological processes un-
derlying the occurrence of storm surge, and possibly of large
impacts on the coastal plain.

In this context, early warning and forecasting systems are
key components for a coastal flooding risk assessment and
management. These are based on hydro-meteorological ob-
servations and modelling, such as the initiatives in the North
Sea Region (Safecoast, 2008), and allow anticipating the co-
occurrence of such high-magnitude events and setting up
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accordingly preventive actions. To constrain these systems,
the combinations of offshore conditionsx that generate a
“critical” high water level at the coast (the maximum water
level at the coast and the critical one are respectively denoted
ξm andξc) are of primary importance. The “critical” charac-
teristic ofξc can be judged regarding the potential associated
losses and consequences.

The relationship between these critical combinations con-
stitutes the critical frontier0c, which separates the “safe” re-
gion from the “unsafe” one in the offshore conditions do-
main (e.g. combination of wave, tide and surge conditions),
as schematically depicted in Fig. 1. For instance, the combi-
nation of offshore conditions outlined by “a” in Fig. 1 leads
to a water level at the coast considered “safe”, whereas the
combination “b” leads to an unsafe water level, as located in
the set, whose boundaries correspond to0c. The combination
“c” is exactly on this critical frontier, and its estimation con-
stitutes the core issue of the present study. More formally, the
objective is to estimate the contour of the set0c={x so that
ξm = ξc}.

From a reliability analysis point of view, this frontier is
referred to as “limit state” and determines the failure of an
engineered system. It is used to estimate the probability of
the system failure (see e.g. Haldar and Mahadevan (2000)
for further details on system reliability analysis). Similarly
as for reliability assessment, the critical frontier of offshore
conditions can be used in a Monte Carlo-based approach to
estimate the return period (i.e. the probability of occurrence)
of the water level at the coast (see for instance the statisti-
cal approach called “response method” proposed by Garrity
et al., 2006). Another modelling approach has recently been
proposed by Chini and Stansby (2012) based on the statisti-
cal discretization of the offshore conditions (wave and wa-
ter level), with the successive following steps: joint probabil-
ity analysis of offshore conditions, discretization of extreme
offshore conditions occurrence isolines, hydrodynamic mod-
elling for each selected offshore combination and evaluation
of the near-shore values (e.g. mean overtopping) in the two-
dimensional space of offshore wave and water level.

From a more methodological perspective, the knowledge
of 0c can eventually support the implementation of innova-
tive “inverse” risk assessment procedures, which have been
recently proposed either for fluvial inundation (Cunderlink
and Simonovic, 2007) or for coastal flooding (Idier et al.,
2010). These still under-development methodologies basi-
cally rely on the inversion of the traditional approach of
risk analysis by starting from a targeted risk level judged
as “acceptable” in the studied territory and by ending up
with the estimate of the corresponding return period based on
the knowledge of the associated hydro-meteorological condi-
tions.

This “critical” frontier 0c is usually not “explicit”, i.e. in
many cases it does not have a simple analytical mathemati-
cal formulation and its estimate usually relies on numerical
modelling. In the field of coastal flood hazard assessment,

several categories of models with different degrees of com-
plexity depending on data requirements, resolution, physical
processes and characteristics of the underlying equations are
available (Fewtrell et al., 2011; Samuels et al., 2008). If we
focus on the modelling of the water level at the coast (nec-
essary step to provide final flooding hazard maps), several
approaches can be used. A first class of models (class 1) is
based on semi-empirical approaches, which provide total wa-
ter level (tide, storm surge, wave set-up, run-up and swash)
based on input parameters like offshore water level and wave
conditions. An example is provided by the formula of Stock-
don et al. (2006). A second model class (class 2) relies on
more sophisticated attempts to model the physical processes,
involving more advanced (less simplified) methods than class
1 models. As an example, spectral wave modelling (Booij et
al., 1999) can be used to provide set-up at the coast, under
some assumptions, but will not provide run-up information.
Another example is the coupled wave action and shallow wa-
ter model of McCabe and Sansby (2011), which actually al-
lows estimating the run-up. A last model class (class 3) is
based on more advanced methods including few simplifying
assumptions and being more accurate but also more compli-
cated. An example is the fully nonlinear weakly dispersive
model developed by Bonneton et al. (2011), allowing to re-
produce the free-surface (including, for instance, swash, run-
up, set-up, etc.).

A “crude” approach for estimating0c would consist in
running the model on a regular design grid defined in the
forcing conditions space, i.e. corresponding to an intensive
parametric analysis. To illustrate, let us consider a regular
design grid composed of 30 configurations of offshore water
level ξo varying by a constant increment step between 0.25
and 1.50 m and 30 configurations of significant wave height
Hs varying by a constant increment step between 0.5 and 7 m.
In total, 900 simulations should be run in this case. Then, for
this specific two-dimensional case, the desired critical fron-
tier, i.e. the one for which the maximum water level at the
coastξm is ξc = 1 m, can be extracted in the form of a con-
tour using, for instance, packaged software such as Matlab©
functioncontour(), the accuracy of the solution being depen-
dent on the grid increment.

Yet, the afore-described approach may rapidly become
prohibitive and impractical due to the computation time cost
of a single numerical simulation, especially when using the
model class 3 or even model class 2 (with computation time
cost varying from a few minutes to hours). Let us consider
a model with moderate computation time cost of 15 min;
then, the afore-described example case would require less
than 9 days of computation, which is achievable using a com-
puting cluster composed of a moderate number of computer
units (CPU). If the estimate of0c was carried out for four
offshore conditions (e.g. significant wave heightHs, wave
period Tp, direction θ and offshore water levelξo) using
a design grid with each dimension discretized into 30 ele-
ments, the total computation time cost would reach almost
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Figure 1. Schematic representation of the critical frontier c in the offshore conditions 4 
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Fig. 1. Schematic representation of the critical frontier0c in the
offshore conditions domain. This frontier represents the boundary
between the “safe” and “unsafe” regions (red-coloured area), i.e.
the boundary of the set of offshore forcing conditions, which lead
to a “high level” of water level at the coast.

8400 days, which is obviously not achievable and would
require a computing cluster composed of at least 500 CPU
to reach a computation time of about two weeks.

To tackle this challenge, two strategies can be proposed:
appropriate grid computing architecture (e.g. Boulahya et
al., 2007) or the use of meta-models (also named response
surfaces or surrogate models; see for instance Forrester et
al. (2008)). The latter approach basically consists in replac-
ing the numerical model by a “costless-to-evaluate approx-
imation”. This has been proposed in a variety of other con-
texts: structural reliability problems (Bucher and Bourgund,
1990), environmental issues (Iooss et al., 2006), natural haz-
ard assessments (Rohmer and Foerster, 2011), geological
storage performance assessments (Rohmer and Bouc, 2010),
etc.

The objective of the present paper is to explore the appli-
cability of the meta-modelling techniques for identifying the
critical frontier in the offshore condition domain, when us-
ing computation time consuming hydrodynamic models. To
let the “crude” approach be achievable with a cluster com-
posed of a moderate number of CPU (around 10), we pro-
pose to focus on a hydrodynamic model of class 2 charac-
terized by a moderate computation time (of the order of 15
min). The critical frontier estimated in this manner is viewed
as a reference to be compared to the one estimated using the
meta-modelling approach. Both strategies are tested by ap-
plying them to an idealised site located on the Mediterranean
coast in southern France considering two cases: (1) the first
one is two dimensional to ease the visual analysis and aims
at identifying the critical combinationsxc={ξo; Hs} ; (2) the
second one is more complex and aims at identifying the four-
dimensional critical combinationsxc={ξo; Hs ; Tp ; θ}.

The remainder of the paper is organized as follows. In a
first section, the general strategy relying on meta-modelling
is described. We focus in a second section on kriging

meta-models (Forrester et al., 2008). To improve the local
accuracy of the approximation of the contour of interest,
we combine the meta-modelling strategy with a sequential
adaptive sampling approach relying on the recent advances
of contour estimation from complex computer codes (for a
recent overview, see Bect et al., 2012). In a third section,
we describe the study site and the associated moderate-to-
evaluate (of the order of 15 min) numerical model to compute
the maximum water level at the coast. The meta-modelling
strategy is then tested on both test cases (two- and four-
dimensional cases).

2 Meta-modelling strategy

In this section, we describe the methodology relying on the
meta-modelling technique to estimate the critical frontier
from a complex and time consuming hydrodynamic code,
which is referred to as “simulator” and denotedf .

2.1 Principle of meta-modelling

This technique consists in replacingf by a mathematical ap-
proximation referred to as “meta-model” (also named “re-
sponse surface” or “surrogate model”). This corresponds to a
function constructed using a few computer experiments (i.e.
a limited number of time consuming simulations), and aims
at reproducing the behaviour of the “true” model in the do-
main of model input parameters (here the offshore condi-
tions) and at predicting the model responses with a negligi-
ble computation time. In this manner, any approach relying
on intensive multiple simulations (such as global sensitivity
analysis, in-depth uncertainty analysis or intensive paramet-
ric analysis for the case described in the present article) is
made achievable at a “reasonable” computation time cost.

2.2 Methodology

The main steps of the methodology are summarized in Ta-
ble 1. A meta-model is constructed and validated with an
initial budget of training data (Steps 1 to 3). It is then up-
dated (Step 4) using candidate points selected to improve the
local accuracy in the regions that contribute the most to the
estimate of0c. Using this costless-to-evaluate function,0c
can be obtained from a fine grid on the offshore conditions
space (Step 5) using for instance packaged software such as
Matlab© functioncontourc(). Steps 1 to 4 are detailed in the
next paragraphs.

2.2.1 Step 1: setting the training data

The approximation is constructed by runningf given a lim-
ited numbern0 of different model input parameters (i.e.
of offshore conditions vectorsx), named training samples.
Hence, the objective is to create a mapping (named train-
ing data) between the offshore conditionsx and the quantity
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Table 1.Sequential strategy for extracting the critical frontier.

Step Description

1 Evaluateξm consideringn0 offshore conditions
randomly selected using a LHS technique;

2 Based on the initial training data, construct the
meta-model;

3 Assess the quality of the approximation through
cross-validation procedures;

4 While the total affordable simulation budget is
not exhausted:
4.1: Select the next best candidate configuration

based on an appropriate criterion;
4.2: Evaluate the correspondingξm;
4.3: Update the training data and re-construct

the meta-model;

5 Extract the0c using a fine design grid in the
offshore conditions space.

of interest, namely the maximum water level at the coast
ξm. A trade-off should be found between maximizing the
exploration of the offshore conditions domain and minimiz-
ing the number of simulations, i.e. a trade-off between the ac-
curacy of the approximation and the computation time cost.
To fulfill such requirements, we propose to randomly select
the training samples by means of the Latin hypercube sam-
pling (LHS) method (McKay et al., 1979) in combination
with the “maxi-min” space-filling design criterion (Koehler
and Owen, 1996).

2.2.2 Step 2: construction of the meta-model

Using the training data, the approximation can be carried out
relying on several types of meta-models, either using simple
polynomial regression techniques, non-parametric regression
techniques (Storlie et al., 2009), kriging modelling (Forrester
et al., 2008), artificial neural networks (Papadrakakis and
Lagaros, 2002), or polynomial chaos expansions (Ghanem
and Spanos, 1991), etc. The choice of the meta-model type
is guided by the a priori non-linear functional form of the
simulator, as well as the number of input parameters. In the
present study, we focus on kriging meta-modelling. This non-
parametric technique presents several attractive features. It is
flexible to any kind of functional form of the simulator. In
particular, it introduces less restrictive assumptions on the
functional form of the simulator than a polynomial model
would imply; it is an exact interpolator, which is an impor-
tant feature when the simulator is deterministic; it provides a
variance estimate of the prediction, the latter being very use-
ful to guide the selection of future training samples according
to the target of the optimization problem (see Sect. 3). Yet, it
should be noted that these advantages come at the expense of

a parameter learning stage, which may pose additional com-
putational difficulties (see e.g. Langewisch and Apostolakis,
2010).

2.2.3 Step 3: validation of the meta-model

Usually the differences between the approximated and the
true model output (or residuals) are used to estimate the
quality of the approximation. Yet, for interpolating meta-
models (e.g. splines, kriging, etc.), the residuals at the sam-
pled points are null and an alternative is to estimate the ex-
pected level of fit (i.e. quality of prediction) to a data set that
is independent of the original training data that were used to
construct the meta-model, i.e. to “yet-unseen” data. A first
approach would consist in using a test sample of new data.
Though the most efficient, this might be often impracticable
as additional simulator runs are costly to collect. A possible
option to overcome such a situation, coined by Tukey (1954)
as “uncomfortable science”, is to rely on the cross-validation
procedures such as the “leave-one-out” cross validation tech-
nique (e.g. Hastie et al., 2009). Further details are provided
in Appendix A.

2.2.4 Step 4: adaptive sampling

Once constructed and validated, the meta-model can replace
the simulator to extract the desired contour through an in-
tensive parametric analysis on a regular fine design grid in
the offshore conditions space. For instance, the choice of
the initial number of training data is advocated by Ranjan
et al. (2008) to reach at least 25 to 35 % of the total budget,
but no exact rule exists.

Yet, this approach may not be efficient in several cases:
when the allowable budget of simulationsn0 is low; when
the number of offshore conditions is high (i.e. requiring a
large number of training data to explore the offshore condi-
tion domain); and when the relationship betweenx andξm is
highly non-linear for instance.

Based on the basic idea that not all offshore conditions
configurations will contribute to the estimate of0c, sampling
effort should then be concentrated in the regions of the off-
shore conditions, which provide the maximum information
regarding0c, i.e. both to improve the local accuracy of the
approximation of0c and to explore the design space in a
global manner, where desired contour may also exist (see
Sect. 3.2). Hence, to efficiently use the available resources,
we propose to complete steps 1 to 3 by a sequential sam-
pling approach to adaptively select the best training data can-
didates fulfilling the afore-mentioned requirements.

The definition of a selection criterion to solve this “con-
tour estimate” problem has only been recently addressed (see
Bect et al., 2012 and references therein). This type of op-
timization problem differs from the traditional problem of
searching the global optimum (minimum or maximum) of
a black-box function, which has given rise to numerous
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research works over the last two decades (see Forrester and
Keane, 2009). One major difficulty is the nature of the so-
lution of the “contour” optimization problem, which corre-
sponds to a set of solutions, whereas it corresponds to a
unique solution (or at least of finite number) for the tradi-
tional optimization problem. The comparison of the existing
criteria is beyond the scope of this article, and we focus on
the sampling criterion developed by Ranjan et al. (2008) (see
Sect. 3).

To summarize, the meta-model is initially constructed and
validated based on a first training set. The meta-model is then
iteratively updated using the candidate selected based on the
sampling criterion, and the procedure is continued until the
allowable number of simulations is exhausted.

3 Adaptive sampling using kriging meta-model for
contour estimate

In this section, we focus first on kriging meta-
modelling (Forrester et al., 2008), for which selection
criteria adapted to contour extraction from computer codes
have been recently defined to sequentially guide the sam-
pling effort (Bect et al., 2012). Next, we more specifically
focus on the selection criterion developed by Ranjan et
al. (2008).

3.1 Introduction to kriging meta-model

We introduce here the basic concepts of kriging meta-
modelling, which can be viewed as an extension to com-
puter experiments of the kriging method used for spatial data
interpolation and originally developed by Krige (1951) for
mining applications. For a more complete introduction to
kriging meta-modelling and full derivation of equations, the
interested reader can refer to Sacks et al. (1989); Jones et
al. (1998); Jones (2001); Forrester et al. (2008).

The kriging model considers the deterministic (i.e. not ran-
dom) response of the simulatorξm = f (x) as a realization of
a Gaussian stochastic processF so thatf (x)=F (x,ω), where
ω belongs to the underlying probability space�. In the fol-
lowing, we use the notationF (x) for the process andF (x,ω)
for one realization. The processF results from the summa-
tion of two terms:

– f0(x), the deterministic mean function, which is usually
modelled by a constant or a linear model and represents
the trend off ;

– Z(x), the Gaussian-centred stationary stochastic pro-
cess (with zero mean and covariance described below),
which describes the deviation (i.e. departure) of the
model from its underlying trendf0.

The stochastic processZ is characterized by the covariance
matrix C, which depends on the varianceσ 2

Z and on the

correlation functionR, which governs the degree of correla-
tion through the use of the vector of length-scale parameters
ω between any input vectors. The covariance betweenZ(u)
andZ(v) is then expressed asC(u;v) = σ 2

Z · R(u;v), where
u = (u1; u2 ; . . . ; ud) andv= (v1; v2 ; . . . ; vd) are two input
vectors of dimensiond.

A variety of correlation (and covariance) functions has
been proposed in the literature (see e.g. Stein, 1999). The
commonly used model is the Gaussian correlation function
defined as follows:

R(u;v) = exp (−

d∑
i=1

‖|ui − vi‖|
2/ωi) (1)

where the vectorω determines the rate at which the correla-
tion decreases as one moves in thei-th direction (withi from
1 to d). Intuitively, if u=v, then the correlation is 1, whereas
if the distance between both vectors tends to the infinity, then
the correlation tends to 0. In this article, we chose to focus on
the Mat́ern covariance family. The Matérn correlation func-
tion presents more flexibility than Gaussian correlation func-
tion, as it allows regulating the degree of differentiability of
the underlying random process in addition to the length-scale
parameters. This correlation model is described in further de-
tails in the Appendix B.

Let us defineXD the design matrix composed of the vec-
tors of offshore conditionsx selected in step 1 of the method-
ology (i.e. the training samples) to be simulated, so that
XD=(x(1) ;. x(2); . . . ; x(n0)) and ξD the vector of simu-
lated maximum water levels at the coast associated with
each selected training samples, so thatξD=(ξ (1)

m = f (x(1)) ;
ξ

(2)
m = f (x(2)) ; . . . ; ξ (n0)

m = f (x(n0))).
Under the afore-described assumptions, the distribution of

the maximum water level for a new input vector of offshore
conditionsx∗ follows a Gaussian distribution conditional on
the design matrixXD and of the corresponding simulated wa-
ter levelsξD with expected valuẽξm for the new configura-
tion x∗ and variances2 respectively defined by Eqs. (2) and
(3):

ξ̃m (x∗)

= E(F(x∗)
∣∣XD;ξD) = ξ̂m + r(x∗)T · R−1

D · (ξD − I · ξ̂m)

(2)

with the constant̂ξm = (IT
· R−1

D · I)−1
· (IT

· R−1
D · ξD)

s2(x∗) = Var(F (x∗)
∣∣XD;ξD) = σ̂ 2

·

(
1− r(x∗)T · R−1

D

·r(x∗) +
(1− IT

· R−1
D · r(x∗))2

IT · R−1
D · I

)
(3)

with the constant̂σ 2
= (ξD−I · ξ̂m)T ·R−1

D · (ξD−I · ξ̂m)T /n0
wherer(x∗) is the correlation vector between the test candi-
datex∗ and the training samples;RD is the correlation matrix
of the training samplesXD andI is the unit matrix of sizen0.
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Fig. 2. (A) Location of the study site and observation point where the calculations are carried out;(B) SWAN 2-D domain model of the study
site.
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Figure 3. Schematic cross shore representation of the processes accounted for in the SWAN 3 
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Fig. 3. Schematic cross shore representation of the processes ac-
counted for in the SWAN models for the idealized study site.

The conditional mean in Eq. (2) is used as a predictor, i.e.
the “best estimate”. The conditional variance in Eq. (3) can
be used to estimate the mean square error of the predictor
and to deduce a confidence interval associated with the pre-
diction. The regions of the offshore conditions space where
few data are available are underlined with higher variance,
so that Eq. (3) also provides a local indicator of the predic-
tion accuracy useful to guide sampling effort as described in
Sect. 3.2.

The above Eqs. (2) and (3) are categorized as “ordinary
kriging” and are the most common version of kriging used
in engineering (Forrester et al., 2008). A more general form
of kriging equations exists, known as “universal kriging”,
and allows computing the deterministic mean functionf0 as
a polynomial regression (generally of low-order) with un-
known coefficients. For sake of clarity, these equations are
presented in Appendix C.

In practice, the parameters of the kriging model corre-
sponding to the constant (or the coefficients of regression)
used to model the mean functionf0, the varianceσ 2

Z and
the length scale parametersω are determined through max-
imum likelihood estimation procedure (details can be found
in Santner et al., 2003). In this article, we use the package

named “DiceKriging” developed by Roustant et al. (2012) of
the R software (R Development Core Team, 2011). In partic-
ular, this package implements the efficient likelihood max-
imization algorithm of Park and Baek (2001) to overcome
numerical instabilities, multimodality and dimensionality is-
sues associated with kriging model parameters estimation.

3.2 Definition of the selection criterion

The sampling strategy described in Sect. 4 requires the def-
inition of an appropriate selection criterion. Following the
same spirit as the developments done by Jones et al. (1998)
for the optimization (maximizing or minimizing) of expen-
sive black-box computer codes, Ranjan et al. (2008) defined
a selection criterion adapted to contour estimation based on
the following improvement functionI for any offshore con-
ditions vectorx:

I (x) = ε2(x) − min ((F (x) − ξc)
2
;ε2(x)) (4)

whereε is proportional (for some constantα) to the mean
square error using Eq. (3) and defines a neighbourhood (the
first term in the “min” function being the Euclidean distance)
around the targeted contour0c associated withξc.

Jones et al. (1998) and Jones (2001) demonstrated that
merely maximizingI would be inefficient and advocated to
select the best candidate by maximizing the expected im-
provement functionE(I) over the offshore conditions do-
main using the fact that the simulator outputf (x) follows a
Gaussian distribution with momentsξ̃m ands2 respectively
defined by Eqs. (2) and (3). E(I) is the summation of three
termsA1, A2 andA3 as expressed by Eq. (5a, b, c) for any
offshore conditions vectorx:
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A1 (x) =(
ε (x)2

− (ξc − ξ̃m(x))2
)

·
(
8 (u+) − 8 (u−)

)
(5a)

A2 (x) =

− 2 · s(x) ·

(
ξc − ξ̃m(x)

)
·
(
φ (u+) − φ (u−)

)
(5b)

A3 (x) = −s(x)2
·

u+∫
u−

w2
· φ(w)dw (5c)

whereu±
= (ξc − ξ̃m (x) ± ε(x))

/
s(x); φ is the Gaussian

probability density distribution and8 is its cumulative form.
Ranjan et al. (2008) provides an intuitive interpretation of

each of the three terms:

1. The first termA1 dominates the expression whenf (x)
is close toξc, hence corresponding to the points lying
close to the regions of the offshore conditions specified
by ξc± ε(x), i.e. in the vicinity of0c;

2. A2 dominates whenf (x) is further away fromξc so
that the sampling is guided outside the regions fulfilling
ξc± ε(x), where the uncertainty in the prediction is
high (i.e. where the prediction variance is high);

3. the last termA3 guides the sampling only within the
regions fulfillingξc± ε(x), where the uncertainty in the
prediction is high.

The three terms taken together allows to guide sampling in
the vicinity of 0c where little information is available (A1
andA3) and to explore outside the vicinity of0c (termA2) in
regions scarcely sampled where the contour may also exist.
Thus,E(I) provides a selection criterion to balance local (in
the vicinity of0c) and global exploration of the offshore con-
ditions domain.

The interested reader can refer to the recent works of Bect
et al. (2012) for the definition of other selection criteria for-
mulated following either similar principles using an improve-
ment function, or a modified version of the traditional inte-
grated mean square error, or the Bayesian formalism.

In practice, the best candidates for simulation are selected
in Step 4.1 of the methodology (see Table 1) by maximiz-
ing Eq. (4). In the present article, the package “KrigInv” de-
veloped by Picheny and Ginsbourger (2012) of the R soft-
ware (R Development Core Team, 2011) is used.

4 Application to the identification of critical offshore
conditions

In this section, we present the application of the meta-
modelling strategy on an idealised site (description in
Sect. 4.1 and associated model in Sect. 4.2) considering two
cases (respectively Sects. 4.3 and 4.4): (1) the first one is
two dimensional to ease the visual analysis and aims at iden-
tifying the critical combinationsxc={ξo; Hs} ; (2) the sec-
ond one is more complex and aims at identifying the four-
dimensional critical combinationsxc={ξo; Hs ; Tp ; θ}.

4.1 Study site

The application on the idealized site is considered for demon-
stration purposes only. The study site located on the Mediter-
ranean coast is characterised by a lido, which is of primary
importance both at an environmental and economic level for
the region (see Fig. 2). This lido is protected from the sea,
characterised by significant touristic activities. At the sea-
front, there are pedestrian areas, which have already been
flooded, at least during two storms: 6–8 November 1982 and
the 4 December 2003. This pedestrian area is limited by a
sea-wall having a height of about 50 cm above the pedestrian
street as schematically represented in Fig. 3. In this context,
the critical maximum water level at the coast, including storm
surges, tide, wave set-up and run-up, should not exceed the
foot of the sea-wall, which is located at 2.15 m above the
vertical reference (IGN). In this manner, the sea water is pre-
vented from invading the area through the sea-wall openings,
and specifically at the observation point (Fig. 2), which is just
in front of connexion roads with the lido.

4.2 Model set-up and parameters

First, we should keep in mind that the water level at the
coast results from the offshore water levelξo (tide and storm
surge) and the run-up resulting from two dynamical pro-
cesses, which are the wave set-upη and the swashS. Here,
we set a modelling strategy to account for these three con-
tributions (ξo ; η; S). We focus the analysis on a numerical
model of class 2 (see introduction) based on the following
assumptions. First, the sea level induced by storm surges and
tide is assumed uniform in the local area. Second, the wave
set-up is computed using the code SWAN (Booij et al., 1999).
It solves the wave action equation and provides wave spec-
tra and wave set-up. At the offshore boundary (see Fig. 2b),
the offshore conditionsx={ξo; Hs ; Tp ; θ} are imposed.
The bathymetric and topographic data used for the modelling
have been obtained through lidar measurements (data pro-
vided by SMNLR), as well as bathymetric surveys (data pro-
vided by SHOM). The grid size is 2 m and the 2-D domain
represented in Fig. 2b. Finally, to compute the swash-induced
elevationS, we use the formulation of Stockdon et al. (2006).
Based on the assumption of reflective beach, the analysis of
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Figure 4. A) leave-one-out cross-validation for the construction of the initial kriging model; 3 

Black dots are the water level estimations. B) Best estimate of c in the {o  Hs} domain 4 

associated with c=2.15m (green solid line) using a kriging model constructed with 10 5 

training data (black dots) selected randomly from a LHS technique. The associated pair of 6 

contours at confidence level 95% (defined as the kriging mean (Eq. 2) +/- twice the square 7 

root of the variance (Eq. 3)) is represented by dashed green lines. The reference contour 8 

(estimated using computation grid architecture) is represented by a red solid line. 9 

10 

Fig. 4. (A) leave-one-out cross-validation for the construction of
the initial kriging model; black dots are the water level estima-
tions. (B) Best estimate of0c in the {ξo ; Hs} domain associ-
ated withξc = 2.15 m (green solid line) using a kriging model con-
structed with 10 training data (black dots) selected randomly from a
LHS technique. The associated pair of contours at confidence level
95 % (defined as the kriging mean (Eq. 2)± twice the square root
of the variance (Eq. 3)) is represented by dashed green lines. The
reference contour (estimated using computation grid architecture)
is represented by a red solid line.

the equations proposed in Stockdon et al. (2006) shows that
we can, as a first approximation, assume thatS is equal to
the set-upη. Thus the maximum sea-levelξm at the beach
can be assumed to approximately equalξo+2η. All processes
and parameters are schematically depicted in Fig. 3.

Noteworthy for modelling simplicity purposes, we assume
that the lido is not connected to the sea, and thus we neglect
the influence of this lido on the submersion phenomena.

4.3 Two-dimensional test case

In this section, we tackle the problem of estimating the crit-
ical frontier0c considering the combination of two offshore
conditionsxc=(ξo; Hs) leading to the critical water level at
the coastξc=2.15 m (at the observation point). We assume
that the offshore wave direction and period are constant and
fixed at their most frequent values of respectively 135◦ N and
7 s, which have been observed in the studied area region.

Due to the moderate computation time cost of 15 min (in
average depending on the input parameter values), the
identification of the critical frontier can be solved, in a first
approach, using a cluster of 10 CPU (2 GHz Pentium 4PC)
considering 900 input parameters configurations selected
within the domain [0.25; 1.50 m]×[0.5; 7 m] (each dimen-
sion being discretized in 30 elements). The total computation
time reached less than one day to finally extract0c (red solid
line, Fig. 4b).

In a second approach, we simulateξm considering
10 different offshore conditions randomly selected within
the domain [0.25; 1.50 m]×[0.5; 7 m] based on a LHS
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Figure 5. A) Expected improvement function values (scaled between 0 and 1) for the first 3 

iteration. The best candidate to be selected for simulation is depicted by a green dot. The 4 

reference contour is represented by a red solid line; B) The critical frontier c estimated using 5 

a kriging model constructed with the initial 10 training data and the selected training data. The 6 

associated pair of contours at confidence level 95% (defined as the kriging mean (Eq. 2) +/- 7 

twice the square root of the variance (Eq. 3)) is represented by dashed green lines. C) 8 

Expected improvement function values for the second sampling iteration; D) The critical 9 

frontier c estimated using a kriging model constructed with the initial 10 training data and 10 

the selected training data for the two first sampling iterations. 11 

12 

Fig. 5. (A) Expected improvement function values (scaled between
0 and 1) for the first iteration. The best candidate to be selected for
simulation is depicted by a green dot. The reference contour is rep-
resented by a red solid line;(B) the critical frontier0c estimated
using a kriging model constructed with the initial 10 training data
and the selected training data. The associated pair of contours at
confidence level 95 % (defined as the kriging mean (Eq. 2)± twice
the square root of the variance (Eq. 3)) is represented by dashed
green lines.(C) Expected improvement function values for the sec-
ond sampling iteration;(D) the critical frontier0c estimated using
a kriging model constructed with the initial 10 training data and the
selected training data for the two first sampling iterations.

technique (see Sect. 2, step 1). On this basis, a kriging model
is constructed using the Matérn covariance function (ν=5/2;
see Appendix B) and a linear trend (see Sect. 3). This meta-
model is then validated, and the leave-one-out cross val-
idation procedure provides a coefficient of determination
R2

CV = 99.7 % (see Appendix, Eq. A1), which demonstrates
the high level of prediction quality of the kriging model. Fig-
ure 4a depicts the relationship between the 10 simulated wa-
ter levelξm (named “observed”) and the corresponding es-
timations using a kriging model constructed following the
procedure described in Sect. 2.3. The closer the dots are to
the first bisector, the better the quality of prediction.

The best estimate of0c, as provided by Eq. (2), is depicted
by the green solid line in Fig. 4b. This allows the compari-
son and the reference contour. We can note that the reference
contour lies within the region bounded by the pair of con-
tours (green dashed lines, Fig. 4b) computed at confidence
level of 95 %. These correspond to the kriging mean (Eq. 2)
± twice the square root of the variance (Eq. 3). However,
there is a poor agreement between the reference contour and
the best estimate with several discrepancies. Besides, the
width of the pair of contours computed at confidence level
of 95 % appears quite large.
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On this basis, the sequential sampling strategy described
in Sect. 3 is performed so that 10 additional input parame-
ter configurations are selected in the vicinity of the targeted
contour defined assuming a constantα = 0.5 (see Eq. 4). Fig-
ure 5 shows the two first iterations of the sequential sampling
strategy. Figure 5a provides the mapping of the expected im-
provement function values (scaled between 0 and 1) in the
offshore conditions space: the best candidate for simulation
corresponds to the maximum of this function. Figure 5b pro-
vides the updated estimate of0c (green solid line), i.e. the
one estimated using a kriging model constructed on training
data enriched with the selected training point. Interestingly,
the selection of a training point implies the decrease of the
width of the pair of contours at level of confidence 95 % (see
iteration no. 2 in Fig. 5d).

To test the efficiency of using the adaptive sampling strat-
egy, we estimate0c using a “crude” meta-modelling ap-
proach consisting in selecting training samples only relying
on LHS to explore the offshore conditions space. Figure 6a
provides the estimation of0c using a kriging model with 20
training data selected from LHS, whereas Fig. 6b provides
0c extracted using a kriging model with 10 training samples
selected from LHS completed by 10 training data selected
using the adaptive sampling strategy. Noteworthy, the adap-
tively selected training samples are preferably located in the
vicinity of the contour, indicating that both termsA1 and
A3 in Eqs. (5a) and (5c) (linked with the local search; see
Sect. 3.2) dominate the selection criterion.

Clearly, the best estimate using the adaptive sam-
pling strategy deviates very little from the refer-
ence. Interestingly, the total computation cost reached
5 h (20 simulations× 15 min) using a single CPU to be
compared to about 1 day using the computing grid archi-
tecture of 10 CPU. The training data of the kriging model
constructed with no adaptive sampling should be completed
at least with 20 additional training data, i.e. based on a total
number of 40 training data, to reach an agreement between
the best estimate and the reference contour as good as the
one reached with adaptive sampling strategy.

4.4 Four-dimensional test case

In this section, we tackle the problem of estimating the
critical frontier 0c considering the four offshore conditions
xc=(ξo; Hs ; Tp ; θ ) associated withξc = 2.15 m at the ob-
servation point. This problem is more complex than the one
tackled in Sect. 4.3 as the input space to be explored is
four dimensional, hence far larger. Furthermore, contrary to
Sect. 4.3, estimating the reference contour in four dimensions
using a grid of moderate number of CPU is hardly achiev-
able, as outlined in the introduction.

To demonstrate the efficiency of the meta-modelling strat-
egy, we propose to extract a sub-set of the four-dimensional
0c in the {ξo; Hs} space considering a fixed wave period
Tp=7 s and wave directionθ=135◦ N. In this manner, the
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Figure 6. Best estimate of the two-dimensional c (green solid line) in the {o  Hs} domain. 3 

The corresponding pair of contours at confidence level of 95% (defined as the kriging mean 4 

(Eq. 2) +/- twice the square root of the variance (Eq. 3)) is represented by green dashed lines; 5 

The red solid line is the reference contour. A) The training data is composed of an initial 6 

budget of 10 samples (black dots) and 10 additional samples (green dots) both selected using 7 

LHS technique; B) The training data is composed of an initial budget of 10 samples (black 8 

dots, as for the case with no adaptive sampling) and 10 additional samples (green dots) 9 

adaptively selected. 10 

11 

Fig. 6.Best estimate of the two-dimensional0c (green solid line) in
the{ξo ; Hs} domain. The corresponding pair of contours at confi-
dence level of 95 % (defined as the kriging mean (Eq. 2)± twice the
square root of the variance (Eq. 3)) is represented by green dashed
lines; The red solid line is the reference contour.(A) The training
data are composed of an initial budget of 10 samples (black dots)
and 10 additional samples (green dots) both selected using LHS
technique.(B) The training data are composed of an initial budget
of 10 samples (black dots, as for the case with no adaptive sampling)
and 10 additional samples (green dots) adaptively selected.
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Figure 7. Best estimate of sub-set of the four-dimensional c (green solid line) in the {o  Hs} 3 

domain defined for fixed Tp=7s and =135°N using a four-dimensional kriging model. The 4 

corresponding pair of contours at confidence level of 95% (defined as the kriging mean (Eq. 5 

2) +/- twice the square root of the variance (Eq. 3)) is represented by green dashed lines; The 6 

red solid line is the reference contour. A) Sampling strategy with no adaptive selection. The 7 

training data is composed of an initial budget of 20 samples (black dots) and 10 additional 8 

samples (green dots); B) Sampling strategy with adaptive selection. The number of samples in 9 

is identical to A); C) Sampling strategy with no adaptive selection. The training data 10 

correspond to the one of A) completed by 10 additional training data (blue dots); D) Sampling 11 

strategy with adaptive selection. The training data correspond to the one of B) completed by 12 

10 additional training data (blue dots). 13 

14 

Fig. 7. Best estimate of sub-set of the four-dimensional0c (green
solid line) in the{ξo ; Hs} domain defined for fixedTp = 7 s and
θ = 135◦ N using a four-dimensional kriging model. The corre-
sponding pair of contours at confidence level of 95% (defined as the
kriging mean (Eq. 2)± twice the square root of the variance (Eq. 3))
is represented by green dashed lines; the red solid line is the refer-
ence contour.(A) Sampling strategy with no adaptive selection. The
training data are composed of an initial budget of 20 samples (black
dots) and 10 additional samples (green dots);(B) sampling strategy
with adaptive selection. The number of samples in(B) is identi-
cal to (A); (C) sampling strategy with no adaptive selection. The
training data correspond to the one of(A) completed by 10 addi-
tional adaptively selected training data (blue dots);(D) sampling
strategy with adaptive selection. The training data correspond to the
one of(B) completed by 10 additional adaptively selected training
data (blue dots).
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Figure 8. Matrix of scatterplots showing the training data in the four dimensional domain of 2 

offshore conditions: initial (black dots), 10 first adaptively selected training data (green dots), 3 

and 10 additional ones (blue dots). 4 

Fig. 8. Matrix of scatter plots showing the training data in the four- dimensional domain of offshore conditions: initial (black dots), 10 first
adaptively selected training data (green dots), and 10 additional ones (blue dots).

“reference” contour, as calculated using the computing grid
architecture, can be re-used for comparison.

An initial four-dimensional kriging model is constructed
using 20 training data randomly selected within the following
offshore conditions domain [0.25 ; 1.5 m]×[0.5 ; 7 m]×[2.5
; 16 s]×[40◦ N ; 200◦ N] and using the LHS technique. The
cross-validation procedure providesR2

CV=91.6 % (see Ap-
pendix, Eq. A1), which demonstrates a satisfactory level of
prediction quality of the kriging model.

Similarly to Sect. 4.3, two meta-modelling strategies are
conducted: the first one considers no adaptive sampling and
merely selects training samples using LHS. Figure 7a depicts
the comparison between the sub-set of the four-dimensional
0c estimated in the{ξo; Hs} space considering a fixed wave
period Tp = 7 s and wave directionθ= 135◦ N (green solid
line) and the reference contour (red solid line). Two train-
ing sample sizes are used: 10 training samples in addition
to the 20 initial training ones (Fig. 7a) and 20 training sam-
ples in addition to the 20 initial training ones (Fig. 7c). For
the first sample size, the visual inspection of Fig. 7a shows
a rather poor agreement, the reference contour being even
outside the region bounded by the pair of contours estimated
at confidence level of 95 %. For the second training sample
size, the agreement of the estimate with the reference contour

is equivalent to the one between the estimate using a krig-
ing model constructed with 20 initial training samples and
10 additional adaptively selected ones (Fig. 7b). The accu-
racy of the approximation using the adaptive strategy is im-
proved by increasing the number of samples (Fig. 7d).

Figure 8 provides the matrix of scatter plots showing
the distribution of the selected training data in the four-
dimensional domain of offshore conditions. This indicates
that the second termA2 (see Eq. 5b), linked with the global
exploration of the design space, dominates the selection.
The exploration of the domain preferably operates by fix-
ing the first and second coordinates in the vicinity of the
bounds (Hs = 7 m andξo = 1.683 m) and by exploring the two
remaining dimensions (Tp andθ ).

A second validation test is performed as follows. The
four-dimensional kriging model (constructed with 20 initial
training samples and 20 additional adaptively selected ones,
Fig. 7b, bottom) provides the best estimate of the critical
frontier 0c. A set of new test data has then been generated
by randomly selecting 60 different combinations in the four-
dimensional domain of onshore conditions, which satisfy
ξ̃m(x) = ξc = 2.15 m, i.e. located on the best estimate of0c.
For each selected combination, a hydrodynamic simulation
is effectively run. The numerically computed water levels at
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the coast are then compared toξc = 2.15 m. The root-mean-
square error reaches 0.0107 m, hence demonstrating the “sat-
isfactory” prediction quality of the kriging meta-model. In-
terestingly, this good performance is achieved by running the
numerical model only 40 times, hence corresponding to a to-
tal computation cost of about 12 h using a single CPU. This
should be compared to the computation time cost of about
two weeks that would have been achieved if we had used a
computation grid architecture composed of at least 500 CPU.

Finally, though the results are satisfactory using the ideal-
ized site on the Mediterranean coast, it should be underlined
that for any real-case application, carefully addressing the
robustness of the sequential sampling procedure with respect
to the procedure of estimation of the covariance parameters
of the kriging meta-model remains the key ingredient of the
proposed meta-modelling strategy.

5 Concluding remarks and further works

In the present article, we described a methodology to over-
come the computation challenge of extracting the critical
frontier, corresponding to the set of offshore conditions lead-
ing to high water level at the coast, from complex compu-
tational, time-consuming, hydrodynamic simulations using a
fine design grid. Such information is of primary importance
either to constrain early warning systems based on hydro-
meteorological forecast or observations, or to contribute to
the return period calculation of the hazard level at the coast.
Besides, it can eventually support the implementation of in-
novative “inverse” risk assessment methodology as recently
proposed for fluvial inundation (Cunderlink and Simonovic,
2007) or for coastal flooding (Idier et al., 2010).

The proposed strategy relies on the kriging meta-
modelling combined with an adaptive sampling approach us-
ing the expected improvement function developed by Ran-
jan et al. (2008) for contour extraction from complex com-
puter codes. The strategy was applied on a simplified study
site at the Mediterranean coast in southern France. The effi-
ciency of the meta-modelling strategy was demonstrated by
comparing the results: (1) from a strategy relying on com-
puting grid architecture composed of a moderate number of
CPU; (2) from a “crude” meta-modelling approach with no
adaptive sampling. For both test cases (two and four dimen-
sional), we showed that the critical offshore conditions can
be estimated with a good level of accuracy compared to the
reference contour using a very limited number (of a few tens)
of computationally intensive hydrodynamic simulations.

Yet, the computation provided in this study was performed
for a single observation point at the coast, whereas risk man-
agement of coastal flooding requires the spatial extent of the
inundation. In future research, it would be worthwhile to ad-
dress this spatial issue relying for instance on meta-models
with spatially distributed outputs and taking advantage of the

recent advances in the meta-modelling community (see e.g.
Marrel et al., 2011).

Appendix A

Leave-one-out cross validation procedure

The “leave-one out” cross validation technique (see e.g.
Hastie et al., 2009) involves using a single observation from
the initial training data as the validation data, and the remain-
ing samples as the new training data (i.e. composed of the
original samples minus the one selected). A meta-model is
then constructed with the new training data to predict the val-
idation data. This procedure is repeated so that each observa-
tion in the initial training data is used once as validation data.
The coefficient of determinationR2

CV for the procedure can
be computed as follows:

R2
CV = 1−

n0∑
i=1

(ξ̃mi − ξmi)
2

n0∑
i=1

(ξmi − ξ̄m)2

(A1)

whereξmi corresponds to the observations in the validation
set (for i from 1 to n0), ξ̄m to the corresponding mean and
ξ̃mi to estimated values using the meta-model.

The coefficientR2
CV provides a metric of the quality of

prediction so that a coefficientR2
CV close to 1 indicates that

the meta-model is successful in matching the validation data.

Appendix B

Mat érn correlation model

Let us define the vectorsu=(u1; u2 ; . . . ; ud) andv=(v1; v2
; . . . ; vd) of dimensiond so thath=u − v=(h1 ; h2 ; . . . ;
hd). The correlation function betweenu andv can be defined

asR(u;v) =

d∏
i=1

g(hi;ωi) whereω is the vector of length-

scales.
Following the Mat́ern modelν=3/2, the functiong holds

as follows (withi=1; 2; . . . ; d):

g(hi;ωi) = (1+
√

3|hi |/ωi) · exp(−
√

3|hi |/ωi). (B1)

Under this model, the process is once differentiable.
Following the Mat́ern modelν=5/2, the functiong holds

as follows (withi=1; 2; . . . ; d):

g(hi;ωi) = (1+
√

5|hi |/ωi + 5h2
i /(3ω2

i )) (B2)

· exp (−
√

5|hi |/ωi).

Under this model, the process is twice differentiable.
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Appendix C

Universal kriging equations

We introduce here the basic concepts of kriging meta-
modelling. For a more complete introduction to kriging
meta-modelling and full derivation of equations, the in-
terested reader can refer to Sacks et al. (1989); Jones et
al. (1998) and Jones (2001); Forrester et al. (2008).

Let us consider the deterministic response of the simulator
ξm = f (x) as a realization of a Gaussian stochastic process
F so thatf (x)=F (x,ω), whereω belongs to the underlying
probability space�. In the following, we use the notation
F (x) for the process andF (x,ω) for one realization. The pro-
cessF results from the summation of two terms:

– f0(x), the deterministic mean function, which takes

the general form f0 (x) =

p∑
i=1

βi · hi (x), where

h(x)=(h1(x) ; h2(x); . . . ; hp(x)) is a vector ofp linearly
independent known functions (named basis functions),
andβ is a vector of unknown real coefficients;

– Z(x), the Gaussian-centred stationary stochastic process
characterized by a zero mean and the covariance matrix
C,which depends on the varianceσ 2

Z and on the correla-
tion functionR, which governs the degree of correlation
through the use of the vector of length-scale parameters
ω between any input vectors.

The covariance between Z(u) and Z(v) is then expressed as
C(u;v) = σ 2

Z ·R(u;v), whereu=(u1; u2 ; . . . ;ud) andv=(v1;
v2 ; . . . ; vd) are two input vectors of dimensiond.

Let us defineXD the design matrix composed of the
vectors of offshore conditionsx selected in step 1 of the
methodology (i.e. the training samples) to be simulated so
that XD=(x(1) ;. x(2); . . . ; x(n0)) andξD the vector of sim-
ulated maximum water levels at the coast associated with
each selected training samples so thatξD=(ξ (1)

m = f (x(1)) ;
ξ

(2)
m = f (x(2)) ; . . . ; ξ (n0)

m = f (x(n0))).
Under the afore-described assumptions, the distribution of

the maximum water level for a new input vector of offshore
conditionsx∗ follows a Gaussian distribution conditional on
the design matrixXD and of the corresponding simulated wa-
ter levelsξD with expected valuẽξm for the new configura-
tion x∗ and variances2 respectively defined by the universal
kriging Eqs. (C1) and (C2):

ξ̃m (x∗) = h(x∗)T · β̂ + c(x∗)T · C−1
D · (ξD − HD · β̂) (C1)

with β̂ = (HT
D · C−1

D · HD)−1HT
D · C−1

D · ξD the vector of gen-
eralised least square estimates ofβ.

s2(x∗) = σ 2
Z − c(x∗)T · C−1

D · c(x∗) + (h(x∗)T − c(x∗)T · C−1
D · HD)

× (HT
D · C−1

D · HD)−1
· (h(x∗)T − c(x∗) · C−1

D · HD)T (C2)

whereHD=[h(x(1)) ; h(x(2)) ; . . . ; h(x(n0))]T is the design
matrix of n0 rows andp columns, andc(x*) is the covari-
ance vector between the test candidatex* and the training
samples.

Note that the above equations can be easily written using
the correlation matrixRD using its relationship betweenCD
andσ 2

Z.
The specific case, where the basis functions reduce to a

unique constant function, corresponds to the “ordinary krig-
ing” as described in Eqs. (2) and (3).

Acknowledgements.The authors thanks the ANR VMC 2006
project VULSACO no. ANR-06-VULN-009, the ANR VMC
2007 project MISEEVA no. ANR-07-VULN-007 as well as
the BRGM funded VULNERISK project, for contributions to
the financial support of the present work. E. Delvallee, R. Pe-
dreros and C. Vinchon are also acknowledged for their contribution.

Edited by: F. Castelli
Reviewed by: V. Picheny and one anonymous referee

References

Bect, J., Ginsbourger, D., Li, L., Picheny, V., and Vazquez, E.:
Sequential design of computer experiments for the estima-
tion of a probability of failure, Stat. Comput., 22, 773–793,
doi:10.1007/s11222-011-9241-4, 2012.

Bertin, X., Bruneau, N., Breilh, J. F., Fortunato, A., and Karpytchev,
M.: Importance of wave age and resonance in storm surges : the
case of Xynthia, Ocean Model., 42, 16–30, 2012.

Boulahya, F., Dubus, I. G., Dupros, F., and Lombard, P.: Foot-
print@work, a computing framework for large scale parametric
simulations: application to pesticide risk assessment and man-
agement, Forum EGEE Enabling Grids for E-sciencE, Manch-
ester, UK, 9–11 May 2007.

Bonneton, P., Barthelemy, E., Chazel, F., Cienfuegos, R., Lannes,
D., Marche, F., Tissier, M.: Recent advances in Serre-Green
Naghdi modelling for wave transformation, breaking and runup
processes, Eur. J. Mech. B.-Fluid, 30, 589–597, 2011.

Booij, N., Ris, R. C., and Holthuijsen, L. H.: A third-generation
wave model for coastal regions, Part I: Model description and
validation, J. Geophys. Res., 104, C4, 7649–7666, 1999.

Bucher, C. G. and Bourgund, U.: Fast and efficient response surface
approach for structural reliability problems, Struct. Saf. 7, 57–66,
1990.

Chini, N. and Stansby, P.: Extreme values of coastal wave over-
topping accounting for sea level rise and climate change, Coast.
Eng., 65, 27–37,doi:10.1016/j.coastaleng.2012.02.009, 2012

Cunderlink, J. M. and Simonovic, S. P.: Inverse flood risk modelling
under changing climatic conditions, Hydrol. Process., 21, 563–
577, 2007.

Fewtrell, T. J., Duncan, A., Sampson, C. C., Neal, J. C., and Bates, P.
D.: Benchmarking urban flood models of varying complexity and
scale using high resolution terrestrial LiDAR data, Phys. Chem.
Earth, 36, 281–291, 2011.

Nat. Hazards Earth Syst. Sci., 12, 2943–2955, 2012 www.nat-hazards-earth-syst-sci.net/12/2943/2012/

http://dx.doi.org/10.1007/s11222-011-9241-4
http://dx.doi.org/10.1016/j.coastaleng.2012.02.009


J. Rohmer and D. Idier: A meta-modelling strategy to identify the critical offshore conditions 2955

Forrester, A. I. J., Sobester, A., and Keane, A. J.: Engineering De-
sign via Surrogate Modelling: A Practical Guide, John Wiley and
Sons Ltd., Chichester, UK, 2008.

Forrester, A. I. J. and Keane, A. J.: Recent advances in surrogate-
based optimization, Progr. Aerospace Sci., 45, 50–79, 2009.

Garrity, N. J., Battalio, R., Hawkes, P. J., and Roupe, D.: Evalua-
tion of the event and response approaches to estimate the 100-
year coastal flood for Pacific coast sheltered waters. Proceeding
of 30th International Conference of Coast. Eng., ASCE, 1651–
1663, 2006.

Ghanem, R. G. and Spanos, P. D.: Stochastic finite elements-a spec-
tral approach, Springer Verlag, New York, 214 pp., 1991.

Haldar, A. and Mahadevan, S.: Probability, reliability, and statistical
methods in engineering design, Wiley, New York, 320 pp., 2000.

Hastie, T., Tibshirani, R., and Friedman, J.: The Elements of Statis-
tical Learning: Data Mining, Inference, and Prediction, 2nd Edn.,
Springer-Verlag, New York, 746 pp., 2009.

Idier, D., Rohmer, J., Turpin, V., and Magnan, A.: A risk based ap-
proach for coastal risk assesment : development of an inverse
methodology, Proc. of Journées Impacts du Changement Clima-
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