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Abstract. Snow avalanches in mountainous areas pose a sig-
nificant threat to infrastructure (roads, railways, energy trans-
mission corridors), personal property (homes) and recre-
ational areas as well as for lives of people living and mov-
ing in alpine terrain. The impacts of snow avalanches range
from delays and financial loss through road and railway clo-
sures, destruction of property and infrastructure, to loss of
life. Avalanche warnings today are mainly based on meteo-
rological information, snow pack information, field observa-
tions, historically recorded avalanche events as well as ex-
perience and expert knowledge. The ability to automatically
identify snow avalanches using Very High Resolution (VHR)
optical remote sensing imagery has the potential to assist in
the development of accurate, spatially widespread, detailed
maps of zones prone to avalanches as well as to build up data
bases of past avalanche events in poorly accessible regions.
This would provide decision makers with improved knowl-
edge of the frequency and size distributions of avalanches
in such areas. We used an object–oriented image interpre-
tation approach, which employs segmentation and classifi-
cation methodologies, to detect recent snow avalanche de-
posits within VHR panchromatic optical remote sensing im-
agery. This produces avalanche deposit maps, which can
be integrated with other spatial mapping and terrain data.
The object-oriented approach has been tested and validated
against manually generated maps in which avalanches are
visually recognized and digitized. The accuracy (both users
and producers) are over 0.9 with errors of commission less
than 0.05. Future research is directed to widespread testing
of the algorithm on data generated by various sensors and
improvement of the algorithm in high noise regions as well
as the mapping of avalanche paths alongside their deposits.

1 Avalanche hazards

Mountainous countries, such as Switzerland, Norway and
Canada, are annually subjected to natural hazards originat-
ing in alpine terrain. Such hazards include rockfall, landslide,
debris flow, flash floods, snow and ice avalanches. The im-
pacts of such hazards range from delays and financial loss
through road and rail line closures, the destruction of prop-
erty and infrastructure, to loss of life. Of these major geolog-
ically and meteorologically controlled natural hazards, snow
avalanches have caused the greatest number of causalities in
Norway during the last decades (Jaedicke et al., 2008). The
same is reported from Switzerland for the period of 1997–
2007 (Harvey and Zweifel, 2008). In the same time period,
an estimated 1020 causalities have been reported as a direct
result of snow avalanches in the entire European Alps and
250 per year worldwide (Schweizer, 2008). Specifically, 155
fatalities from snow avalanche accidents were reported in
Canada during the period 1997–2007 (Jamieson et al., 2011).

Snow avalanches are the result of unstable masses of snow
that detach from a mountain or hillside. Snow avalanches can
occur in various meteorological situations, within variable
terrain and can manifest themselves in many forms, the com-
mon division among avalanches being loose snow versus slab
and wet versus dry snow avalanches. Also powder clouds can
be the component of any dry moving avalanche. The natural
release of an avalanche is typically dependant on parame-
ters such as snowfall, temperature, wind direction and speed,
snowpack conditions, slope orientation, terrain and vegeta-
tion (Armstrong and Armstrong, 1987; Gubler and Bader,
1989; McClung and Schaerer, 1993). Figure 1 portrays two
dry snow avalanches, one naturally triggered avalanche de-
posit (a) and one artificially triggered at the Norwegian
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Fig. 1. Deposit of a naturally released snow avalanche(a); Artificially triggered avalanche in transit at NGI’s research station at Ryggfonn
(b). Both sites are located within the Strynefjell region, Sogn og Fjordane, Norway. Photos courtesy of: Krister Kristersen(a) and Hedda
Breien(b), Norwegian Geotechnical Institute.

Geotechnical Institute’s research station at Ryggfonn, Stryn,
Western Norway (b).

2 Need for more complete and precise avalanche data

Snow avalanches, in general, are poorly mapped, which is
commonly due to the remote location of their occurrence.
Often avalanches are only reported if they cause an obstruc-
tion to public infrastructure, damage to personal property, or
are witnessed and reported by local observers. However, de-
cisions regarding, e.g., the closure of roads and rail lines and
the setting of warning levels, rely on information that is de-
rived from knowledge of historic events in combination with
metrological data of the recent past and expected future (Bel-
laire et al., 2011).

The general practiced routine for mapping snow
avalanches relies on two main techniques. The first
technique involves a field mission to map the extent and
location of avalanche start-zones and runout-zones by hand,
by amateur photographs, or with a GPS device. These
field missions are typically conducted during the peak
avalanche period of the year as snow depth and layers are
also recorded in the field. Problems related to this method
are: poor accessibility of the terrain due to avalanche danger,
only small areas can be surveyed, and surveys can only
be conducted in good weather. The second commonly
employed technique for mapping snow avalanches is the
visual analysis and digitising of aerial photographs or optical

remote-sensing imagery (Scott, 2009). Both methods require
expert involvement and visual identification of a fallen snow
avalanche.

The ability to automatically identify snow avalanches us-
ing Very High Resolution (VHR) optical imagery would
greatly assist in the development of accurate, spatially
widespread, detailed maps of zones historically prone to
avalanches. Such maps could be used to estimate regional
susceptibility. This would provide decision makers with
knowledge of the frequency of avalanches as well as details
regarding the size and extent of historical events. This in-
crease in knowledge and access to data will have two
pertinent applications: short-term forecasting and mitiga-
tion (e.g., road/railway closures, evacuations), and long-term
planning (e.g., transport network planning, mitigation mea-
sure design, municipal planning). Forecasting, mitigation
and planning are critical for maintaining public safety, and
managing public developments into the future through the
use of susceptibility modelling.

Another application is the use of such data in modelling:
recently developed numerical avalanche simulation tools
such as RAMMS (Christen et al., 2010), SAMOS (Sampl and
Zwinger, 2004) or ELBA+ (Keiler et al., 2006) require accu-
rate avalanche release and run-out information for calibration
and validation of the models.
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Table 1.Selection of VHR spaceborne and airborne sensors potentially suited for snow avalanche mapping. Note: for space-borne sensors,
only commercial ones are listed. Spatial resolution is given at nadir.

Spaceborne
Sensor Lifetime Bands Spatial resolution (m) Swath Revisit time

panchromatic multi-spectral (km) (days)
IKONOS 1999- p, b, g, r, nir 0.8 3.6 11 3
QUICKBIRD 2001- p, b, g, r, nir 0.6 2.4 16.5 1 to 3.5
GeoEye-1 2008- b, g, r, nir 0.5 2 15.2 3
WorldView-1 2007- p 0.5 – 17.6 1 to 5
WorldView-2 2009- p, 8 ms 0.46 2 16.4 1 to 4
ORBVIEW-3 2003- p, 4 ms 1 4 8 <3
SPOT 5 p, g, r, nir, swir 2.5, 5 10 60 2 to 3
FORMOSAT-2 2004- p, b, g, r, nir 2 8 24 daily
KOMPSAT-2 2006- p, b, g, r, nir 1 4 15 2 to 3
KOMPSAT-3 2012- p, b, g, r, nir 0.7 2.8 15 2 to 3
Cartosat 2B 2010 p 0.8 – 9.6 4
Pléiades 1 2011 p, b, g, r, nir 0.7 2.0 20 daily
Pléiades 2 2012 p, b, g, r, nir 0.7 2.0 20 daily

Airborne
Sensor Bands

Leica ADS40-SH52 p, b, g, r, nir
Vexcel Ultracam b, g, r, nir
DMC b, g, r, nir
Optech ALT 3033 LiDAR –

3 Remote-sensing instruments

Recent developments in the field of imaging sensors and data
processing techniques, through the 1990s and 2000s, have
resulted in the use of remotely sensed data for various and
diverse applications for hazard mapping. Advancements in
data collection techniques are producing imagery at previ-
ously unprecedented and unimaginable spatial, spectral, ra-
diometric and temporal resolution. The advantages of using
remotely sensed data vary by topic, but generally include
safer evaluation of unstable and/or inaccessible regions, high
spatial resolution, spatially continuous and multi-temporal
mapping capabilities (change detection) and automated pro-
cessing possibilities. Disadvantages of the use of remotely
sensed data are generally in relation to the lack of ground
truth data available during an analysis and data acquisition
costs. Recent publications in the academic literature include:
landslide and rockfall evaluation (Mantovani et al., 1996;
McKean and Roering, 2004; Lato et al., 2012), urban defor-
mation modelling (Perissin and Wang, 2011), stratigraphic
modelling (Bellian et al., 2005), flood mapping and mod-
elling (Brivio, et al., 2002; Sanders, 2007). Table 1 outlines
various satellite and airborne sensors with sufficient resolu-
tion for such analyses. This list does not represent an exhaus-
tive compilation of sensors, simply commonly employed in-
struments.

Previous research regarding automated detection of
avalanches deposits with the help of VHR optical data has
been carried out and published by Bühler et al. (2009),
Frauenfelder et al. (2010), Larsen et al. (2010), and Sal-
berg et al. (2011). These methods rely on diverse input data
and proprietary software algorithms. These publications pro-
duce results of variable success and repeatability. The pri-
mary goal of the study presented herein is to develop a com-
plete solution for automated avalanche deposit detection re-
lying only on optical panchromatic imagery data. The algo-
rithm is designed to stand alone. This study only uses com-
mercial off-the-shelf image analysis software with the future
goal of an implementation in a regional or national snow
avalanche mapping programme. Future research planned on
this topic includes integration of supplementary data and his-
torical records to increase the accuracy and efficiency of the
algorithm through the reduction of input data.

3.1 Sensors and data acquisition

The images used in this study were collected from both air-
borne and spaceborne platforms. The spaceborne imagery
has been collected by the QuickBird satellite, over Western
Norway, as illustrated in Fig. 2a. The airborne platform has
been collected by a fixed wing aircraft with a Leica ADS40-
SH52 imaging unit, the images have been collected over
Davos, South-eastern Switzerland, as illustrated in Fig. 2b.
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Fig. 2.Data collection sites depicted by grey triangles in(a) Norway and(b) Switzerland.

Fig. 3. Part of a single snow avalanche deposit in the Davos region
of Switzerland. Image acquired with a Leica ADS40-SH52 opto-
electronic pushbroom scanner. (Flow direction is from the lower
right to the centre of the image).

All images used in this research project have been processed
using only the panchromatic band.

3.1.1 Leica ADS40-SH52

The Leica ADS40-SH52 is a multi-band (near-infrared, red,
green, blue, panchromatic), 12-bit opto-electronic pushb-
room scanner. The resultant imagery is co-registered across
the five bands; this eliminates distortion and error between
the images (Leica, 2008). The images were collected with

the ADS40-SH52 mounted on a Pilatus Porter PC6 aircraft in
the Davos Valley on 26 April 2008. This data acquisition was
carried out for the study of B̈uhler et al. (2009). The survey
covered a region approximately 6 km by 15 km. The mission
was flown at an average altitude of 2 km above ground sur-
face; resultant imagery has a multi-spectral pixel resolution
of 0.25 m. The area is located approximately 1500 m above
sea level (a.s.l.) with surrounding mountain peaks reaching
altitudes of 2700 m a.s.l.

3.1.2 QuickBird

The QuickBird satellite is a multi-band (near-infrared, red,
green, blue, panchromatic), 11-bit digital sensor. The satel-
lite was launched on 18 October 2001 by DigitalGlobe, at
an orbit of 482 km; in October 2011 its orbit was lowered
to 450 km. The satellite is characterised by its 16.5 km wide
swath, high contrast sensors and high signal-to-noise ratio.
The QuickBird imagery used in this research project were
collected over Western Norway, a rugged area that is topo-
graphically dominated by the Caledonian mountain range.
The QuickBird imagery has a multi-spectral pixel resolution
of 2.44–2.88 m and a panchromatic pixel resolution of 0.61–
0.72 m (DigitalGlobe, 2000).
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Fig. 4.eCognition workflow steps for the identification of avalanche signatures from VHR optical satellite imagery. Note the slight variation
in methodology when using Leica ADS40-SH52 imagery (left workflow) versus QuickBird imagery (right workflow).

4 Methodology: algorithm development

The prerequisite in the development of the algorithm was
that it be stable, repeatable and logical, i.e., avoiding the use
of “black box” algorithms. The method researched and de-
veloped for this paper represents an approach to mapping
snow avalanche deposits in which the only information re-
quired is the orthorectified imagery. The algorithms employ
object based image analysis techniques. The development of
the classification algorithms was done using an iterative ap-
proach with successive refinement of the input variables. In
effect, hundreds of independent variables were tested, as well
as the order and combination of variables. The algorithm de-
velopment was done based on a methodical trial and error
process. The development was done by using small sections
of larger images, this was necessary to accommodate the
large number of iterative developments in the formulation of
the algorithm.

4.1 Image analysis

One characteristic of snow avalanches is that they are rela-
tively easy to visually distinguish in a panchromatic image,
provided the image is uniformly exposed. As illustrated in

Fig. 3, the snow avalanche is readily identifiable, even to a
non-expert. However, although the avalanche is easily iden-
tifiable, there are regions within the avalanche deposit that
are indistinguishable from fresh undisturbed snow.

From an image interpretation perspective, the target –
the snow avalanche runout-zone deposit – is distinguishable
based on its signature with respect to the rest of the image
as a whole, not just its surrounding pixels. Thus, for an auto-
mated snow avalanche detection algorithm to be successful,
it must be capable of an image interpretation that looks at
the neighbourhood of pixels in comparison to the rest of the
image, not simply at individual pixels in isolation.

The desire to be able to assess the image as a whole while
evaluating the neighbourhood of pixels led to the use of hi-
erarchical object-oriented image classification tools. The use
of hierarchical object-oriented image analysis tools are de-
signed to use similar cognitive reasoning as the human mind,
which employs segmentation and classification methodolo-
gies (Benz et al., 2004; Willhauck, 2000). Research pre-
sented in this paper is done using the software package eCog-
nition, Version 8 (Definiens, 2011). The eCognition software
has the ability to use both spatial and spectral information
when conducting the image classification, making it an ideal
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Fig. 5.General processing steps and staged results for avalanche deposit identification in eCognition. The process illustrates the workflow for
Leica imagery as reported in Fig. 4. The steps illustrate the progressive segmentation and classification of the image, resulting in an image
with only avalanche deposits identified.

candidate for automated detection of snow avalanches from
VHR optical imagery.

Object-oriented image classification differs from pixel
based classification in that the assignment of membership
is done using soft classifiers that employ fuzzy logic (Benz
et al., 2004). The requirement for membership does not re-
quire complete agreement between the data and the classi-
fier, rather a value between zero and one is calculated, in
which zero represents improbability of agreement and one
represents complete agreement. An excellent overview of im-
age classification techniques and the advantages of object-
oriented classification have been published by Yam (2003).

Unlike previously published research, the results presented
below are based exclusively on the segmentation and classifi-
cation of information visible in the optical imagery. Informa-
tion derived from digital terrain models with respect to slope
and aspect are not considered; neither are vegetation masks
or other masking tools/layers utilised. The reason for limiting
the input data to only the optical imagery is to test the abil-
ity of the object-oriented image processing algorithms within
eCognition.

4.1.1 Data processing

The image-processing workflow developed in eCognition for
the automated identification of snow avalanches relies on six
different variable types, as identified in Table 2. The process

is sequential and the order of segmentation and classification
of the image is critical to the success and efficiency of the
algorithm. The two different imaging sources, Leica ADS40
and QuickBird, require a slightly different implementation of
the variables, as illustrated in Fig. 4 and Table 2.

The variables used in the algorithm act as logical gates,
as illustrated in Fig. 4. The successive gates progressively
classify the image; each step eliminates regions of the im-
age that are not representative of avalanches. The processing
workflow is optimised so that if a pixel fails to meet the re-
quirements of a certain logical gate, it is excluded from all
future processing steps. This ensures a time efficient pro-
cessing chain while exploiting the nature of the software to
compare pixel neighbourhoods within the entire image. The
fuzzy logic employed by object-oriented image classification
allows the user to easily changing the classifiers to accom-
modate irregularities in the image. This is important when
working with images that have variable illumination, such as
regions in the sun and shade.

Four of the six variables used in the process described
herein are standard image processing variables: brightness,
contrast, similarity and neighbour distance. The other two
variables, grey level co-occurrence matrix (GLCM) entropy
and GLCM dissimilarity, use information with respect to the
texture of the image as defined by Haralick et al. (1973) and
Haralick (1979).
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Table 2. Variables used in algorithm developed in eCognition for the automated detection and 249 mapping of snow avalanches in VHR
panchromatic imagery. (∗Variable only used on QuickBird 250 imagery).

Variable Purpose

GLCM Entropy∗ Eliminate regions with a high level of order
GLCM Dissimilarity Eliminate regions with minimal contrast to surrounding pixels (e.g., fresh snow)
Brightness Eliminate dark pixels (e.g., trees, rocks)
Contrast Eliminate sharp boundaries (snow beside a rock)
Similarity Eliminate small groupings of pixels that are too small to represent an avalanche
Neighbour distance Fill in small gaps surrounded by known avalanche pixels

The GLCM assess how frequently different combinations
of pixels, containing different levels of grey, appear within
an image. The two GLCM variables used in the automated
detection algorithm are dissimilarity and entropy. GLCM en-
tropy is a measure of the randomness/disorder and intensity
of the grey value distribution. The entropy values are max-
imized when the distribution of the magnitude of the grey
level values are low, and small when the distribution of the
grey level values are random (Partio et al., 2002). The GLCM
dissimilarity variable is a measure of the contrast of an in-
dividual pixel from its neighbouring pixels. The value in-
creases linearly, as opposed to exponentially like GLCM con-
trast; the dissimilarity value will be high if the local region
has a high degree of variation (Cleve et al., 2008; Hall-Beyer,
2007).

Due to the variable amount of shadowing encountered
when processing QuickBird data, which is due to the time
of year, time of day and geographic location of the data
collection (Fig. 2a), an additional processing step is added.
This step, identified in Fig. 4 as “GLCM Entropy normalised
by brightness” enables local shadowing/brightness to be re-
moved and only the relative GLCM matrix to be processed.
This process is not needed with the Lieca data due to the lack
of shadows in the images.

A visual example of the processing chain is illustrated in
Fig. 5. At the first step the algorithm assumes that each pixel
in the image has the possibility of representing avalanche
snow. As the image is processed through various steps, pixels
are eliminated as being not representative of avalanche snow.
The final step selects only those pixels that pass each gate
and are, therefore, considered to be representative of a snow
avalanche deposit.

5 Results: validation of algorithm

In the following, we illustrate four examples of the imple-
mentation of the automated detection algorithm using eCog-
nition, with visualisation in ArcGIS. The first two examples
are conducted on Leica ADS40-SH52 imagery, while the
second two examples use QuickBird imagery. As presented
in this paper, only entire scenes from the Leica imagery are

used for statistical analysis. The scenes presented in the fol-
lowing section are the only scenes tested to date.

To facilitate the testing and validation of the algorithm an
independent avalanche expert, with a background in remote-
sensing and avalanche research, conducted the manually
mapping and digitising of snow avalanches visible in the im-
agery used in for this research. The instructions were to iden-
tify all visible snow avalanches greater than three metres in
width and to digitise their outlines. The researcher was only
allowed to use information visible in the optical imagery.
Tree masks, digital elevation, slope or aspect models were
not used to aid in the classification and the digitising process.
The work was subsequently checked by another avalanche
expert, prior to comparison with the outlines generated by
the automated detection approach.

5.1 Validation and accuracy assessments

The imagery and analyses reported below represent images
that were only used for validation, not for the development of
the algorithm. Over fifteen different scenes and images were
used in the development, some of which contained sections
of the images below. The algorithm development did not in-
volve comparison of the automatically detected avalanches
to the manually mapped avalanches; this comparison was
only completed as a final comparative test and is presented in
this paper. As no ground truth data is available, the manual
digitising completed by the avalanche expert is used as the
“truth” for accuracy evaluations. This is acceptable as visual
identification from imagery is the state-of-practise method
for avalanche deposit mapping. The first two examples are
large scenes from the Davos region in Switzerland in which
land classification statistics can be evaluated.

The accuracy measures calculated in the following ex-
amples are: Kappa, Users Accuracy and Producers Accu-
racy (Foody, 2002; Congalton and Green, 1999). Kappa is
the measure of the improvement in the tested classification
method versus a random classification. A Kappa value near
zero indicates the classification method is no better than a
random classification, where values near one indicate excel-
lent agreement between the classified data and the ground
truth data. The Users Accuracy is the ratio between the
area correctly identified as avalanche versus the total area
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Table 3.Accuracy of the avalanche classification algorithm versus the manual digitizing methods.

Dataset Kappa (no buffer) Users Accuracy Producers Accuracy Commission Error Omission Error

Town of Davos (#1) 0.890 0.914 0.900 0.1 0.086
Davos Ski Resort (#2) 0.900 0.905 0.910 0.09 0.015

Fig. 6. View from Davos-Parsenn down to the town of Davos,
Switzerland (Photo courtesy of: Jürg Schweizer, SLF).

classified as avalanche; while the Producers Accuracy is a
measure of the ratio between the area automatically clas-
sified as avalanche versus the area manually classified as
avalanche. The results of the analysis are reported in Table 3.
Users and Producers accuracy can be directly used to cal-
culate errors of commission and omission. These measures
are only calculated on datasets in which the entire scene was
tested – which, in this paper, are the Leica scenes.

5.2 Leica: Town of Davos

The town of Davos (Fig. 6), located in Eastern Switzer-
land, is considerably rugged and subject to a high frequency
of small to large scale avalanches on an annual basis. The
region, illustrated in Fig. 7, is roughly 1700 m by 1400 m
(2.4 million m2), and comprises of numerous avalanches
varying in size from less than five metres wide to over one
hundred metres wide. The automated detection algorithm ex-
ecuted on this image is identified as in the left side workflow
of Fig. 4. The raw size of the analysed image section (shown
in Fig. 7) is approximately 38 million pixels. Due to process-
ing restrictions of the eCognition software package, the im-
age was subsampled before processing. Using a 3× 3 classi-
fication matrix, thereby subsampling the data from 0.25 m to
0.75 m, the number of pixels to be processed was decreased
by 88 %, resulting in approximately 4.2 million pixels.

The manual mapping and digitising of snow avalanches
through visual analysis resulted in the identification of 35
non-connected and non-overlapping snow avalanche regions.
Through a discrete analysis of the regions classified by the

Fig. 7. Leica panchromatic imagery collected near the town
of Davos. The primary target of this image is the Salezer
Avalanche (March, 2008). Image(a) (above) illustrates manual
mapping of snow avalanche deposits in ArcGIS, while image
(b) (below) is processed automatically in eCognition and then vi-
sualised in ArcGIS.

automated algorithm versus those that are manually mapped,
33 of the 35 manually mapped snow avalanches are correctly
identified by the automated algorithm. Both of the snow
avalanche runout deposits not detected by the automated ap-
proach are very small deposits and have undergone partial
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melting. As well, the automated mapping algorithm cor-
rectly identified one smaller avalanche runout deposit that
was overlooked by the human observer. The results pre-
sented herein are more comprehensive than those presented
by Bühler et al. (2009) as the object oriented approach is
able to identify smaller objects and “dirty” snow as part of
the avalanche whereas previous methods have failed.

The automated mapping approach characterised
201 667 m2 of the image as being representative of a
snow avalanche deposit, roughly 8.5 % of the image.
Through a spatial intersection between the manually mapped
avalanches and the automatically mapped avalanches,
184 432 m2, or 89 %, of the automatically mapped regions
are spatially overlapping with the manually mapped regions.
Allowing for a 5 m buffer to account for digitising and trans-
lation errors the spatial intersection increases to 192 803 m2,
or 95 %.

5.3 Leica: Davos-Parsenn Ski Resort

The Davos-Parsenn Ski Resort, located near the town of
Davos is subject to a high annual frequency of avalanches;
a large number of them are artificially triggered to secure the
ski slopes. Due to the difficulties in accessibility, and dan-
gers associated with field mapping, the identification of snow
avalanches is best suited by remote evaluation. The region il-
lustrated in Fig. 8 is roughly 1700 m by 900 m; the image
consists of numerous avalanches varying in size from less
than five metres wide to over fifty metres in width. The au-
tomated detection algorithm executed on this image is iden-
tified as in the left side workflow of Fig. 4. The raw size of
this image section (Fig. 8) is approximately 20 million pix-
els. Due to processing restrictions of the eCognition software
package, also this image had to be subsampled before pro-
cessing. Using a 3× 3 classification matrix, the number of
pixels to be processed was decreased by 88 %, resulting in
approximately 1.8 million pixels. As presented in the above
section, a similar segmentation and classification analysis has
been conducted on the image.

The manual mapping and digitising of snow avalanches
through visual analysis resulted in the identification of
21 non-connected and non-overlapping regions. Through a
discrete analysis of the regions classified by the automated
algorithm versus those that are manually mapped, 20 of the
21 manually mapped slides are correctly identified by the au-
tomated algorithm. The single avalanche, not detected by the
automated approach, is characterised by a narrow track and
has undergone significant melting, thus, making it visually
similar in appearance to non-avalanche wet/ablated snow. As
well, the automated mapping algorithm correctly identified
two small avalanches that were overlooked by the human.

The automated mapping approach characterised
154 000 m2 of the image as being representative of a fresh
snow avalanche, roughly 10 % of the image. Through a spa-
tial intersection between the manually mapped avalanches

Fig. 8. Leica panchromatic imagery collected near the Davos-
Parsenn ski resort. Image(a) (above) illustrates manual mapping of
snow avalanches in ArcGIS, while image(b) (below) is processed
automatically in eCognition and then visualised in ArcGIS.

and the automatically mapped avalanches, 140 140 m2, or
91 %, of the automatically mapped regions are spatially
linked to the manually mapped regions. Allowing for a
5 m buffer to account for digitising and translation errors,
the spatial intersection increases to 149 996 m2 or 97 %.
Notably, the algorithms are able to distinguish avalanche
snow from rock boulders, coniferous trees, tire tracks, as
well as gondola cables.

5.4 QuickBird: Dalsfjord Valley

The Dalsfjorden valley (Møre and Romsdal county) in West-
ern Norway is characterised by steep fjords surrounded by
rugged mountain tops.

Two regions within Dalsdalen, a side-valley of the Dals-
fjorden valley, have been mapped for snow avalanches by
both manual and automated methods; the results are pre-
sented below.

Due to the low solar angle at high latitudes during win-
ter time, the QuickBird imagery was subject to strong varia-
tion in illumination (unlike the Leica imagery). This results
in over and under exposure throughout a single scene. When
manually digitising the visible snow avalanches often regions
in the shade are missed by the observer. This is due to the
lack of pixel depth within the region, resulting in a smaller
contrast difference between surrounding pixels and regions.
Conversely, the automated method can compensate for this

www.nat-hazards-earth-syst-sci.net/12/2893/2012/ Nat. Hazards Earth Syst. Sci., 12, 2893–2906, 2012



2902 M. J. Lato et al.: Automated detection of snow avalanche deposits

Fig. 9. Identification of snow avalanches in the Dalsfjord region
through manual digitising (a, above) and automated digitising (b,
below) methods.

situation and readily identify snow avalanches in the shade.
Although the avalanches in the shade are visible to a human,
when a large scene is mapped often small details are over-
looked. This is a significant challenge with many remote-
sensing techniques. The following two examples illustrate
the capability of the automated algorithm at a localised scale,
specifically in regions containing variable exposure.

The first scene is a region approximately 900 m by 600 m.
The manual mapping method identified one large snow
avalanche start-zone (centre of image) and one smaller one
(upper image area) with two, respectively, one indepen-
dent and non-overlapping deposits, as illustrated in Fig. 9a.
There are bare areas between the start-zones and the runout-
zone (outcropping rocks); those were not mapped. Also, one
avalanche runout deposit in the shadow was not completed by
manual mapping because – even though the observer knew
that the deposit continued – its entire extent was not visible
to the eye. The automated approach (Fig. 9b) correctly identi-
fied each of these avalanches, as well as the complete deposit
area located in the shade.

Fig. 10. QuickBird imagery over the Dalsfjord region. Image
(a) (above) illustrates manual mapping of fresh snow avalanches
in ArcGIS, while image(b) (below) is processed automatically in
eCognition.

A second scene from the Dalsdalen valley, a zoomed in
section of a single avalanche, illustrates the capability of
the automated approach to clearly define the avalanche de-
posit in both fully illuminated and shady regions of an im-
age. Figure 10a illustrates the manually digitised avalanche
outline. Again, even though the observer knew that the de-
posit continued within the shade, it was not mapped since
its entire extent was not easily visible by eye. Figure 10b il-
lustrates the same image after processing by the automated
detection algorithm. The capability of the automated algo-
rithm is twofold: firstly it is able to replicate the analysis
conducted by the human, and secondly it is capable of seeing
information in regions that are commonly non-interpretable
by the human eye.

6 Discussion

The methods illustrated in this paper demonstrate the abil-
ity to automatically detect snow avalanche deposits in op-
tical imagery using object oriented image processing tech-
niques. The results indicate an equal rate of omission and
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Fig. 11.Raw image (a, left) overlain by automatically identified avalanches (b, right) for a simple scene that does not contain noise or regions
characterised by large tonal changes.

Fig. 12. QuickBird imagery over the Dalsfjord region, raw image(a) overlain by automatically identified avalanches(b). The avalanches
in the right-hand image are correctly identified; however, regions of the image characterised by snow and sparse deciduous trees are falsely
identified as avalanches as well.

errors of commission. Of note, the algorithms are able to
distinguish avalanche snow from rock boulders, coniferous
trees, tire tracks, as well as gondola cables. The workflows
are designed to detect all types of snow avalanches.

The algorithm developed is, however, sensitive to the noise
within the image. If the image consists of only smooth snow
and avalanches, the algorithm will perform as desired, as the
only regions in the image that display visible texture due to
tonal variations will be avalanche deposits. As illustrated in
Figure 11a, the image is comprised of smooth snow surfaces

and numerous avalanche deposits. Figure 11b illustrates the
avalanches as identified by the automated detection algo-
rithm.

One area in which the detection algorithm fails is dis-
tinguishing between avalanche material and deciduous trees
without leaves. These areas are characterised by the algo-
rithm as having a high level of disorder and, therefore, a
high entropy value. Thus, it reduces the effectiveness of
the GLCM logic gates, as these areas are detected as snow
avalanches by the algorithm. Although many sensitivity tests
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were conducted, there is still a significant amount of uncer-
tainty when such conditions are present in the imagery. An
example of this situation is illustrated in Fig. 12; the regions
of sparse deciduous trees are identified as avalanche mate-
rial. Although the true avalanches are properly identified, the
elimination of false avalanches needs to improve before the
algorithm is implemented in such terrain.

One tool that this research does not take into account is the
ability to apply a pre-classification filter to the optical images
based on the probability of the terrain for an avalanche. For
example, the classification of regions too flat or too steep to
facilitate a snow avalanche, or regions with dense tree cover-
age, can be masked from subsequent avalanche identification
analyses (B̈uhler et al., 2009). Future research will include
a tighter integration with ArcGIS, involving the masking of
images based on terrain features. Very high spatial resolu-
tion digital terrain models in alpine regions can be generated
using airborne digital photogrammetry (Bühler et al., 2012)
or airborne and terrestrial lidar sensors (Fischer et al., 2011).
This should provide clearer results with fewer errors of com-
mission. As well, eliminating regions within images based on
pre-classification techniques will increase processing speed
within eCognition through the reduction of input data.

To fully document the capability of the automated map-
ping approach, it must be compared with ground truth data,
not just data mapped by a human observer. Since the human
observer, as demonstrated above, is also capable of errors.

The asymmetry of errors, or omission versus commis-
sion errors, is critical for the development of a new land-
classification algorithm. The discussions being are false pos-
itives (errors of commission) and false negatives (errors of
omission) equally negative to a mapping programme. Would
a decision maker rather know that all avalanches have been
mapped, and some might be falsely done so, or that regions
might be prone to avalanches that are not identified in the
database? A high number of false positives can result in lost
public space, or increased road closures; while a high num-
ber of false negatives can lead to increased accidents and a
false sense of public security. The weighting of these val-
ues can only be assigned through discussion with decision
and policy makers in consultation with those responsible for
designing the detection algorithm. These are the larger philo-
sophical questions to be addressed in future research on this
topic with decision makers and policy planners.

7 Conclusions

The results presented in this paper illustrate the powerful
capability of hierarchical object-oriented image processing
available through eCognition in the automated detection of
snow avalanche deposits from VHR optical imagery. The
ability of the software to be programmed in a manner that
mimics a human cognitive process is ideal for automated
avalanche deposit detection as the characteristics that make

a snow avalanche identifiable can be ‘taught’ to the pro-
gramme and rapidly tested. The automated mapping of snow
avalanches has been widely researched and sought after as a
valuable tool in the development of forecasting models and
for the development of hazard maps based on past events.

Our initial results exhibit the capability and potential use
of hierarchical object-oriented image processing for the au-
tomated detection of snow avalanches from VHR optical im-
agery and support findings of previous investigations. The
methods presented in this paper provide a number of ad-
vantages over traditional digitising techniques, these include:
(1) a greater ability to detect avalanches in the shade, (2) the
efficiency of the process, and (3) the ability to analyse mul-
tiple images in parallel, as the processing capabilities can be
maximised to the extent of the computational resources avail-
able. With respect to the quality of the input imagery, pixel
resolution and image exposure are the two most important
variables to be considered when planning image acquisition.

The methods described and illustrated above are flexible
and easily adapted for different sensors and image quality,
but they require further testing and validation before imple-
mentation in an operational setting. Future research will fo-
cus on the following issues: (a) include test data from vari-
ous space-borne sensors; (b) perform research on the distinc-
tion between dry and wet snow avalanches, as well as loose
snow versus slab avalanches from the optical imagery; (c) au-
tomated detection and mapping of avalanche start-zones;
(d) make use of masking layers and terrain information in or-
der to increase the efficiency, reliability and accuracy of the
models developed. The inclusion of such data will require a
research team with diverse skills, including geographic and
computational expertise.
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