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Abstract. The application of new data in the power law re-
lation between the stress drop of the earthquake and the lead
time of the precursory seismic electric signal led to an ex-
ponent which falls in the range of the values of critical ex-
ponents for fracture and it is in excellent agreement with a
previous one found by (Dologlou, 2012). In addition, this
exponent is very close to the one reported by Varotsos and
Alexopoulos (1984a), which interconnects the amplitude of
the precursory seismic electric signals (SES) and the magni-
tude of the impending earthquake. Hence, the hypothesis that
underlying dynamic processes evolving to criticality prevail
in the pre-focal area when the SES is emitted is significantly
supported.

1 Introduction

The preparation process of earthquakes is treated under the
light of the new aspects of the critical point earthquake
model, which predicts that failure is a co-operative effect oc-
curring at small scale and cascading from the microscopic to
the macroscopic scale (Allègre and Le Mouel, 1994; Keilis-
Borok, 1990). The concept that earthquakes can be viewed
as critical phenomena is supported by recent observations
that rupture in heterogeneous media exhibits critical behav-
ior (Andersen et al., 1997; Lamaignere et al., 1996; Sor-
nette, 2000). The word “critical” describes a system at the
boundary between order and disorder, and is characterized
by both extreme susceptibility to external factors and strong
long range correlations between different parts of the system
(Sornette and Sornette, 1990). During the last preparatory
stage in the pre-focal region, power law procedures (char-
acteristic of criticality) control the evolution of earthquake

dynamic processes (Bowman et al., 1998; Teotia and Kumar,
2011), which end up by culminating in the cataclysm event
of the main shock.

In a series of recent articles a power law relation be-
tween dynamic parameters of earthquakes and associated
precursory seismic electric signals (SES) based on progres-
sively updated data has been reported (Dologlou, 2008, 2009,
2010, 2012). Seismic electric signals (SES) are low fre-
quency (<1 Hz) transient signals embedded on the earth’s
telluric field. They are emitted from the pre-focal area when
the tectonic stress reaches a critical value which also signals
the entrance of the region into the last earthquake prepara-
tory phase. SES are continuously monitored the last three
decades by a network covering continental Greece and have
been found to precede large earthquakes (Varotsos and Alex-
opoulos, 1984a, b; Varotsos et al., 1986, 1988, 1993, 2009).
A possible model for SES generation which is based on the
existence of point defects in solids (Varotsos and Alexopou-
los, 1977, 1981; Varotsos and Ludwig, 1978; Varotsos et
al., 1978; Varotsos, 2007a, b, 2008) is as follows (e.g. see
Varotsos et al., 1993 and references therein): rocks contain
various materials with lattice defects for charge compensa-
tion when are doped with aliovalent impurities. The relax-
ation time of the electric dipoles which are formed between
a portion of these defects and the impurities, decrease upon
increasing pressure, provided that the migration volume is
negative. When the pressure (tectonic stress) reaches a criti-
cal value a cooperative change of the dipole’s orientation re-
sults in a transient current which constitutes the SES. A series
of successive such signals forms a SES activity. It has been
found (Varotsos et al., 2002, 2003a, b, 2007, 2008; Abe et al.,
2005; Sarlis et al., 2010) that the SES activities exhibit scale
invariant structure (power law) which is consistent with the
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Table 1.The USGS reported date and magnitude of the earthquake along with its seismic momentMo, range of values in the dimensions of
its aftershock area L and W, corresponding calculated values for1σB , the critical exponentα and the lead time1t . Mean values are also
given for the relevant parameters.

no Date Mw Mo L W 1σB α 1t

yy mm dd (1024dyn cm) (km) (km) (bars) days
1 12 04 16 5.8 5.6 24–26 15–17 1.48–2.00 0.334–0.322 101

Mean value 25 16 1.71 0.329± 0.01
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Fig. 1. Map of SW Greece, with all earthquakes (small red stars) withML ≥ 2.3 reported by NOA from 16 April 2012 to 23 May 2012 in
the area (36–38)◦ N , (20–23)◦ E. A big red star denotes the epicenter of theMw = 5.8 main shock on 16 April 2012, while a red dashed
ellipse shows the location of the cluster of aftershocks. The cluster dimensionsW andL are given in blue. A triangle depicts the location of
the SES station PIR. The inset on the right top of the figure shows the selectivity map of PIR as shaded area, and the epicenters of the three
earthquakes as red stars, numbered according to their order in the text. TheMw = 5.8 earthquake is the number 3 event.

criticality concept of the SES generation model mentioned
above. The following experimental power law relation, char-
acteristic of criticality, between the SES amplitudeE and the
magnitudeM of the impending earthquake, has been found
(Varotsos and Alexopoulos, 1984a see p. 91).

logE = aM + b (1)

whereE = 1 V/L with 1V the potential difference between
to points on the ground at a distanceL, a≈ 0.3–0.4 and b is a
site constant depending on the geoelectrical structure around
the station. Another characteristic of the SES is the selec-
tivity effect which states that a SES station can be sensitive

to specific seismic regions while remains inactive for oth-
ers even at shorter distances (Varotsos and Lazaridou, 1991;
Varotsos et al., 1996).

Here, by using recent new data, we test whether the very
sensitive exponent of a power law relation previously ob-
tained (Dologlou, 2009, 2010, 2012) between the stress drop
of the earthquake (stress state difference at a point on a fault
before and after the occurrence of the earthquake) and the
lead time (time lag between SES emission and earthquake
occurrence) of the precursory SES remains stable and within
the range of critical values.
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2 Data analysis and discussion

In this study we deal with the next most recent data set (af-
ter those published by Dologlou, 2012) and we refer to the
earthquakes withM ≥ 5 that occurred in Greece and the cor-
responding available SES during the time period 1 Novem-
ber 2011 to 23 May 2012. During this period and in the
area (36–41)◦ N (19–25)◦ E, only one SES activity has been
reported (Skordas et al., 2012) on 6 January 2012 at PIR
station situated in Peloponnese, SW Greece (Fig. 1), and
three earthquakes withM ≥ 5 occurred according to USGS.
The first two events took place on 14 February 2012 and
4 March 2012, respectively, with same magnitudeMw = 5.2
and almost the same location (40.13◦ N, 24.09◦ E) in NE
Greece (red stars numbered 1 and 2 in the inset on the
right top of Fig. 1). The third event which is the largest one
with Mw = 5.8, (red star number 3 in the inset) occurred on
16 April 2012 in SW Greece off the Peloponnese coast with
epicenter (36.63◦ N, 21.48◦ E) and is the only one which falls
inside the selectivity map of PIR station (shaded area in the
inset of Fig. 1 see Sarlis et al., 2008), and thus corresponds to
the above SES activity with a lead time1t = 101 days (Ta-
ble 1). The epicenters of the other two events (number 1 and
2) lie in a totally different seismotectonic region in N Greece.

Based on a mounting number of available data during a
long period from 1981 to 2011, the following power law re-
lation between the earthquake Brune’s stress drop1σB and
the associated SES lead time1 t has been reported:

1σB = 8.171t−α (2)

with exponentα=0.327 (see Table 1 in Dologlou (2010) and
comments therein and Dologlou (2012)). This relation is un-
der a continuous updating process by the author. Here, by
introducing a new data set, we will check the validity of the
above relation and the credibility of the exponentα. In order
to calculate the Brune’s stress drop1σB, we used the Hanks
and Wyss (1972) relation:

1σB = 0.44Mo/r3 (3)

with Mo the seismic moment of the earthquake andr the ra-
dius for a circular fault. The radiusr can be estimated from
the aftershock area according to a technique proposed by Ki-
ratzi et al. (1991). For this purpose, and considering as main
shock the third event (number 3) withMw = 5.8, we plotted
on a map the epicenters of all earthquakes withML ≥ 2.3
(Fig. 1 red stars) in the area (36–38)◦ N, (20–23)◦ E from
16 April 2012 to 23 May 2012, which are reported by the Na-
tional Observatory of Athens (NOA)http://www.gein.noa.gr.
A cluster is formed (denoted by a dashed ellipse in Fig. 1)
around the main shock (big red star Fig. 1), defining the
aftershock area of surfaceS = LxW (Fig. 1) with length
L = 25 km and widthW = 16 km (Table 1). The radiusr is
derived from the relationS = πr2. The seismic moment for
the main shockMo = 5.6× 1024 dyn cm (Table 1) is com-
puted from the relation log(Mo)=1.5(MW+10.7) of Hanks
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Fig. 2. The plot of the power law between the stress drop of the
earthquakes and the lead time of SES. A red star corresponds to
the new data (Table 1) while solid triangles refer to the data sets
reported by Dologlou (2010, 2012). The derived power law relation
along with its correlation coefficientR and the exponentα = 0.329
are displayed on the top of the diagram.

and Kanamori (1979). Through Eq. (3) we calculate the
Brune’s stress drop1σB = 1.71 bars (Table 1). By introduc-
ing in Eq. (2) the data set1σB = 1.71 bars and1t = 101
days we get the value of the exponentα = 0.329 (see Table 1
and Fig. 2). This value is almost the same with the previ-
ous one 0.327 found by Dologlou (2012) and is in excellent
agreement with the power law exponent which interconnects
the amplitude of the SES and the magnitude of the impend-
ing earthquake (Varotsos and Alexopoulos, 1984a see p. 91
and here Eq. 1). This confirms the credibility of the power
law relation between the stress drop and the SES lead time
and probably implies that underlying dynamic processes of
mechanical and electromagnetic origin evolving to criticality
prevail in the pre-focal area when the SES is emitted.

3 Conclusions

The application of new data (November 2011 to May 2012)
in the power law relation between the stress drop of the earth-
quake and the lead time of the precursory SES led to an ex-
ponentα = 0.329 that is in excellent agreement with previous
ones found in a series of articles by the author and confirms
its credibility. On the other hand, this exponent falls in the
range of the values of critical exponents suggested by various
models for fracture and is very close to the reported one by
Varotsos and Alexopoulos (1984a), which interconnects the
amplitude of the SES and the magnitude of the impending
earthquake. Hence, the hypothesis that underlying dynamic
processes of mechanical and electromagnetic origin evolving
to criticality are present in the pre-focal area when the SES
is emitted is considerably supported. In other words, the ba-
sic concept (i.e., the approach to a critical stage) on which
the SES generation and emission was originally proposed
(Varotsos and Alexopoulos, 1984a, b) is strengthened by the
new data presented in this paper.
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