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Abstract. Due to the catastrophic consequences of tsunamisthe maximum runups and rundowns, and also to give early
early warnings need to be issued quickly in order to miti- warning notices to the regions that may be affected.
gate the hazard. Additionally, there is a need to represent the Since the most common sources for tsunamis are earth-
uncertainty in the predictions of tsunami characteristics cor-quakes, earthquake-generated tsunamis have been exten-
responding to the uncertain trigger features (e.g. either posively investigated. Landslide-generated tsunamis have been
sition, shape and speed of a landslide, or sea floor deformamuch less studied and the existing knowledge about them
tion associated with an earthquake). Unfortunately, computeirs more limited. They are characterised by relatively short
models are expensive to run. This leads to significant deperiods, compared to the earthquake-generated ones, result-
lays in predictions and makes the uncertainty quantificationing in stronger viscous damping. Hence, they do not travel
impractical. Statistical emulators run almost instantaneoushas long distances as the earthquake-generated tsunamis do.
and may represent well the outputs of the computer model. InTherefore, one of their characteristics is that their whole life
this paper, we use the outer product emulator to build a fastycle takes place near the source. Nevertheless, they can
statistical surrogate of a landslide-generated tsunami comreach high amplitudes and can also become extremely harm-
puter model. This Bayesian framework enables us to buildful (Synolakis et al.2002 Tinti et al, 2008. The more chal-
the emulator by combining prior knowledge of the computer lenging part in landslide-generated tsunami modelling results
model properties with a few carefully chosen model evalu-from the fact that they are not instantaneously generated, as
ations. The good performance of the emulator is validatedhe earthquake-generated tsunamis are, and their generation
using the leave-one-out method. depends strongly on how the shape of the sea floor changes
with time Bardet et al.2003. Wiegel (1955 performed the
first experiments on landslide-generated tsunamis, where a
) sliding mass was moved down an incline. More recently, it
1 Introduction was observed byiu et al. (2005 that larger wave maximum
elevations occur for subaerial compared to submerged slides.
A tsunami is a series of powerful water waves generateda|so, Panizzo et al(2005 showed that the maximum wave
by earthquakes, volcanic eruptions, underwater landslides agmpiitude depends on both the duration of the underwater
well as local landslides along the coast. Their main charaCmotion and the front shape of the landslide. Studies about
teristic is the high speed of propagation. As emphasized bysynamis generated by a sliding mass on a plane beach have
the recent tragic events in March 2011 in Japan and in Dey|sg been performed Hynett and Liu(2005. The authors
cember 2004 in Indonesia, tsunamis may be extremely catag;aye investigated the whole life cycle of the tsunami: initially
trophic: they are able to destroy buildings, roads and gentpere is a high amplitude near the source, then the wave mo-

erally the infrastructure is seriously affected. But the mostijgn is predominantly near the shore, followed by edge waves
tragic part is that tsunamis can lead to the loss of human Iivesabng the shoreline and no motion near the source.
A deep knowledge of tsunamis is required in order to predict

Published by Copernicus Publications on behalf of the European Geosciences Union.



2004 A. Sarri et al.: Statistical emulation of a landslide-generated tsunami model

Sammarco and Reng2008 made an important contribu- by using them. So, emulators are recommended to be used
tion by developing an analytical three-dimensional model foronly in the case when the simulator is expensive to evaluate.
landslide-generated tsunamis based on the forced linear longrhe error amount can be estimated since they can make prob-
wave equation of motion, considering a plane beach with aabilistic predictions of the output that the simulator would
constant slope. The inputs of the model are the initial posi-produce if it was exercised over certain regions of the input
tion, speed and spread ratio of the landslide and the output ispace. Therefore, the main use of statistical emulators is for
the sea free-surface elevation at specific times and locationgast predictions of the simulator output.

By comparing available experimental data, they showed that Analyses such as uncertainty and sensitivity analyses, as
the model represents the overall behaviour of the wave withwell as calibration, require a large number of evaluations of
acceptable accuracy. However, the predicted water elevathe expensive simulator and this means that they can become
tions appear to be overestimated, which was attributed to neimpractical. An emulator can be built and used to make such
glecting energy dissipation and dispersive effeRsnzi and demanding analyses more efficiently. The uncertainty anal-
Sammarcq2012 extended the landslide-generated tsunamiysis provides us with knowledge of the distribution of the
model of Sammarco and Renf2008 to consider arbitrary  simulator output. The sensitivity analysis investigates how
initial position, speed and spread ratio. Furthermore, land-each of the inputs affect the output. Calibration consists of
slides in their framework can have a shape other than Gaudfitting a model to the available observations by adjusting its
sian. They investigated how these physical parameters angarameters (we are not considering calibration in this paper).
the shape of the landslide affect the resulting wave elevation. The emulator is created by employing a number of sim-
Renzi and Sammard@012) also analyzed the effect of the ulator evaluations. The error in its predictions is inversely
continental platform on the wave elevation. related to the number of simulator evaluations. Therefore, a

This paper presents a proof-of-concept case study for theignificantly large number of evaluations can make this error
statistical analysis of a landslide-generated tsunami modelpegligible, but this is unusual due to the simulator computa-
by employing the analytical model constructeddammarco  tional complexity. Also, since the emulator represents a de-
and Renzi(2009. The main strategy of the analysis is to terministic model, it is also a deterministic model where the
build a statistical emulator that accurately represents the ansimulator has been exercised: it predicts perfectly, with zero
alytical model, which can be used for fast predictions, quan-error, the output at points that have been used in the creation
tification of uncertainties and sensitivity analysis. In Sect. 2,0f the emulator. At new points, the emulator gives a distribu-
a more detailed explanation of the statistical emulator is pretion for f(x) with mean valuef (x) and standard deviation,
sented. Section 3 describes the concept of a special fornwhich represents the error in the prediction and hence how
of emulator, named the outer product emulator. An analyticclose it is likely to be to the true simulator outpfigx).
description for the appropriate parameter selections and cal- Bayesian statistical analysis, through the emulators, can
culations required to build it are also presented. Section 4 debe much more efficient than other methods to quantify uncer-
scribes the concept of the experimental design and its impletainties, e.g. the standard Monte Carlo method, for which the
mentation. Section 5 shows the application of the outer prod-simulator must be running repeatedly. In a Bayesian analysis
uct emulator and its validation for tf@®ammarco and Renzi we first build a representative emulator for the simulator and
(2008 analytical model. The resulting emulator is then usedthen use it for further analysi®©akley and O’'Hagai2002
for extremely efficient sensitivity and uncertainty analyses in2004 andO’Hagan(2006 focused on a Bayesian approach
Sect. 6. for uncertainty and sensitivity analysis. They concluded that

a Bayesian approach is more efficient than the Monte Carlo

method as it uses a significantly smaller number of model
2 Statistical emulator runs. One can take advantage of this by running the model at

higher resolution.
An emulator is a simple statistical model that approximates The form of the emulator used in this analysis is the Gaus-
a simulator, where a simulator is a deterministic input-outputsian process (GP). A GP is an extension of the familiar
computer model (analytical model, complex statistical — e.g.and popular Normal distribution, also called Gaussian. Nice
stochastic — model, or most commonly a numerical solvermathematical properties of the normal distribution carry over
of a large system of equations such as PDEs). Given som& the GP and therefore the GP is the principal tool for cre-
inputsx, the simulator output is given by= f(x) and the  ating an emulator, together with prior knowledge about the
emulator is denoted bf(x), which indicates that it is an simulator. It is worthy to say that the term “prior knowl-
approximation of the simulator. In most cases, running sim-edge” is used to indicate the initial beliefs about the simula-
ulators is very time and resource consuming, so one can onlyor before the use of the available data. An unknown func-
afford a limited number of runs. The use of emulators comegion f(.) has a GP distribution, if for any set of input points
as a solution to this problem, since emulators run almost in{x1, ..., x,}, the set of outputg f(x1),..., f(x,)} follows
stantaneously. However, due to the fact that they are approxa multivariate normal distribution. The simulator is repre-
imations of the computer model, some error is introducedsented by a GP distribution with mean functiern(.) and
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covariance functioivg(., .), i.e. Rougier et al(2009 describe further this special form of
2 statistical emulation. The OPE has the form:
FOIB, 0%, B ~ GPmo(.), Vo(.,.))

where the symbot- stands for “is distributed as”. The mean fi(r) =Y _ B,g;(r,si) +€(r,s;) 5)
function is described by j=1
mo(x) = g(x)T B, (2)  wheref;(r) is thei'" simulator output at input, g; is the set

) ) ) ] ) of regressorsg; are the unknown coefficients amdis the
in which ¢(.) is the set of regression functions afids the  resjdual. Additionallys; represents the output domain — e.g.
vector of the unknown coefficients. The functiog§) are  {ime, space — corresponding to ti&simulator run.
chosen to represent the main form of the actual simulator | order to build an emulator, appropriate distributions for
f(.). The covariance function, which generates some addig ande must be chosen. A convenient choice is the Normal
tional variations as well as uncertainty, is given by Inverse Gamma distribution that enables the use of conjugacy
terior estimates can be computed explicitly without

Vo(x,x') = 02C(x,x'; B 3 (sopos . .

o, x) =o"Clx, x5 B) 3) resorting to Markov chain Monte Carlo as in more standard
where C(., .; B) is a correlation function whose shape is fully Bayesian emulators), described by
known but with unknown correlation parameteBs also

called hyperparameters. A common choice @at, .; By is BT B ~N(m, 7V) (6)
elt, B ~ GP(O, tk;.(.)) ©)
C(x,x"; B) =exp{—(x —x")T B(x — x)} (4)
7|B ~1G(a, d) (8)

whereB is a diagonal matrix of the so-called smoothing pa-

rametersh;;. The inverse square roots of these parameterswhereB = {m, V,a,d, «;(.)} is the set of the hyperparame-
1/v/b;;, are known as the correlation length scales. Bhe ters and; (.) is the covariance function of the residuals with
(or the correlation length scales) describe how rapidly thecorrelation lengths.. Also, N and IG denote the normal and
output responds to changes in each input; the correlatiorinverse Gamma distribution, respectively. Summing up,
lengths scales give an indication of the distance in the input

space for which correlation between the simulator outputs idB: €} ~NIG(m, V,a,d) )

either significant or negligible. where the hyperparametesisand d denote the degrees of

freedom and the scale, respectively.
3 Outer product emulator Furthermore, a choice for the appropriate regresgian

and covariance functions of the residugl(.) is needed.
In the case where the simulator has multiple outputs, the creThere are two main characteristics that distinguish the OPE
ation of a surrogate model is more complicated. The simplesfrom a standard multivariate emulator. The first is that the co-
approach is to build separate independent emulators for eackariance function of the residuals is separated in inpaiisd
output. However, this method has a major drawback: it ig-outputss. This property can be represented by the equation
nores the correlations between the outpiReugier(2008
proposed an approximate multivariate emulator, named theé. (7, s, 7', s") = i (r, 1) x 1. (s, 57). (10)
outer product emulator (OPE), which creates one emulator

for all the outputs, simplifying the process by using separa—f Th? SeCOﬂ_d %haractenstl((:j is th?tr;[he setfof the regre?sor
ble functions in inputs and outputs. unctions,G, is the outer product of the set of regressors for

. A .
Therefore, the main advantage of the OPE is that the buildinputs, G" ={g”, (r)}"/_;, with the set of regressors for out-

ing.cost is significantly smaller (;ompared to a general m“m'puts,Gs A (g* (s)}y.v_l, where the expressicvzéﬁ indicates
variate emglator. The construction and use of an OPI_E can bf’nat the terrrji; is (Jérc?ual by definition to the terfi. There-
fast, even in the case where many simulator evaluations ang, o the functiong; are given byg; (. s) = g'. (r) ® " (s),

a large number of outputs exist. This property of the OPE ISwhere ® is the outer product symbol anﬁ: {1’ V),
very important for the case investigated in this work. Indeed,,hara,, — vy X Vs

the wave shape is not oscillating periodically and hence the ‘

frequency of the oscillation is not constant, so a large num-3.1  Maximizing the marginal likelihood

ber of simulator evaluations is necessary. We have to run

the simulator at small time steps and hence a large humben order to find the most accurate representation of the sim-
of evaluations are collected to describe the outputs. This isilator, appropriate values for the correlation lengths and
the primary reason why we decided to use the OPE for theother unknown parameters can be estimated by maximis-
analysis. ing the corresponding marginal likelihooB&smussen and
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Williams, 2009 before posterior distributions of emulated 3.2 Hyperparameters selection

simulator outputs are obtained. In the application described

in Sect. 5, this technique is used to obtain representative valfhe final step in the process of building the prior emula-
ues for the four correlation lengths, one for each of the thredor for the simulator is the selection of the hyperparameters
inputs and one for the output. Starting from the general equa{m, V,a,d}. To determine adequate hyperparameters, the

tion of the emulator, that is simple approximation method presented Rgugier et al.
T (2009 is used. The idea is to average the simulator output
y=f)=hx)+e@x)=gx) p+e) fi(r) over the inputs: and output, which means thaf; ()
= 0x)B +e(x), (11) is replaced byf (x), and also to assume thahas a uniform
where distribution. Using the mean and variance of the simulator
output, f (x), the hyperparameters are estimated. Complet-
€ ~GP0, 7i;), (12) inlg the selection of the hyperparameters yields the prior em-
ulator.
B ~N(0,1V), (13) The prior emulator is combined with a sample of the sim-

ulator’'s evaluations, called the training sample, giving the
we assume that the mean value of the unknown coefficientgosterior emulator. The resulting emulator gives a prediction
is zero and also that can be defined a8 = 021, with the distribution for each point in the evaluation output domain.
common multiplier parameter to be described by These predictions are Student-t distributed with parameters

(mean, variance and degrees of freedom) that are calculated
© ~1G(a.d). (14) according to the procedure explainedinugier(2008.

Therefore, this reformulation of the prior distributions en- After building the emulator, the next step is to test how ac-

tails that the regression functions multiplied by the unknown €Urately it represents the simulator. This process is called
coefficientss, i.e. the functioriz(.), have a normal prior dis- validation and it is recommended to be performed before

tribution given by making use of the emulator. We use the so-called “leave-
one-out” diagnostic (LOO): one evaluation is left out and
h|B ~N(@©,7QVQO7). (15) predicted using an emulator constructed from the rest of
the training data set. We repeat this for all the evaluations.
The likelihood function is described as follows: Therefore, the ability of the emulator to represent the simu-
Yl B ~N(h. ). (16) lator can be quantified.

The marginal likelihood can be obtained from the integral of

the likelihood times the prior, i.e. 4 Experimental design

One of the most important steps in the analysis is the exper-

p(yIB) = /p(y|h’ B)p(h|B)dh. (17) " imental design. This is the process of finding a space filling
) o ~ designthat covers the input space sufficiently. Due to the fact
There_fore, the marginal likelihood has a normal distribution {5t the input points are selected strategically, the amount of
described by useful information passed to the emulator can be maximized.
T Hence, the required number of simulator runs for an accu-

YIB ~N@O i +10VO"). (18) rate emulator can be reduced, resulting in a more efficient

Consequently, the log marginal likelihood function is procedure.
Many different experimental designs exist. The simplest

A =log(p(y)) = _}frc—lf _ }Iog|C| +constant (19) one is the regular grid, where equally spaceq points are se-
2 2 lected for each parameter. However, even with the simplic-
ity of this design, some drawbacks exist by using it. The
most important one is its “collapsing” property, where mul-
tiple grid points have the same coordinate value when pro-

whereC = 7 (kx + QV Q7). The derivative, with respect to
the correlation lengths, of the log marginal likelihood is given

by jected onto a parameter axis. This means that limited in-
1, .40C 4. 1 _,0C formation is obtained from these points. For example, for
VA = §f ¢ ﬁc f= §”(C ﬁ)' (20)  a three-dimensional input space, in order to obiadfistinct

evaluations for each of the three parameters, the total number
In order to calculat€~?, the Cholesky decomposition is  of required simulator runs i3, which is highly inefficient.
used. Optlmlzatlon methods are used to help us with the The Latin hypercube design (LHD) is an experimenta| de-
maximization of the marginal likelihood function in order to Sign that is constructed to avoid the “Co||apsing” property of
find correlation lengths. grids. The LH design selectsdifferent sample points from
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each of thek variablesX1, ..., Xk, using the following pro-
cess. First of all, the range of each variable is divided into
equal probability and non-overlapping intervals. Then, one
value from each interval is selected randomly with respect to
the probability density of the interval. Thevalues obtained
for X, are paired randomly with thevalues forX,. These:
resulting pairs are then combined randomly withithelues
for X3, resulting inton triplets. The same process continues
until » k—tuplets are formed, which is the LH sample.
However, only a subset of LH designs are space-filling.
To ensure a space-filling input selection, we adopt the so-

called “maximin” Latin hypercube design. The specific de- the jandslide initiates from a subaerial position, whereas pos-
sign follows the same process as the LHD to choose the samyjye values ofxg indicate submerged slides. The output of
ple points, although it has an additional constraint that is tothjs model is the sea free-surface elevation of the wave at a
maximise the minimum distance between the points. Thereyiyen time and location. A plane beach with constant slope is
fore, a maximum coverage of the input space is achieved.  consjdered and itis important to notice that the landslide con-
Urban and Fricke(201Q made a comparison of the Latin  tinyes to move even after it falls into the water. This causes
hypercube with the regular grid design for the multivariate the existence of high wave elevations even at large times.
emulation. They report that the emulators built using the By considering this modelSammarco and Reng2008
LHD make significantly improved predictions relative to the -gme to the conclusion that the landslide generates a wave
emulators created using a regular grid training sample. Furfie|d that is composed of two components, oscillatory and
thermore, they concluded that the LH emulators are more acayanescent. The life cycle of the wave can be visualized in
curate compared to the regular grid emulators in sensitivityrig 2, where the sea free-surface elevation of the landslide-
analysis of a single-parameter model. generated tsunami wave is shown in polar coordinates at
timesr =0.5,1,15,2,25,3,5,10,20. The initial position
of the landslide is at the origin, the speed is equal to 1 and
the spread ratio of the landslide is equal to 2, which means
5.1 Model description that the characteristic length is twice the size of the charac-
teristic width.
In this section the methods described above are applied to When the landslide occurs, it displaces water forward and
find an accurate statistical representation of the landslidean elevation wave is generated, which propagates mostly
generated tsunami analytical modelSEmmarco and Renzi in the offshore direction. Also, a depression wave occurs
(2008, abbreviated as the SR model. This model takes as innear the origin (see Fig. 2a). Later on, the elevation wave
puts the initial positioncg, the speed:y and also the spread spreads along the shoreline, while the depression wave ex-
ratio or shape: of the landslide, where the “spread ratio” tends around the origin (see Fig. 2b, c, d). At larger times,
is defined as the ratio of the landslide’s characteristic lengtha second elevation wave is generated at the origin and the
over the characteristic width. Figutellustrates this specific ~depression wave spreads out (see Fig. f, g). Finally, at even

Fig. 1. Sketch illustrating the landslide’s motion as considered in
Sammarco and Renzi's analytical model. Thexis represents the
shoreline, while tha’-axis is perpendicular to it.

5 Application to the SR tsunami model

analytical model set up. larger times, the wave motion is dominated by edge waves
All the coordinates, functions and parameters used in thegpropagating along the shoreline, with no motion around the
model are non-dimensional: origin (see Fig. h, i). From this study, it is concluded that the
, , , first generated waves are not those with the larger amplitude.
x=2 y=X = 8y = ¢ This indicates that, in order to capture the maximum eleva-
o o o n (21) t@on, the model has to be evaluated up to a significantly large
1, o timer.
uog = Mo, = —
Jogs A
5.2 Training sample
where the primes denote dimensional valuess the land-
slide characteristic horizontal lengthjs the beach slope; In this work, a statistical emulator is constructed looking

denotes the landslide maximum vertical thicknesss the at specific locations, meaning that its output is only time-
the non-dimensional sea free-surface elevatiaethe land-  dependent. Specifically, seven locations along the shoreline
slide characteristic width,is the time ang is the accelera- (x=0) aty=2,4,6,7,8,8.38 and 10 have been investi-
tion due to gravity. gated. The time domain is selected to be between 0 and 35.

When the landslide starts moving from the origin, which Small time steps are required in order to have sufficient in-
is the position where the sea surface meets the sloping beacfgrmation to capture the wave shape with sufficient detail:
xo is equal to zero. Also, negative valuesxgfindicate that  specifically,dt = 0.2 was chosen for the analysis.
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Fig. 2. Sea free-surface elevation of the landslide-generated tsunami observed at different times with non-dimensioel,inguts =
(0,1, 2). The horizontal axis represents the shoreline and the vertical axis points to the offshore direction.

The first step of the analysis is the experimental designdifference in the maximum sea free-surface elevation, with
Using the “maximin” Latin hypercube design method, as de-the subaerial case being much higher.

tailed in Sect. 4, 40 pointsyo, uo, ¢), are chosen to cover  The simulator’s evaluations for the other six locations
the three-dimensional parameter space. This is a comproalong the shore yield similar conclusions about the depen-

mise in order to have a significantly good coverage of the de-dency of the maximum sea free-surface elevation to the input
sign space, as well as a significantly small computation costparameters.

The input domain is chosen to bg € [—3, 1], ug € [1, 2]

andc € [0.5, 3]. 5.3 OPE prior choices

The positions of the 40 inputs in the parameter space are
shown in Fig.3. The colour at each point indicates the maxi- The next step in the analysis involves the appropriate prior
mum sea free-surface elevation, for the locatios 0 and  choices for the regression and residuals covariance functions
y=28.38, i.e. along the shoreline and far away from the for inputsr and outputs. In the case of the SR modeljs
source. The figure shows that the maximum wave elevaequal to(xo, uo, ¢) ands is timez. The set of input regression
tion significantly depends on the landslide’s speed: the Iargefunctions,G’é
the speed:o, the larger the maximum elevation. Further-
more, it can be observed that the maximum wave elevatio

{81, ---. &y, }, wherev, is the number of input

baerial ol he oridi " dal hen the land ach input parameter, a linear and a quadratic polynomial,
subaerial close to the origin position and also when the lan plus a constant term, are chosen, resulting in a total of seven

slide spread ratio is less than 2. However, the dependenc@,  reqressors. Since the simulator’s output variation with
of 'Fhe maximum _elev_at|on on the _|n|t|al position and spread respect to- is smooth, the use of higher order polynomials
ratio of the landslide is not as obvious as that on the speed. is unnecessary, which would additionally increase the prior
For example, consider points 13 and 25. They both rep-uncertainty. The chosen polynomials are shifted into the
resent landslides characterised by high speed and a spreautit interval [0, 1] and their coefficients are selected so that
ratio close to one. However, point 13 is a subaerial casethe two functions for each input parameter are orthonormal
while point 25 is a submerged one. This yields a significantwith a uniform weighting function. Combining all the input
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A S t al.: Statistical lat f a landslid ted t del 2009
2- o1 functions, the set of chosen input regressors is the following:
e13 2 2.4
191 37 L +3 +3 +3
31 o2 EHZZ 6 = 1,v300 Y 3 50t |, protS,
1.8} ®19 29 : 4 4 4
17} . 5 et 2 V3(uo — 1), =350 — 1) +4v/B(uo — 1%,
I 3 39 (c—0.5) (c—0.5)
1.6 15 29 * 40 18 \/§T, _3\/§T +
£ 15 . 28 026 16 ’ )
14l 9 16 After choosing the regression functions for the inputs, we
020 o2 | |14 need to make an appropriate choice for the regression func-
1.3}
Yo % 12 tions for the outputG*2 {g3, .. .. &5}, wherevy is the num-
12 10 33 14 1 ber of output regressors. Fourier terms are chosen of the form
11} o %2 sin(ZL) and co$ZZL), whereT is the period of the oscilla-
o3 T T p
1L e18 . 90 08 tion, in addition to a constant term. However, since the sea
- 2 _Xlo 0 ! free-surface elevation waves do not oscillate with constant
period, this selection is challenging. To make this selection,
s we consider the range of oscillating frequencies present in
o8 20 o 21 24 the wave and using the LOO diagnostic method (explained
23 16 in more detail in Sect. 5.4), we choose the smallest set of
251 15 %030 PN 22 frequencies that give the most accurate predictions, since for
.367 40 12 the case of input regressors, an unnecessary large number of
36 5 regressors is not desirable. The selected set of frequencies
2t 31 u 18 i ing:(1 1111
22 38 is the following: {3, 5. 7. 3, 5} Therefore, the set of output
© o o7 o19 026 16 regression functions is given by
1.5} 7 024 . .
1 37 o 14 = {1,sin(rr1/3), cosrt/3), sin(2t/5), cox2rt/5),
| e % 1 e 12 sin(zrt/2), cosrrt/2), sin(2rt/3), cos2rt/3),
35 ®3 1 sin(t), cog1)}. (23)
013 4,
05 o 17 . %2 [es Power exponential functions are chosen for input and out-
3 2 1 0 1 put residuals covariance functions, and«*:
0
|x0 — x| luo — ug|
2 0 K = exp(— (5 —0)¥2) x exp(—(— ) ¥?)
21 2.4 A hu
032 23 16 ! | —c | 32
29 ] X exp(—(———)7°) (24)
2.5} 3 22
o7 @30 ©39 c
032 40 3 12 and
2t 11 31 18 | —t |
& 22 K =exp(—(——)¥?) (25)
° 26 MY o1 16 M
L 7
Lo 0 *%a 14 respectively, wherex,, i,, A. represent the correlation
18 3314 28 12 lengths for inputs and; denotes the output (i.e. time) cor-
1t 4 g3 25 relation length. The values of the correlation lengths can
35 a o1z I’ be varied in order to adjust the fit of the emulator. The
05 017 1209 : : 0.8 correlation lengths are chosen by maximizing the marginal
T1 12 1.4 16 18 2 likelihood. Sincer appears in the equation of the marginal

Yo

likelihood (19), in order for the process of maximizing the
marginal likelihood to be feasible; has been treated as a

Fig. 3. Maximum sea free-surface elevation at the locationy) =

(0, 8.38) for time between 0 and 35 for each of the 40 design input
points selected using the “maximin” LHD method. Three quantities
are varied: the landslide’s speed, its initial location and its shape,
which are given in a non-dimensional form as in Eq. (21).

constant and estimated by the process simultaneously with
the correlation lengths. The estimated value fois not
used further in the analysis sineewas considered as con-
stant only for practical purposes for this process and it is
everywhere else considered as a scalar variable, which is
described by an Inverse Gamma distribution. Furthermore,
note that the A2 exponent is chosen so that the covariance
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Fig. 4. Diagnostic plots for some of the input points looking(at y) = (0, 8.38). Blue line is the simulator’s evaluation, red is the mean
value of the posterior distribution and dotted grey is the 95 % credible interval of the posterior distribution.

is smooth enough, but not too much, as the usual choice 0bf degrees of freedom, takes the value 3 in the case of the
square power is infinitely smooth and hence may not be realSR model. Also, after the simple calculations recommended
istic for such a complex simulator. by Rougier et al(2009, it is concluded tha#? = 0.257 and

d = 0.208. Hence} can be easily obtained froi = o-21.

The last step for the creation of the prior emulator for the By fixing these parameters, the creation of the prior emulator
SR model is to make a choice for the values of the hyper-is completed. Using the evaluations of the 40 selected design
parametergm, V,a,d}. To do so we follow the method de- points, the prior emulator is updated to obtain the posterior,
scribed byRougier et al(2009. We have already assumed which is the statistical emulator. Evaluating the statistical
m = 0. The hyperparameter, which is equal to the number
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Fig. 4. Continued. -3 2 X 0 !
0
. . . . . 3r 20
emulator at a given input pointxo, uo, ¢), results in predic- 032 21 24
tions of the output’s distribution for all the points in the time Bo16 % 2.3
domain, in this case from 0 to 35, every 0.2 time step, i.e. 251030 1335 152
176 prediction distributions. 0 ®° 040 - 01
2 o11 31 2
) H . @38 ®22
5.4 Emulator’s validation - ®19 19
o271 .
1.5¢ o7 .2337 1.8
After the creation of the emulator, the LOO validation 0 028 17
method is applied, resulting in 40 LOO diagnostic plots. R . 25 16
These diagnostics give information about the predictive ®35 3 15
power, capabilities and shortcomings of the emulator, since 1204 034 13 14
we can estimate the amount of the error induced by using 0.5 017 : : j
1 1.2 1.4 1.6 1.8 2

the emulator instead of the simulator. Some of the diagnostic u
plots for the locationx, y) = (0, 8.38) are shown in Fig4.

Similar diagnostic plots are created for all the other locationsFig. 5. Euclidean distance between each of the points and the other
investigated. In general, the LOO diagnostics allow us to39 points in the three-dimensional parameter space.

conclude that, in most of the cases, the emulator predicts

very well the simulator evaluations, capturing both shape and

the maximum wave elevations (peaks). Additionally, almost However, on some of the diagnostic plots, the prediction
always the simulator’s evaluation line is within the 95 % pre- is not very accurate. One of the fundamental reasons affect-
diction credible interval (ideally, it should be within this in- ing the emulator performance is the position of the point,
terval 95 % of the time). at which we try to predict in the input space. Generally,

0
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length for the location(x, y) = (0, 8.38), where the dotted line is and colours represent different locations along the shoreline.

the linear regression.

° Figureb displays the mean Euclidean distances for all the
= . design input points. We can see that the points 8, 10, 12 and
25 show a large MED from the rest of the 39 points. Looking
at the LOO diagnostics of these four points in Figs. 4a, b, c,
and f, we can easily observe that the predictions are not very
. accurate. However, the maximum wave elevation, which is
s L, ¢ s T e the most important measurement, is still satisfactory and al-
T e o most everywhere the simulator evaluation lines are within the

0.5

RMSE

- 95 % credible intervals. This indicates that, even for the de-
LA ) % . sign points that are isolated from the neighbouring points, the
. emulator predictions are still usable.
On the other hand, points such as 19, 24, 27 and 36 are
x T T T x x affected significantly by the other points, separated by small
1.4 1.6 1.8 2.0 2.2 2.4 Euclidean distances from the rest of the 39 points in space.
Looking at the diagnostic plots of these points (Figs. 4d, e, g,
and h), it is obvious that the emulator does an excellent job
Fig. 7. Mean Euclidean distance vs. RMSE for the locationy) = in prediction, since all the features of the wave are predicted
(0, 8.38), where the dotted line is the linear regression. accurately by the emulator.
Two measures that can be used to quantify the emulator’s
accuracy are the mean credible interval length (MCIL) and
it is expected to obtain more accurate predictions in thethe root-mean-square error (RMSE) between the observed
cases where the points at which we try to predict are surand the predicted evaluations at each of the 40 input points.
rounded closely by other design points, compared to theThe RMSE is given by the equation
cases where the points are located in a sparsely covered re-
gion, since more information can be obtained by the neigh- S — xi)2
bouring points. The behaviour at each point is significantly RMSE= /==
linked to the behaviour at the points close to it and this in-
fluence decays rapidly with the distance separating the twavherex; andx; are the observed and predicted values at each
points. To quantify this, the Euclidean distances in the threetime stepi, respectively ana is the number of time steps.
dimensional input space between a point and the other 39 Figures6 and7 display the MCIL and the RMSE versus
points are obtained. Then, the mean values of these distanc@ggD, respectively, for all the input points, looking at the
(MED) for each of the 40 input points are calculated: case of the locatiofi, y) = (0, 8.38). We observe a positive
correlation between the MED and both the MCIL and the
(26) RMSE. Therefore, this confirms that the distance separating
’ the points in space is a fundamental factor that affects the
predictive power of the emulator and hence this highlights

0.2
»

0.1
.
°

Mean Euclidean distance

(27)
n

33 V1 — x2)2 4 (u1— u2)? + (c1 — c2)2
39

MED =
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the importance of a good experimental design. This positive
correlation is also satisfied for the other locations examined.

In Fig. 8, the RMSE with respect to MCIL is presented for
all the 40 diagnostics for the seven locations along the shore-
line investigated, in order to compare the emulator’s perfor-
mance when applied to different locations. A combination
of both small RMSE and MCIL is desirable, indicating both
small error and small uncertainty in emulator’s predictions.
The figure clearly shows that the emulator performs similarly
for all the locations investigated. Therefore, the emulator can
be applied to different locations along the shoreline, result-
ing in accurate enough representations of the simulator out-
put. The reasons that we have slightly better predictions at
some locations compared to others is an area of further in-
vestigation. Nevertheless, the location along the shoreline
with y = 8.38 shows the worst results in this Figure. There-
fore, the predictions of the emulator for the other locations
are better than the ones given in Fg. This reinforces the
confidence we have in our emulator.

6 Sensitivity and uncertainty analyses

In Sect. 5 we have presented the process to create a statistical
emulator that can predict the simulator’'s output with suffi-
cient accuracy for a number of different locations along the
shoreline. Therefore, the emulator can be used in place of
the expensive-to-run simulator to efficiently perform analy-
ses that require a large number of evaluations, in order to save
time without sacrificing accuracy. In this section, we demon-
strate sensitivity and uncertainty analyses using the emulator.

6.1 Sensitivity analysis

The statistical emulator is used to carry out a sensitivity anal-
ysis of the model, where we investigate how sensitive is
the maximum wave elevation far< 35 to changes in in-
puts. Additionally, we examine whether the individual lo-
cations along the shoreline present consistent sensitivity to
input variation.

Figure 9 displays the case for the locatiofx,y) =
(0,8.38). In each of the three plots, the maximum elevation
is plotted against the initial positiaty, speed:o and spread
ratio ¢ of the landslide, respectively, with the other two input
parameters being kept constant. To ensure maximum emu-
lator accuracy and keep RMSE to the minimum, the input

2013
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Fig. 9. Maximum sea free-surface elevation with respedgjani-

domain in sensitivity analysis is chosen to be the subset ofiy| position, (b) speed andc) shape, for the time intervaD, 35|
the whole domain, where the mean Euclidean distance beanq position(x, y) = (0, 8.38).

tween the points is small, as presented in BigSpecifically,
we considerg € [—2,0], ug € [1, 2] andc € [0.5, 2.5].

From Fig. 9a we can see an obvious relationship betweembserved. Figure 9b highlights the positive relationship be-
the landslide’s speed and the maximum elevation. Specifitweenug and the maximum elevation, with the larger thg
cally, a landslide with a largerg gives larger maximum sea the larger the maximum elevation. Finally, Fig. 9c shows
free-surface elevations. No strong dependency of the maxthat a landslide initiating from a subaerial position shows
imum elevation on initial position and spread ratio can belarger maximum sea free-surface elevations compared to a
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Fig. 10. Maximum sea free-surface elevation with respect to initial position(dpKug, ¢) = (1,0.5), (b) (ug,c) = (1,2.5), (¢) (ug,c) =
(2,0.5) and(d) (ug, c) = (2, 2.5), for the time interva[O0, 35].

landslide starting from the origin. So, a relationship betweenthat it is much faster compared to the simulator. Therefore, it
thexg value and the maximum elevation is indicated. Also, acan be evaluated at a much larger number of inputs, leading
landslide moving with a larger speed yields larger maximumto higher resolution and smoother plots. Figure 9 plots re-
elevations. Moreover, we cannot say that the spread ratiguired a large number of emulator evaluations, specifically
is a significant factor at the specific range investigated. The2012. Importantly, the required emulator running time is
same conclusions result by repeating the sensitivity analysisery short. The total time for this entire analysis for a spe-
for the other six locations. We could easily perform similar cific location was around 186.6s on a Dual Core 3.06 GHz
analyses in which the output is another important aspect oEomputer. Using a simulator to perform the same analysis
the tsunami, different from the maximum elevation. would take much longer, as a single run to reconstruct the
A comparison of how sensitive is the maximum wave el- sea free-surface elevation time series up to time 35 with the
evation at different locations to changes in the input param-SR analytical model takes about 30 min.
eters is showed in Figs. 10, 11 and 12. Each of the figures
illustrate the change in maximum sea free-surface elevatior.2 Uncertainty analysis
with respect to variations in one of the input parameters,
keeping the other two constant. We look at four different Usually, the largest amount of uncertainty induced in simu-
combinations of the constant parameters. We conclude thdator evaluations comes from the high uncertainty of tsunami
the sensitivity of maximum elevation is very similar for all trigger features. It is impossible to know exactly the initial
the investigated locations along the shoreline. position, speed and spread ratio of the landslide that cause the
Overall, the conclusions reached by using the emulator arésunami. Since, as we have shown, the emulator can provide
the same as those obtained using the simulator, as shown eccurate enough predictions of the simulator’'s outputs, an
Fig. 3. However, the emulator has the fundamental advantagancertainty analysis is performed by employing the emulator
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Fig. 11. Maximum sea free-surface elevation with respect to landslide’s spee(hfatxg, c) = (—2,0.5), (b) (xg,c) = (—2,2.5),
(¢) (xg, ¢) = (0,0.5) and(d) (xg, ¢) = (0, 2.5), for the time intervalO0, 35].

in the place of the simulator. The uncertainty analysis will More specifically, the initial position of the landslide fol-
give us the amount of uncertainty in the predictions that islows a distribution that indicates that a starting position near
due to the uncertain inputs, as well as from the use of emthe origin is more likely. Both the speed and spread ratio
ulator in place of the simulator. Usually experts have somedistributions are skewed to the left, in order to highlight the
knowledge about the most likely distribution of the inputs. landslide’s speeds, which is most likely close to one and
Using these distributions, one can draw a number of randontharacteristic length and width of the landslide most likely
input samples that can be given to the emulator in order toof similar dimensions.

estimate the posterior distribution of key tsunamis features For this analysis we drew one thousand random samples
(e.g. maximum elevation). for the inputs from the distributions given in Eq&8), (29),

We assume that some collection of emergency manage(), resulting in the prior input distributions shown as his-
ment experts (in landslides or in real-time remote sensingograms in Fig13.

come to the conclusion that the inputs follow a Beta distri-  \yie ran the emulator using the selected inputs and there-
bution with some skewness and that the input domain is th%re, we got one thousand predictions for the wave eleva-
same as with the sensitivity analysis. The Beta distribution;jo, 4t a fixed position along the shoreline for times up to

is a flexible distribution over a finite interval that can enable 35 4t 9 2 intervals. From each of these time series, the max-
experts to express their beliefs. The distributions of input

> imum elevation and the mean CI length are estimated, re-
parameters are given by

sulting in one thousand estimates for each one. The varia-

xo~ Be(5,2) for xe[—2 0] (28) t?on among the thousand values were quantified using quan-
tiles. The same process was repeated for all the examined

up~ Be(2,5) for ugell,2] (29) locations along the shoreline. The quantiles for the case of
(x,y) =(0,8.38) are summarized in Table The posterior

¢~ Be(2,5) for cel[0.5, 25]. (30) distribution of the maximum elevation is plotted in Fi#.
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Table 1. Maximum elevation and mean CI length percentiles for to 30 min on the same computer for a single run of the SR
the position(x, y) = (0, 8.38). tsunami model.

1% 5% 50% 95% 99% ]
7 Conclusions

maximum elevation 092 1.03 166 218 2.35

meanCllength ~ 0.28 0.40 066 090 103 A statistical emulator of the analytical landslide-generated
tsunami model developed Byammarco and Renz2008

was obtained using the outer product emulator. This surro-

This information summarizes the expected tsunami wave el9até model was built using a combination of prior knowledge

evation and the associated uncertainty in prediction. about the simulator, appropriate choices of functions and pa-
Jameters and a limited number of simulator evaluations. The

imulator is computationally expensive to evaluate, while the
mulator produces estimates almost instantaneously. How-

Therefore, for a tsunami wave caused by the postulate
landslide features, we are 95 % confident that the resultin
tsunami wave will have maximum elevation less than 2.18, . ) . . .
and 99 % confident that it will be less than 2.35, looking at ever, since the emulator is an approximation of the simula-

a location along the shoreline and far away from the sourcd®" &N additional error was induceq in predictior)s.. But this
(y = 8.38). The same analysis can be performed Similarlyamount of error can be estimated, since the predictions of the

for other locations along the shoreline. Again the ability ﬁ/lmulatorare given a? StatIStICr(:ll dISt:’Ilﬁ:utlonS, not J;Js:r:/aluets. |
of the emulator to make predictions almost immediately is OrEOVEr, an accurale enougn emuiator represents the actua

highlighted in this case, since the total running time wasmoOIeI with an almost negligible error.
just 83.9s for 1000 runs at each of the locations compared
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