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Abstract. New data were used to test the credibility of a pre-
viously reported power law relation between the stress drop
of earthquakes and the lead time of precursory SES. Here,
we found that the critical exponent of this power law is very
sensitive and remains stable around 0.33 only for appropri-
ate sets of data. This value is in full agreement with the re-
ported one in literature for critical phenomena. That means
this power law is not an artifact, but probably implies that real
physical dynamic processes evolving to criticality are present
in the pre-focal area when the SES is emitted. An attempt to
advance the underlying physics of the interconnection of the
stress drop and the lead time of the precursory SES is still in
progress.

1 Introduction

The new approach that large earthquakes can be understood
as a critical phase transition in the frame of the statistical
physics finds support in recent observations that rupture in
heterogeneous media is a critical phenomenon. The dimen-
sion of the area where the preparation processes develop
and premonitory patterns can be observed greatly exceeds
source size of main shock (see the summary in Keilis-Borok,
2003, Table 1.2). As the area approaches the critical point,
long-range correlations, which are a general feature of com-
plex systems in a near-critical state, emerge and nonlinear
procedures following power laws govern the evolving earth-
quake dynamic processes (Telesca et al., 2005; Teotia and
Kumar, 2011) and consequently its associated precursors.
The existence of power law is a necessary condition, but
not enough to characterize a critical state. For instance,
both artificial noises and precursory SES activities (which
are low frequency,<1 Hz, transient changes of the Earth’s

electrotelluric field), follow power law behaviour of complex
systems, but only the SES activities exhibit critical dynamics
(Varotsos et al., 2002, 2011a).

Seismic Electric Signals (SES) have been detected prior
to large earthquakes in Greece for the last 3 decades (Varot-
sos and Alexopoulos, 1984a, b; Varotsos et al., 1986, 1988,
1993a, b). A possible SES generation mechanism is the fol-
lowing: rocks in the Earth’s crust contain various solids with
intrinsic (Varotsos and Alexopoulos, 1978, 1979, 1984c) and
extrinsic lattice defects, which appear for charge compen-
sation, particularly in ionic solids (Varotsos and Alexopou-
los, 1981) when doped with aliovalent impurities. Electric
dipoles that are formed between a portion of these defects
and nearby impurities can change orientation in a cooperative
way when increasing applied stress reaches a critical value
Pcr, thus, giving rise to a transient signal, provided that upon
increasing stress, the relaxation time of dipoles decreases,
which means negative migration volume (Varotsos and Alex-
opoulos, 1980, 1986). This signal constitutes an SES and it
is characterized by critical dynamics and a series of such sig-
nals is termed SES activity (Varotsos and Alexopoulos, 1986;
Varotsos et al., 2011a).

The SES amplitudeE = 1V/l (with 1V the potential dif-
ference measured between to points on the ground at a dis-
tancel) and the magnitudeM of the impending earthquake
are connected through the experimental relation:

logE = aM +b (1)

where a≈ 0.3–0.4 andb is a constant, depending on the
geoelectrical structure around the measuring site. Usually,
a-value is around 0.33 (Varotsos and Alexopoulos, 1984a,
p. 91). The SES emission signals the entrance of the pre-
focal area into a critical stage. Thus, the power law relation
expressed by Eq. (1) is reminiscent of the theory of critical
phenomena (Varotsos and Alexopoulos, 1984a, b).
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Table 1. The USGS reported date and magnitude of the 3 main shocks along with their seismic moment, range of values in the dimensions
of their aftershock areaL andW , corresponding calculated values for1σB , the critical exponentα and the lead time1t . Mean values are
also given for each event.

n0 Date M Mo L W 1σB α 1t

yy/mm/dd (1023dyn cm) (km) (km) (bars) days

1 11/07/19 5.1 (mb) 8.1 19–21 4–5 2.99–1.85 0.321–0.334 54
Mean value 20 4.5 2.42 0.327± 0.01

2 11/08/07 5.0 (Mw) 3.5 21–23 9–11 0.33–0.20 0.406–0.395 73
Mean value 20 10 0.265 0.399± 0.01

3 11/09/14 5.0 (mb) 5.0 15–17 10–12 0.42–0.66 0.387–0.369 111
Mean value 16 11 0.52 0.378± 0.01

In a recent paper (Dologlou, 2011) the SES generation
mechanism was found to be explained on the basis of a ther-
modynamical model, known as thecB� model (whereB is
the isothermal bulk modulus,� the mean atomic volume per
atom andcact is a dimensionless constant), which intercon-
nects defect parameters and bulk properties in solids (Varot-
sos, 1976, 2007).

An alternative model for the SES emission is the electroki-
netic effect (Ishido and Mizutani, 1981). In this case, if the
phenomenon is considered in terms of criticality, the appro-
priate exponent of the power law relation is 0.31 (Surkov
et al., 2002), being in excellent agreement with the value
(a∼ 0.33) reported earlier on the basis of empirical data by
Varotsos and Alexopoulos (1984a).

The interconnection between SES and impending earth-
quake characteristics has been investigated in a series of pa-
pers. Precisely, a robust power law relation with a critical
exponent of 0.33 has been found to interrelate the lead time
1t (which is the time difference between the SES emission
and the associated earthquake occurrence) and the stress drop
(which is the difference between the stress state at a point on
a fault before and after the occurrence of the earthquake) of
the forthcoming earthquake (Dologlou, 2009, 2010).

Here, we investigate the obedience of new data to this
power law relation as well as the sensitivity of the critical
exponent to any additional possible pairs of SES and earth-
quakes.

2 Data used

The aforementioned interconnection of SES lead time1t

and earthquake stress drop1σ through a power law re-
lation with an exponent value of 0.33 has been found by
Dologlou (2009, 2010) using data from 1981 to 2010 from
precursory SES signals and large earthquakes (see Table 1,
Dologlou, 2010), for which Brune’s stress drop (Brune,
1970, 1971) values were either reported or derived through a
special technique based on the dimensions of the aftershock
area and seismic moment (Kiratzi et al., 1991). Here, we deal

with the largest earthquakes that occurred in Greece within
5 months after the detection of new SES activity, which
was recorded at PIR station (blue triangle in Fig. 1) on 25–
26 May 2011 (Skordas et al., 2012). We note that the maxi-
mum time lag between a SES activity and impending earth-
quake does not exceed 5 months (Varotsos et al., 2011b).
Three events withM ≥ 5 are reported by USGS in the area
(36–41)◦ N , (19–25)◦ E for the period 26 May 2011 to
26 November 2011: the first one on 19 July 2011 with mb=

5.1 and epicentre 37.21◦ N 19.92◦ E; the second on 7 Au-
gust 2011 withMW = 5.0 and epicentre 38.44◦ N 21.83◦ E;
and the third on 14 September 2011 with mb= 5.0 and epi-
centre 37.19◦ N 22.05◦ E. (see Table 1 and Figs. 1 and 2).
We also checked that no other SES activity was reported
during the 5 month period prior to the first earthquake on
19 July 2011. Thus, one of the 3 above mentioned events
must be associated with this SES activity.

The Brune’s stress drop values for these earthquakes were
calculated through the formula of Hanks and Wyss (1972):

1σB = 0.44Mo/r3 (2)

where Mo is the seismic moment andr the radius for
a circular fault. The estimation of the radiusr was
obtained by the application of the aftershock area tech-
nique (Kiratzi et al., 1991), which is described in detail
by Dologlou (2009). For the determination of the af-
tershock areas, we used the earthquakes reported by
the National Observatory of Athens (NOA), Greece
(http://www.gein.noa.gr/services/Noacat/CAT2003.TXT).
Precisely, we considered all events withML ≥ 3 that oc-
curred in a 3 month period after each main shock (Figs. 1
and 2 red stars), respectively and in the following areas:
[19–21)◦ N, [36.5–38.5)◦ E for the first main shock (Fig. 1,
solid green circles); [21–23)◦ N, [38–39)◦ E for the second
(Fig. 1, open circles); and [21–22.5)◦ N, [36.5–38)◦ E for
the third one (Fig. 1, open squares). The aftershock area
S = L × W , whereL is the length andW the width in km
(Table 1), is recognized as a cluster of events around each
main shock (Fig. 1). Ellipses, one solid (no. 1) and two
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Fig. 1. Map of Greece, with the distribution (forming a cluster) of
aftershocks withML ≥ 3 reported by NOA for a three month period
after each main shock listed in Table 1. Ellipses, one solid (no. 1)
and two dashed (no. 2 and 3), show the location of each cluster
with dimensions W andL for the corresponding aftershock area,
while red stars numbered as 1, 2 and 3 denote the epicentres of the
associated main shocks of Table 1. The epicenters of aftershocks
are denoted by solid green circles for no. 1 event, open circles for
no. 2 event and open squares for no. 3 event. A blue triangle depicts
the location of the SES station PIR.

dashed (no. 2 and 3), are used to show on the map of Greece
(Fig. 1) the location of each cluster corresponding to the
main shocks 1, 2 and 3, respectively as numbered in Table 1.
The radiusr is calculated from the equationS = πr2.

The seismic momentsMo for the three main shocks are
estimated through the formulas: log(Mo) = 1.73 mb+15.09
(Chen et al., 2007) or log(Mo) = 1.5 (MW + 10.7) (Hanks
and Kanamori, 1979). We note that for the main shocks no. 2
and no. 3, the reported magnitude by National Observatory
of Athens isML = 4.8 andML = 4.5, respectively, which
leads to seismic moment values ofMo = 2×1023 dyn cm and
Mo = 0.87×1023 dyn cm. For the calculation of stress drop
1σB we used Eq. (2).

Since in this study we deal with one new SES activity and
three possible corresponding main events, three pairs of lead
time 1t and stress drop1σB were investigated. We sepa-
rately inserted each pair into the already obtained power law
relation 1σB = 8.171t−0.328 based on previous data (Ta-
ble 1, Dologlou, 2010) and the resulting new exponentsα

along with their errors are given in Table 1. The seismic mo-
mentMo, the stress drop1σB , the aftershock dimensionsL
andW and their error range and mean values, the date mag-
nitude and lead time1t for each main event, numbered as
no. 1, 2 and 3 are also presented in Table 1.
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Fig.2  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The selectivity map (shaded area ) of PIR station. The
epicenters of the three main shocks are denoted by red stars with
numbers 1, 2 and 3 as listed in Table 1.

3 Discussion

The insertion of the new data sets of stress drop1σB and
lead times1t in the previously derived power law relation

1σB = 8.171t−0.328, (3)

which was based on 16 earthquakes and SES (Table 1 in
Dologlou, 2010), results in the following exponents (Ta-
ble 1): for the first set (no. 1 event)α1 = 0.327; for the second
(no. 2 event)α2 = 0.399; and for the third one (no. 3 event)
α3 = 0.378.

It is obvious that only the exponentα1 = 0.327, which cor-
responds to earthquake no. 1 and is almost the same with the
reported oneα = 0.328 by Dologlou (2010), matches the re-
quired value 0.33 (Surkov, 2002; Varotsos and Alexopoulos,
1984a) for critical behaviour. The other two events, no. 2 and
no. 3, do not obey the relation expressed by Eq. (3) and lead
to exponent values that differ markedly from the expected
critical value. Thus, the relation of Eq. (3) is stable only
when the appropriate set values of earthquake stress drop and
SES lead time are introduced while it is significantly vio-
lated, when false earthquake-SES pairs are considered. That
means that, except stability, this relation exhibits a high de-
gree of sensitivity that may imply that it is not an artifact,
but real physical dynamic processes evolving to criticality
are present in the pre-focal area when the SES is emitted.
An effort to explain the physics behind the interconnection
between the lead time of SES and the stress drop of earth-
quakes has been attempted by the author Dologlou (2010) on
the following basis: the lead time1t between the emission
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Fig. 3. The plot of the relation between the stress drop and the
lead time for the earthquakes considered by Dologlou, 2010, along
with the new data. A green star corresponds to the new event no. 1,
while the open stars to the other two events no. 2 and 3 (Table 1).
The derived power law relation along with its correlation coefficient
R are displayed on the top of the diagram.

of SES and the earthquake depends on the difference of the
fracture stressPfr for the earthquake occurrence and the criti-
cal stressPcr for the SES emission, and on the stress rateβ as
1t = (Pfr −Pcr)/β. An increase of the stress rate, which may
happen during the last preparatory stage of the earthquake
process, leads to a decrease of the lead time sincePfr > Pcr.
According to Varotsos et al. (1993a), and considering that
in the same geotectonic area the fracture stress of rocksPfr
remains constant, an increase of the stress rate also causes
an increase of the critical stressPcr and, thus, an enhanced
decrease in the lead time. The question is whether the dif-
ference (Pfr −Pcr) can be related to the stress drop of the
earthquake, which is a topic for further investigation.

Another independent indication that event no. 1 must be
the appropriate earthquake for the 25–26 May 2011 SES ac-
tivity is the selectivity property of the SES signals, which
states that a SES station can be sensitive to specific seismic
regions while remaining inactive for others even at shorter
distances (Varotsos and Lazaridou, 1991). The selectivity
map of the PIR station (Sarlis et al., 2008), which detected
the under study SES, is depicted in Fig. 2 (shaded area) along
with the epicentres of the three earthquakes, which are de-
noted by red stars with numbers 1, 2 and 3 as listed in Ta-
ble 1. Only the epicentre of event no. 1 (earthquake on
19 July 2011) is located at the borders of the PIR selectiv-
ity map, while the other two fall clearly outside of it. Of
course a selectivity map may be subjected to changes in time
upon additional data.

4 Conclusions

New data from 2011, one SES activity and tree large earth-
quakes, were used to test the credibility of the power law
relation of the form1σB ∝ 1t−α (Dologlou, 2010) between
the stress drop of earthquakes and the lead time of precur-
sory SES. Here, we found that only the combination of data
from the SES and the earthquake of 19 July 2011 obeyed the
above power law with a critical exponentα = 0.327, a value
that characterizes critical behavior and fully agrees with the
reported one by Dologlou (2010). The combinations with the
other two earthquakes failed to fulfil the above relation, re-
sulting in exponent values far beyond criticality. Thus, this
power law is very sensitive and the relevant critical expo-
nent remains stable only for an appropriate set of data. That
means this power law is not an artifact, but probably implies
that real physical dynamic processes evolving to criticality
are present in the pre-focal area when the SES is emitted. An
attempt to complete the picture of the underlying physics in
the interconnection of the stress drop and the lead time of the
precursory SES is still in progress.

Edited by: M. E. Contadakis
Reviewed by: R. Teisseyre and another anonymous referee
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