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3Centro Oceanográfico de Gij́on (IEO), Av. Pŕıncipe de Asturias 70 bis, 33212 Xixón – Gijón, Spain

Received: 19 June 2010 – Revised: 28 December 2010 – Accepted: 8 January 2011 – Published: 15 March 2011

Abstract. Shelf-to-basin sediment transport during storms
was studied at the southwestern end of the Gulf of Lions
from November 2003 to March 2004. Waves, near-bottom
currents, temperature and sediment fluxes were measured on
the inner shelf at 28-m depth, in the Cap de Creus submarine
canyon head at 300-m depth and in the northwestern
Mediterranean basin at 2350-m depth. This paper is a
synthesis of results published separately in different papers;
it includes some new data and focusses on the subject of
storms. It is the first paper in which simultaneous data
about the effect of storms on the shelf, the slope and in the
basin are shown together. During the winter studied, there
were two severe E-SE storms with significant wave heights
≥ 7 m: one in December 2003 and one in February 2004.
During these storms, coastal water was exported off-shelf
producing strong near-bottom currents (up to 82 cm s−1) at
the canyon head that resuspended sediment and increased the
downcanyon sediment fluxes by several orders of magnitude.
The suspended sediment flux increase in the canyon head
was much larger during the February storm than during the
December storm. At the deep basin site, particle fluxes also
increased drastically (1–2 orders of magnitude) immediately
after the February storm but not after the December storm.
The reason was that the February storm was reinforced by
dense shelf water cascading and was long enough (43 h)
to transfer large amounts of resuspended sediment from
shallow shelf areas to the canyon head and from there to the
northwestern Mediterranean basin. Thus, in the western Gulf
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of Lions, severe winter E-SE storms occurring during the
dense shelf water cascading period can significantly increase
the transfer to deep-sea (> 2000 m) environments of shelf
and slope resuspended material, including anthropogenic
contaminants and organic matter.

1 Introduction

The effects of strong storm events in the Mediterranean
are relatively well known in the coastal zone where they
affect the coastal morphology and can damage many
infrastructures, which have been created as a consequence of
high anthropogenic pressure. However, the offshore effects
of these events are less well known. At sea, storm-waves
generate bed shear stresses sufficient to resuspend shelf and
even upper slope sediments, increasing water turbidity and
sediment transport (Palanques et al., 2002; Puig et al., 2003).
Storm events redistribute not only bottom sediment but also
all the associated matter as well, such as organic matter
and pollutants. The final fate of these substances during
storm events is not always well known but it may have an
impact in the marine ecosystems. A conceptual model can be
summarized from previous studies. The sediment supplied
from rivers is trapped on the inner shelf (Geyer et al., 2000;
Crockett and Nittrouer, 2004). This sediment is resuspended
during moderate storms, transported offshore and deposited
on the middle shelf (Traykovski et al., 2000). Finally, the
most energetic storms can resuspend this sediment making
it available for transport towards the outer shelf and upper
slope (Ogston et al., 2000; Puig et al., 2003; Fan et al.,
2004). However, the processes and their role in this model
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are very complex and remain poorly understood. In addition,
field data are scarce and local, leaving many areas uncovered,
and the transfer towards deep environments has been studied
little. Storms have been invoked as a plausible triggering
mechanism of major events of downcanyon transport in
present times (Van Weering et al., 2002; Oliveira et al., 2007;
De Stigter et al., 2007), although direct observations of this
connection are still pending. Most of the existing studies
are based on coastal or slope observations but simultaneous
coastal, slope and deep basin data are very scarce.

Many of the results presented herein have been published
in a variety of papers (i.e. Guillén et al., 2006; Palanques
et al., 2006, 2009) dealing with different subjects and
discussing specific details of each observational experiment.
Therefore, the aim of this paper is to combine the various
datasets collected simultaneously in this margin within the
frame of different projects and illustrate the effects of severe
storms on the Gulf of Lions (GoL), transporting sediment
particles and associated elements from the shelf down to the
basin. Additionally, new data on particle composition at the
basin site will be presented and discussed.

2 Study area

The GoL is a micro-tidal and river-dominated continental
margin that is fed by the Rhone River and several minor
rivers. The GoL continental shelf stores river sediment,
which can be subsequently resuspended by storms with
waves from the E-SE (E-SE storms) and exported to the slope
by storm-induced downwelling and dense water cascading
(Palanques et al., 2006; Ulses et al., 2008a). The GoL
continental slope is incised by numerous submarine canyons.
However, most of the near-bottom shelf-slope sediment
transfer occurs through the southwesternmost submarine
canyon (Cap de Creus Canyon), which is the final outlet
before the constriction of the Cap de Creus promontory
(Fig. 1). The main winds in the western part of the GoL
are the northwesterly “Tramontane” and the southeasterly
“Marin”. On one hand, the cold and dry northerly
“Tramontane” is responsible for the strong cooling and
homogenization of the shelf water column in winter, which
may promote dense shelf water formation. On the other,
southeasterly storms are the main mechanism causing bottom
sediment resuspension over the GoL shelf, since they can
generate strong waves reaching exceptionally significant
wave heights(Hs) > 6 m and periods(Tp) < 12 s (Ferŕe et
al., 2005; Guilĺen et al., 2006).

3 Methods

The data presented in this paper comes from three different
observational sites in the GoL from where near-bottom
currents, water temperature and sediment fluxes were
measured simultaneously. These observations have been
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Fig. 1. Bathymetry map of the Gulf of Lions showing the location
of the inner shelf (SH) instrumented tripod (triangle), the Cap de
Creus (CC) canyon head mooring site (circle) and the basin site
(BS) mooring (square).

combined with wave data from the GoL to assess the role
of major storms in this region. Time series from the shelf
were obtained from a tripod deployed 2 km off the mouth of
the T̂et River at a water depth of 28 m; time series from the
slope were collected by a mooring deployed at the head of
the Cap de Creus submarine canyon at 300-m depth; and data
from the basin were recorded by another mooring deployed
at 2350-m depth (Fig. 1).

Continuous information on wave conditions in the western
sector of the GoL was obtained by an autonomous RDI
Sentinel 600 kHz acoustic doppler current profiler (ADCP)
equipped with a wave pressure sensor and deployed nearby
the shelf tripod site. It was mounted on a bottom
platform with an upward-looking configuration. Waves were
measured during 20-min bursts at 2 Hz every 3 h. Currents
were measured between wave-burst measurements at 1 Hz
and were averaged over that period. In this paper we
show ADCP currents at 2 m above bottom (m.a.b.). The
ADCP collected data between 26 November 2003 and
16 January 2004 and between 4 February and 26 March
2004. Additional wave data were obtained from a Datawell
wave buoy deployed 11 km south of the study area.
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The shelf tripod was deployed twice, from 26 November
2003 to 12 December 2003 and from 4 February 2004 to
18 March 2004. It was equipped with an Aanderaa current
meter (RCM 9) with pressure, temperature, conductivity and
turbidity sensors, installed 1 m a.b. The sampling interval
of the RCM 9 current meter was set to 5 min. Three D&A
Instruments Optical Backscattering Sensors (OBS) were also
mounted on the tripod. These instruments collected data
every 3 h in 20-min bursts logged at 2 Hz. Laboratory
calibrations were used to convert the signals from these
instruments into Suspended Sediment Concentration (SSC).
In this study, we present the burst-averaged SSC from the
OBS mounted at 0.15 m a.b. In the first deployment, the
tripod was knocked over during the peak of a strong storm
on 4 December, after 8 days of sampling. However, the
0.15 m a.b. OBS continued to produce reliable data (see
Guilén et al., 2006 for details).

Bottom shear stress (τ ) was estimated using the combined
wave-and-current boundary-layer model of Grant and
Madsen (1986). The inputs to the model were wave-orbital
velocity (urms), obtained by applying linear wave theory to
the ADCP,Hs andTp measurements, current speed (uc) at
2 m a.b. and wave-current angle. The bottom was assumed to
be flat and the bottom roughness was given by the sediment
grain size (D50) (Guilĺen et al., 2006).

Concurrent with the shelf observations, an Aanderaa
RCM11 current meter also equipped with pressure, tempera-
ture, conductivity and turbidity sensors was moored 5 m.a.b.
in the Cap de Creus Canyon head from 1 November 2003 to
5 May 2004 with a mooring turn-around from 3 to 5 February
The sampling interval of the canyon-head current meter was
set to 20 min. Turbidity data recorded in FTU were converted
into SSC following the methods described in Guillén et
al. (2000).

The data at the basin site were obtained from a
moored array deployed in the North Balearic Basin (5◦12′;
41◦48′) from November 2003 to April 2005. The array
was equipped with an Aanderaa RCM 11 current meter
with pressure and temperature sensors and a Technicap
PPS 5/2 conical sediment trap with a 1-m2 collecting
area and 24 receiving cups. The current meter was
placed 220 m a.b. and the sediment trap 250 m a.b. The
sediment trap collected 48 samples in the two consecutive
deployments with a mooring turn-around in mid-September
2004. The trap-collecting intervals ranged from 5 to
15 days, depending on the season, and the current meter
sampling interval was set at 60 min. Sediment trap cups
were filled with a borax-buffered 5% formaldehyde solution
in 0.20-µm filtered seawater before their deployment, to
prevent sample degradation. Swimmers (those organisms
deemed to have actively entered the trap) were removed
from the samples by wet-sieving the sample through a 1-
mm nylon mess. Trapped material was split to divide
the total sample into several homogeneous aliquots. To
determine downward Total Mass Flux (TMF), sub-samples

were filtered through pre-weighed cellulose acetate filters
and dried overnight at 40◦C.

TMF was calculated from the sample dry weight, the
collecting trap area and the sampling interval. Organic
Carbon (OC) and total carbon contents were analyzed in 25%
HCl treated and non-treated samples, using an elemental
analyzer (Thermo NA 2100 and EA Flash series 1112).
Inorganic carbon was then calculated as the difference
between total and OC. Organic matter content was estimated
by multiplying the OC by 2, the factor most commonly used
in NW Mediterranean studies. Calcium carbonate content
was calculated from inorganic carbon using the molecular
mass ratio 8.33, assuming that all inorganic carbon was in
the form of calcium carbonate. Biogenic silica (data not
shown) was analyzed using a wet-alkaline extraction with
sodium carbonate using the method described by Mortlock
and Froelich (1989). Finally, the lithogenic fraction was
obtained as the difference between the total mass and the
rest of the main components (i.e. opal + organic matter +
carbonates).

4 Results

During the 2003–2004 winter, there were two severe storms
with waves coming from the E-SE sector during which
maximum significant wave heights increased up to more than
7 m: one in early December 2003 and one in late February
2004 (Fig. 2). The early December event occurred while
the shelf water was still stratified and was concurrent with
a flood of all GoL rivers. The late February 2004 event
took place when shelf water was unstratified and during
the season of Dense Shelf Water Cascading (DSWC). More
usual moderate storms with significant wave heights between
2.5 and 4 m occur mainly in autumn and winter and have a
small impact in the off-shelf sediment transfer. As it has been
stated before, for the purpose of this paper we will focus on
these two extreme events, which recurrence interval is of the
order of 50 years for the December event and of 10 years for
the February event (Puertos del Estado).

4.1 December major storm

At the inner shelf site, the first major storm began at 17:30 h
on 3 December. Six hours earlier, temperature decreased
from 15.5 to 14.4◦C). The peak of the storm was at 02:00 h
on 4 December with anHs of 8.45 m and turbidity reached
1.9 g l−1 at 01:00 just before the tripod was knocked on
its side. Near-bottom currents reached maximum values
between 47 and 53 cm s−1 after the peak of the storm (Fig. 3).
Bottom shear stresses reached 3.74 N m−2 (data not shown).
The dominant current direction and sediment advection was
towards the SSE.

At the canyon head sudden increases in temperature (from
13.4 to 15.5◦C) and current speed (from 2.5 to>50 cm s−1)
occurred at 01:35 h on 4 December, which generated the first
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Fig. 2. Time series of significant wave height (Hs) at the inner shelf in front of the T̂et River mouth (see location in Fig. 1) from October
2003 to April 2005. Storm events correspond toHs peaks. Arrows point to the extreme E-SE storms with the highestHs peaks occurring in
early December and late February.

peaks of turbidity (from 0.8 to 19.2 mg l−1). At 04:40 h
SSC peaked suddenly up to 48 mg l−1 and shear stress to
0.54 N m−2 (data not shown). The event ended at 09:00 h
with a sudden decrease in temperature, currents and turbidity
that coincided with the decrease of the storm on the shelf
(Fig. 3).

At the basin site, the temperature maintained values of
around 13.13◦C during and after the December 2003 major
storm, (Fig. 3) and current speed ranged between 0.8 and
7.1 cm s−1. During and immediately after the storm, TMFs
were low (24 mg m−2 d−1) and OC content and the OC/N
ratio decreased to 3.99% and 7.12, respectively, lithogenics
also decreased to 35%, whereas carbonate increased to
54.37%. Opal maintained similar values (Fig. 4).

4.2 February major storm

At the inner shelf site, the second major storm began
with a temperature decrease of 1◦ C at around 10:40 h
on 20 February. During the peak of the storm at around
03:00 h on 21 February,Hs reached 7 m, generating shear
stresses up to 2.61 N m−2 (data not shown) and turbidity
values of 2.5 g l−1 at 0.15 m a.b. Near-bottom currents
maintained speeds higher than 20 cm s−1 (maximum speed:
42 cm s−1), advecting resuspended sediment towards the
S-SE. After the peak of the storm, the waves decreased
gradually but turbidity increased again, along with a decrease
in temperature, giving a secondary peak one day later due to
resuspended sediment advected from northern coastal areas
(Fig. 3).

At the canyon head, the temperature decreased suddenly
from 13.1 to 12.5◦C at 16:00 on 20 February and current
speed increased progressively up to 78 cm s−1 and shear
stress up to 0.59 N m−2 (data not shown). Several turbidity
peaks between 20 and 34 mg l−1 occurred between 02:00 and

16:00 h on 21 February and a major turbidity peak began
at 22:19 h maintaining values>68 mg l−1 (over the sensor
limit) for 10 h. At the end of the storm, turbidity again
exceeded 68 mg l−1 at 17:00 h on 22 February, even with
decreasing current speeds (Fig. 3).

At the basin site, temperature and current speed did
not show any drastic change and maintained values around
13.13◦C and between 1.4 and 5.7 cm s−1, respectively.
However, the downward TMF of particles collected between
22 February and 3 March increased more than one order of
magnitude from 50–60 to 2823 mg m−2 d−1 (Fig. 3). The
OC of the downward particulate matter decreased to 3.86%
and the OC/N ratio increased to 11.25, whereas carbonate
and opal decreased to 24.78% and 1.58%, respectively, and
lithogenic content increased to 65.90%. OC flux increased
by one order of magnitude, reaching 109.16 mg m−2 d−1

(Fig. 4).

5 Discussion

During the December and February severe storms, coastal
water was exported off-shelf producing strong near-bottom
currents (up to 82 cm s−1) on the canyon head due to storm-
induced downwelling, which was enhanced by DSWC in the
February event. In addition to the sediment resuspension
induced by the canyon currents, the highest waves during
the peak of these storms, also resuspended sediment on the
canyon head and the whole adjacent continental shelf (from
the inner to the outer shelf) (Ulses et al., 2008a; Palanques
et al., 2008). Although similar significant wave heights
and canyon near-bottom currents were reached during both
storms, their effects in transferring sediment offshore were
different. The sediment flux increase at the canyon head was
much greater (1–2 orders of magnitude) during the February
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Fig. 3. Simultaneous time series of: near-bottom currents, near-
bottom temperature and near-bottom turbidity from the inner shelf
(SH) and the Cap de Creus (CC) submarine canyon; and near-
bottom current speed, near-bottom temperature and downward total
mass fluxes at the basin site (BS) during the deployment period.
Grey bands represent the timing of major E-SE storms.

storm than during the December storm. At the basin
site, particle fluxes also increased drastically (1–2 orders
of magnitude) immediately after the February storm but
not during the December storm (Palanques et al., 2009).
One of the main differences between the two storms was
that the February event occurred during the DSWC period,
whereas the December event was at the end of the water
stratification period, without cascading (Palanques et al.,
2006; Ulses et al., 2008b). The downwelling induced by
the December storm resuspended the canyon head sediment,
but it ended quickly and suddenly due to restoration of shelf
water stratification. This storm was too short (9 h) to allow
the advection of sediment resuspended on the shallow shelf
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Fig. 4. Time series of lithogenics content, calcium carbonate
content, Opal, OC/N ratio, organic carbon content and organic
carbon flux at the basin site. Dashed lines represent the trap
collecting intervals during which severe storms occurred.

to reach the canyon head (Palanques et al., 2006). In contrast,
the downwelling induced by the February event, reinforced
by DSWC, was long enough (43 h) to transfer large amounts
of resuspended sediment from shallow shelf areas to the
canyon head and from there to the basin.

The February storm resuspended and flushed out most of
the material previously deposited on the continental shelf,
after a major flooding period (Guillén et al., 2006; Palanques
et al., 2008). Modelling simulations showed that sediment
in suspension within the dense water plume was transferred
down to the density equilibrium level (about 700-m depth)
and from there, it spread southwards along isobaths (Ulses
et al., 2008a). The modelling of the plume did not indicate a
basinward sediment flux increase because sediment transport
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continued beyond the equilibrium level at 700-m depth and
became independent from the dense shelf water plume.
However, increases in near-bottom currents and turbidity
to more than 80 cm s−1 and 68 mg l−1 at the canyon head
suggest the formation of a low-density turbidity current able
to maintain negative buoyancy and go deeper than the dense
shelf water itself. The canyon slope was high enough to
allow any possible decrease in the density difference due
to entrainment of ambient water to be overridden by an
increase in the density difference due to sediment erosion.
In the deep canyon, the slope decreases and the low-density
turbidity current probably decelerated. When its density
became lower than the density of the ambient water body,
the turbid plume could have initiated upward convection,
generating detachments of Intermediate Nepheloid Layers
(INLs), spreading over the deep basin where particles settled
(Palanques et al., 2009).

Thus, in the western GoL, severe winter E-SE storms
associated with cascading can cause significant sediment
transport events that can reach the deep areas of the
northwestern Mediterranean basin. This transport can also
include contaminants, organic matter and other compounds
associated with particulate matter. Sediment transport from
the river to the slope is not usually direct but follows
a complex, multi-step pattern controlled by a multi-event
sequence (Guillén et al., 2006). The first repository
areas for land-derived particles are in the GoL shallow
prodeltas, exposing local ecosystems to both inorganic and
organic contamination. Although many contaminants tend
to be enriched in the prodelta areas, these areas do not
constitute a permanent sink due to resuspension processes
that affect especially those contaminants associated with
organic matter, which may be more easily resuspended.
In a seaward direction, however, anthropogenic influences
diminish due to sediment dilution, particle sorting and
biodegradation processes, with the exception of some
contaminants that could be supplied from the atmosphere by
man-made aerosols (Roussiez et al., 2006; Radakovitch et
al., 2008).

Specific effects of storms in contaminated sediment
dispersion are not well known. Average storms probably
redistribute contaminated particles along and across the
shelf, but major storms, such as the one occurring in
February 2004, can resuspend and inject shallow sediment
discharged from rivers towards the basin, flushing fresh and
easily erodible sediment with its contaminant load through
submarine canyons to the deep slope and basin. During these
events, however, shelf-contaminated sediment is diluted
by mixing with uncontaminated shelf-resuspended sediment
and with canyon sediment resuspended along its downslope
transport.

14C andδ13C measured in the particulate matter collected
during the February event in the Cap de Creus submarine
canyon showed similar values to those of the shelf surface
prodeltaic sediment (Tesi et al., 2010), indicating the

dominant advection of shelf-resuspended sediment towards
the canyon during this event. However, particulate matter
reaching the basin site during the February event had a higher
OC content (3.8%) and a higher C/N ratio (11.2) than at
the submarine canyon but a similar opal content (OC: 1.3%,
OC/N 9.8, Opal: 1.6%; Fabres et al., 2008). This suggests
an additional input of recycled organic matter, (probably
from the erosion of canyon and slope sediments that are
depleted in opal), which would also fit with the increase
in lithogenic content at the same basin site. Most of the
DSWC pulses only reach the upper canyon region, leaving
their sediment load where the current loses its transport
capacity. From time to time, when a stronger event, such as
that occurring in February, reaches deeper areas than usual,
it can resuspend and again transport sediment deposited from
previous DSWC events, mixing fresh shelf sediment with
older slope sediment. During the few days that lasted the
February 2004 event, the basin site received more sediment
(28.2 g m−2) than during the rest of the year (26.0 g m−2)
(Palanques et al., 2009). Therefore, these sudden pulses of
sediment input from extreme storms change the more usual
conditions in deep habitats. Besides the storms, intense
DSWC pulses produced during dry, windy and cold years
can also increase sediment fluxes in the basin. One of these
years was 2005, when dense and turbid shelf water reached
the basin site for 35 day. During that period of time, DSWC
transported an amount of sediment one order of magnitude
higher than during the February 2004 event. Thus, climate-
controlled processes like extreme storms and DSWC have
a strong impact in both shallow and deep environments. In
the case of DSWC, some deep impacts were defined for the
organic carbon export (Canals et al., 2006) and for some
deep-sea living communities (Company et al., 2008), but
in the case of storms, the effects on deep Mediterranean
environments are unknown. During extreme storm events
occurring with cascading, the impact of the sediment flux
increase on the deep ecosystems may alter the equilibrium
of an environment that usually receives low distal terrestrial
and atmospheric particle inputs along with primary-produced
particles most of the time. This sediment flux can have the
capacity to generate sediment gravity flows and increase the
turbidity of deep Mediterranean waters.

Future perspectives of deep sediment transport with
respect to the climate projections of extreme storms in the
coming decades are a critical point. Modelling results for
the Mediterranean Sea and the IPCC-A2 scenario for the
twenty-first century predicts a warmer and drier climate over
the entire basin (Somot et al., 2006) but the impact on
the frequency and intensity of the GoL extreme storms is
still not clear. Even the present frequency of these events
is still not well known. The still relatively short time-
series of instrumental observations, the complex orography
and bathymetry and the high wind field variability in the
NW Mediterranean are some of the reasons why the long-
term and probabilistic distributions of extreme wave storms
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is still achieved with great uncertainty (Sánchez-Arcilla et
al., 2008). In this context, and with such limitations, the
recurrence interval for an event as the February 2004 storm
is of the order of tens of years (Puertos del Estado; Sánchez-
Arcilla, 2008). The same limitations apply in the estimation
of the recurrence of extreme cascading events and from
the available observations its recurrence interval is about
6–10 years (Canals et al. 2006).

6 Conclusions

In the GoL, the extreme E-SE storms during the cascading
period can affect the whole continental margin down to
the basin. They produce strong near-bottom currents at
the Cap de Creus Canyon head and important increase of
the downcanyon sediment fluxes, especially if they occur
after a flooding period. Under these conditions, extreme
storms resuspend and flush out most of the material recently
deposited on the continental shelf through the Cap de
Creus Submarine Canyon. This material can form low-
density turbidity currents and be transferred beyond the
dense shelf water plume to the basin where they feed near
bottom nepheloid layers and increase deep sediment fluxes
by several orders of magnitude. The transferred material,
consisting mainly of resuspended sediment from the shelf
and the canyon itself with its organic matter load, increases
the organic carbon flux to the basin. Shelf-contaminated
sediment can be also transferred but has the potential to
be highly diluted by resuspended uncontaminated sediment.
The final effects of the extreme storms in the deep GoL
ecosystems are still unknown.
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