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Abstract. We construct a multi-parametric family of
quasi-rational solutions to the focusing NLS equation,
presenting a profile of multiple rogue waves. These solutions
have also been used by us to construct a large family
of smooth, real localized rational solutions of the KP-I
equation quite different from the multi-lumps solutions
first constructed inBordag et al.(1977). The physical
relevance of both equations is very large. From the point of
view of geosciences,the focusing NLS equation is relevant
to the description of surface waves in deep water, and
the KP-I equation occurs in the description of capillary
gravitational waves on a liquid surface, but also when
one considers magneto-acoustic waves in plasma (Zhdanov,
1984) etc. In addition, there are plenty of equations of
physical importance, having their origin in fiber optics,
hydrodynamics, plasma physics and many other areas, which
are gauge equivalent to the NLS equation or to the KP-I
equation. Therefore our results can be easily extended to a
large number of systems of physical interest to be discussed
in separate publications.

1 Introduction

Roughly speaking, in oceanography a rogue wave is a
unexpectedly high wave strongly localized in space-time
although recently, certain authors have also speculated about
“long-life” rogue waves. Even if testimonies about such
freak phenomena have been available for a long time,
the study of rogue waves has been booming for a couple
of decades, following the first scientific recording of an
appearance of a rogue wave in the ocean. A very good
review of the “state of the art” before 2009 can be found in
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Kharif et al. (2009). Since then, the notion of rogue waves
has appeared in several other fields such as nonlinear optics
where a Peregrine breather has been observed recently for
the first time (Kibler et al., 2010). In all cases, one of the
simplest models used is the focusing NLS equation

ivt +vxx +2|v|
2v = 0 . (1)

Here we discuss an important class of solutions of (1),
representing the rational 2n-parametric modulation of the
plane wave solution of fixed amplitudeB. This class of
solutions was first constructed in 1986 in the article by
Eleonskii et al.(1986).

Its relevance to the multi-rogue wave solutions was
understood only 24 years later in our work (Dubard et al.,
2010; Matveev et al., 2010) providing also a simplified
derivation of the results ofEleonskii et al.(1986) using
Darboux transform (seeMatveev et al., 1991). In our work,
the connection of these solutions to a class of 2n-parametric
family of smooth rational real solutions to the KP-I equation
was also first discovered.

The casen = 1 reproduces a famous Peregrine breather
solution of the focusing NLS equation. Its amplitude reaches
one high local maximum on (x, t) plane. Forn = 2,
in general, the amplitude of these solutions attends 3 big
maxima of the height several times higher with respect to
the amplitude of the background plane wave solution. We
conjecture that for higher values ofn “in general position”
the number of these maxima is equal ton(n+ 1)/2. This
conjecture is supported by the tested solutions corresponding
to n = 3 and n = 4. Indeed this is true for all tested
“generic” values of parameters. In some exceptional cases
corresponding to the “higher order” Peregrine breathers
constructed in (Akhmediev et al., 2009a,b,c, 2010), the
number of local maximums forn = 2 is equal 5 and one
of them is much higher than others. All the constructed
solutions have exactly the behavior of waves “appearing from
nowhere and disappearing again”.
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We also discuss the related family of smooth real rational
solutions of the KP-I equation. Their qualitative analysis is
still far from being completed but already we have a reason
to consider some of the related solutions as two-dimensional
rogue waves.

2 Multi-rogue waves solutions to the focusing
NLS equation

2.1 Some notations and definitions

Below we describe some auxiliary objects allowing the
construction of a family of nonsingular (for all realx andt)
quasi-rational solutions of the focusing NLS equation having
the property to reach a maximum of the amplitude at some
fixed points of (x, t)-plane and so that whent2

+x2
→ ∞,

|v|
2
→ B2

whereB is any arbitrary chosen real constant.
Let q2n(k) be a polynomial of degree 2n defined by the

formula

q2n(k) :=

n∏
j=1

(
k2

−
ω2mj +1

+1

ω2mj +1−1
B2

)
,

ω := exp

(
iπ

2n+1

)
, (2)

wheremj are positive integers satisfying the condition

0≤ mj ≤ 2n−1, ml 6= 2n−mj ,

for all l andj .1

We use also the definitions:

8(k) := i

2n∑
l=1

ϕl(ik)l, ϕj ∈ R,

f (k,x,t) :=
exp

(
kx + ik2t +8(k)

)
q2n(k)

, Dk :=
k2

k2+B2

∂

∂k
,

fj (x,t) := D
2j−1
k f (k,x,t)

∣∣∣
k=B

,

fn+j (x,t) := D
2j−1
k f (k,x,t)

∣∣∣
k=−B

, B ∈ R,j = 1,...,n.

Below we use the standard notationW(g1,...,gm) for a
Wronskian determinant of anym functions:

W(g1,...,gm) := detA, Apj = ∂
p−1
x gj , p,j = 1,...m.

We denoteW1 and W2 two Wronskian determinants
composed from the functionsf andfj defined above:

W1 := W (f1,...,f2n) ,

W2 := W (f1,...,f2n,f ) .

1For instance it is possible to takemj = j −1.

2.2 Multi-rogue solutions to the focusing NLS equation:
the main theorem

Theorem 1. The functionv(x,t) defined by the formula

v(x,t) = −q2n(0)B1−2ne2iB2t W2 |k=0

W1
(3)

represents a family of nonsingular quasi-rational solutions of
(1) depending on 2n+1 independent real parametersB, ϕj ,
j = 1,...,2n. Whent2

+x2
→ ∞, |v|

2
→ B2.

The formulation above is equivalent to the main result of
Eleonskii et al.(1986) written in more elegant notations.2

Without loss of generality we can takeB = 1 since the
NLS equation is invariant with respect to the scaling
transformationv(x,t)→ Bv(Bx,B2t). Therefore, below we
always setB = 1. As mentioned before, the simplest case
n = 1, when we have only 3 real parameters (ϕ1, ϕ2, B)
reproduces the Peregrine breather, andϕ1,2 are translation
parameters. For B=1 its analytical form is given by the
formula

v(x,t)

=

(x −ϕ1)
2
+4(t −ϕ2)

2
−

(
2
√

3+4i
)
(t −ϕ2)+ i

√
3

(x −ϕ1)
2
+4(t −ϕ2)

2
−2

√
3(t −ϕ2)+1

e2it .

(4)

Forϕ1,2 = 0 the plot of|v(x,t)| is presented in Fig. 1.
More precisely, we obtain the original Peregrine solution

introduced inPeregrine(1983) by settingϕ1 = 0 andϕ2 =
√

3
4 .

The casen = 2 where we have 4 phases (ϕ1,2,3,4) is already
much more interesting: it provides the first example of 3-
rogue waves solutions of the NLS equation and, under a
very special selection of phases, reproduces the simplest
“higher order” Peregrine breather first found inAkhmediev
et al. (1985). Below we present the plots of the|v(x,t)|

corresponding toB = 1 and to some particular selections
of phases forn = 2,3,4 making the multiple rogue waves
character evident in the solutions described by the main
theorem above. The denominator of the rational part of the
solution is a 6-th order polynomial with respect tox andt .

Because of the length of the related expression, we provide
here only a graphic representation of|v(x,t)| (see Fig. 2).
The detailed “polynomial” formula for these solutions is
given in Appendix A. The phasesϕ1 and ϕ2 are again
translation parameters, butϕ3 and ϕ4 have more influence
on the behavior of the solutions.

We can consider these solutions as a 4-parametric
extension of the second-order solution given inAkhmediev et
al. (2009a). The later is distinguished by the presence of one
highest maximum and 4 additional smaller maxima, contrary

2For the proof seeDubard et al.(2010); Eleonskii et al.(1986),
although the proofs and notations are slightly different and a proof
in Dubard et al.(2010) is shorter and simpler.
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Fig. 1. Plot of |v(x,t)| for n = 1, ϕ1 = 0 andϕ2 = 0.

to the behavior of the solutions corresponding to the generic
choice of phases. It corresponds to the following specific
selection of the phases:

ϕ1 = ϕ3 = 0,

ϕ2 =

(
7+2

√
5
)√

10−2
√

5

24
,

ϕ4 =

(
5+

√
5
)√

10−2
√

5

96
.

The related plot of|v(x,t)| is given by the Fig. 3.
In general, the denominator of the rational part of the

solution is an(n + 1)-th order polynomial with respect to
x and t . For the generic choice of the phases, the solution
seems to haven(n + 1)/2 maxima andn(n + 1) minima.
An appropriate specific choice of parameters should allow
the appearance of “super-peak(s)”. Figure 4 presents the
solutions obtained with all phases equal to 0 in the cases
n = 3 andn = 4.

3 From multi-rogue waves solutions of NLS equation to
KP-I equation

Here we apply the previous results to the KP-I equation:

∂x (4ut +6uux +uxxx) = 3uyy . (5)

Denoteg(x,y,t) the function

g(x,y,t) := v(x,t,ϕ3)|t=y,ϕ3=t .
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Fig. 2. Plot of |v(x,t)| for n = 2 with ϕ1 = ϕ2 = ϕ3 = ϕ4 = 0 at the
top andϕ4 = 1 andϕ1 = ϕ2 = ϕ3 = 0 at the bottom.

In other wordsg is obtained by replacing the independent
variablet in v(x,t) byy and the phaseϕ3 by t . The following
theorem relates the described class of quasi-rational solutions
of the NLS equation to a 2n parametric family of smooth
localized real rational solutions of the KP-I equation. Its
most important part – formula (6) – was first proved by in
(Dubard et al., 2010; Matveev et al., 2010).
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Fig. 3. Amplitude of the Peregrine breather of order 2.

Theorem 2. The function

u(x,y,t) := 2
(
|g|

2
−B2

)
= 2∂2

x logW1|t=y,ϕ3=t (6)

is a smooth, localized real rational solution to the KP-I
equation, satisfying the relations∫

∞

−∞

u(x,y,t)dx = 0, (7)

and

∀t, u(x,y,t) → 0, when x2
+y2

→ ∞

Therefore, any plot of the amplitude of the solution (3)
corresponds to the plot of the solution to the KP-I equation
at the moment of timet = ϕ3. The related maxima of the
solutions of the KP-I equation become more sharp, since
with respect to the NLS case, they are described by a square
of the amplitude of the solution of the NLS equation shifted
down on the constant−B2. It is also evident that for
some special moments of time, the confluence of the KP-
rogue waves takes place corresponding to the “higher order”
Peregrine breathers. At such moments of time, the solution
of the KP-I equation reaches its highest possible value which
decays afterwards. We believe that this is a very first
explicit manifestation of the 2-D rogue waves described by
the precise analytic expression. This also gives a new view
and physical interpretation of the “higher order” Peregrine
breathers as describing a relief of a two-dimensional rogue
wave, (described by the KP-I equation) at the moment when
its height reaches the absolute maximum.

Fig. 4. Plot of |v(x,t)| with vanishing phases forn = 3 at the top
andn = 4 at the bottom.

4 Concluding remarks

– The plots quite similar to ours but corresponding to
the “pre-rogue” waves solutions periodic inx and
observed inside one period can be found inCalini
(2002); Schober (2006). From the oceanographic
point of view these pre-rogue wave solutions appear
less realistic since, due to different factors (wind,
dissipation, dispersion, etc.), it is difficult to imagine the
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appearance of the true infinitex-periodic train of rogue
waves. In fiber optics the situation is quite different.
In fact, observations made recently inKibler et al.
(2010) concern not the pure Peregrine breather, but the
aforementioned “pre-rogue” waves solutions being very
close to the Peregrine breather for a sufficiently big
value of the period parameter. See alsoShrira (2010)
for further useful comments.

– For more general multi-periodic elementary solutions
describing the N-periodic modulation of the plane wave
solution, closed analytical expressions were obtained in
Belokolos et al.(1994), Its et al.(1988). In principle,
passage to the limit when all periods tend to infinity
should also produce the quasi-rational solutions to the
focusing NLS equation, but actually this has been
achieved by A. R. Its, private communication, June
2010, only for obtaining the second order “higher”
Peregrine breather and technically also seems to be
rather involved.

– An advantage of our approach is its possibility to
explore the results obtained for the NLS equation
to get interesting new results for the KP-I equation
explained above. In fact, the correspondence between
the solutions of the NLS equation and the KP-I equation
might be extended to the whole class of the so called
finite-gap multi-periodic solutions, yet we are avoiding
discussing this topic here in order to preserve the
elementary level of our presentation.

Appendix

The solution presented below is a special case of (3) with
n = 2. It corresponds to the choice of parameters giving the
easiest form for the numerical evaluation and producing the
plots of the solutions. Below we setB = 1 and

ϕ1 := 3ϕ3, ϕ2 := 2ϕ4+
3+

√
5

16

√
10−2

√
5 .

The whole family of solutions withn = 2 can be obtained by
a scaling transformation and space and time translations. The
related solutionv(x,t) depends on two parametersα andβ

proportional toϕ3, ϕ4:

α :=

(
5+

√
5
)√

10−2
√

5−96ϕ4, β := 96ϕ3.

It reads

v(x,t)=

(
1−12

G(2x,4t)+ iH(2x,4t)

Q(2x,4t)

)
e2it ,

where

G(x,t) := x4
+6g2(t)x

2
+2βx +g0(t),

H(x,t) := tx4
+2h2(t)x

2
+2βtx +h0(t),

Q(x,t) := x6
+3g2(t)x

4
−2βx3

+3q2(t)x
2

+6βg2(t)x +q0(t)

with

g2(t) := t2
+1,

g0(t) := 5t4
+18t2

−4αt −3,

h2(t) := t3
−3t +α,

h0(t) := t5
+2t3

−2αt2
−15t +2α,

q2(t) := t4
−6t2

+4αt +9,

q0(t) := t6
+27t4

−4αt3
+99t2

−36αt +β2
+4α2

+9.

The Peregrine breather of order 2, the same as first found
in Akhmediev et al.(1985), whose amplitude is plotted in
Fig. 3, is obtained whenα = β = 0.

Acknowledgements.This work has been supported partly by the
grant ANR-09-BLAN-0117-01.

We wish to thank J. Dudley and B. Kibler for very useful
explanations concerning their work (Kibler et al., 2010) and the
anonymous referees for the useful remarks.

Edited by: E. Pelinovsky
Reviewed by: two anonymous referees

References

Akhmediev, N., Eleonskii, V. Z., and Kulagin, N.: Generation of
periodic trains of picosecond pulses in an optical fiber: exact
solutions, Sov. Phys. JETP-USSR, 62, 894–899, 1985.

Akhmediev, N., Ankiewicz, A., and Soto-Crespo, J. M.: Rogue
waves and rational solutions of the nonlinear Schrödinger, Phys.
Rev. E, 80, 026601, doi:10.1103/PhysRevE.80.026601, 2009a.

Akhmediev, N., Ankiewicz, A., and Taki, M.: Waves that appear
from nowhere and disappear without a trace, Phys. Lett. A, 373,
675–678, 2009b.

Akhmediev, N., Soto-Crespo, J. M., and Ankiewicz, A.: Extreme
waves that appear from nowhere: on the nature of rogue waves,
Phys. Lett. A, 373, 2137–2145, 2009c.

Ankiewicz, A., Clarkson, P. A., and Akhmediev, N.: Rogue
Waves, rational solutions, the patterns of their zeros and
integral relations, J. Phys. A-Math. Theor., 43, 122002,
doi:10.1088/1751-8113/43/12/122002, 2010.

Belokolos, E. D., Bobenko, A. I., Enol’ski, V. Z., Its, A. R.,
and Matveev, V. B.: Algebro-geometric approach to nonlinear
integrable equations, Springer-Verlag, Series in nonlinear
dynamics, 1–337, 1994.

Bordag, L., Its, A., Matveev, V., Manakov, S., and Zakharov,
V.: Two-dimensional solitons of the Kadomtsev-Petviashvily
equation and their interaction, Phys. Lett. A, 63, 205–206, 1977.

Calini, A. and Schober, C. M.: Homoclinic chaos increases the
likelyhood of rogue wave formation, Phys. Lett. A, 298, 335–
349, 2002.

Dubard, P., Gaillard, P., Klein, C., and Matveev, V. B.: On multi-
rogue wave solutions of the NLS equation and positon solutions
of the KdV equation, Eur. Phys. J. Special Topics, 185, 247–258,
doi:10.1140/epjst/e2010-01252-9, 2010.

Eleonskii, V., Krichever, I., and Kulagin, N.: Rational multisoliton
solutions to the NLS equation, Sov. Dokl. Math. Phys., 287, 606–
610, 1986.

www.nat-hazards-earth-syst-sci.net/11/667/2011/ Nat. Hazards Earth Syst. Sci., 11, 667–672, 2011



672 P. Dubard and V. B. Matveev: Multi-rogue waves

Kibler, B., Fatome, J., Finot, C., Millot, G., Dias, F., Genty,
G., Akhmediev, N., and Dudley, J. M.: The Peregrine
Solution in Nonlinear Fibre Optics, Nat. Phys., 6, 790–795,
doi:10.1038/nphys1740, 2010.

Its, A. R., Rybin, A. V., and Salle, M. A.: Exact Integration of
Nonlinear Schr̈odinger equation, Theor. Math. Phys., 74, 29–45,
1988.

Kharif, C., Pelinovsky, E., and Slunyaev, A.: Rogue Waves in the
Ocean, Springer-Verlag, 2009.

Matveev, V. B. and Salle, M. A.: Darboux Transformations and
solitons, in: Series in Nonlinear Dynamics, Springer-Verlag,
1991.

Matveev, V. B. and Dubard, P.: The constructions of extremal wave
solutions for some integrable systems, in: Proc. of the Int. Conf.
FNP 2010 Frontiers of Nonlinear Physics, Nijni Novgorod – St-
Petersburg, 06-13-2010, 100–101, 2010.

Peregrine, D. H.: Water waves, nonlinear Schrödinger equations
and their solutions, J. Aust. Math. Soc. B, 25, 16–43, 1983.

Schober, C. M.: Melnikov analysis and inverse spectral analysis of
rogue waves in deep water, Eur. J. Mech. B-Fluid., 25, 602–620,
2006.

Shrira, V. and Geogjaev, V.: What makes the Peregrine soliton so
special as a prototype of freak waves?, J. Eng. Math., 67, 11–22,
2010.

Zhdanov, S. and Trubnikov, B.: Soliton chains in a plasma with
magnetic viscosity, ZHETF Pis’ma v Redaktsiiu, 39(3), 110–
113, 1984.

Nat. Hazards Earth Syst. Sci., 11, 667–672, 2011 www.nat-hazards-earth-syst-sci.net/11/667/2011/


