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Abstract. The analysis of trends in air temperature ob-
servations is one of the most common activities in climate
change studies. This work examines the changes in daily
mean air temperature over Central Europe using quantile re-
gression, which allows the estimation of trends, not only in
the mean but in all parts of the data distribution. A boot-
strap procedure is applied for assessing uncertainty on the
derived slopes and the resulting distributions are summarised
via clustering. The results show considerable spatial diver-
sity over the central European region. A distinct behaviour
is found for lower (5 %) and upper (95 %) quantiles, with
higher trends around 0.15◦C decade−1 at the 5 % quantile
and around 0.20◦C decade−1 at the 95 % quantile, the largest
trends (>0.2◦C decade−1) occurring in the Alps.

1 Introduction

Temperature changes can have profound impacts on socio-
economic activities and on human health. Spells of excess
heat, for example, are associated with increasing mortality
rates (e.g.Patz et al., 2005), changes in water resources (e.g.
Zappa and Kan, 2007) and higher occurrence of forest fires
(Trigo et al., 2006). Over Europe, significant trends in ex-
treme temperatures are expected due to changes in large-
scale circulation and snow cover extent (e.g.Della-Marta
et al., 2007; van den Besselaar et al., 2010)

Due to its considerable societal relevance, the temporal
evolution of temperature extremes is the focus of intense sci-
entific research. Temperature extremes are often analysed by
fitting trends to pre-defined extreme indices (e.g.Frich et al.,
2002) or data percentiles (e.g.Hertig et al., 2010), or by ap-
plying extreme value theory (e.g.Nogaj et al., 2006; Huguet
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et al., 2008; Parey, 2008; Scotto et al., 2011). However, in a
climate change context the temporal evolution of mean tem-
perature is of relevance as well. Variability in the mean influ-
ences variability in extremes (although it does not completely
determine), and is easier to quantify since the available sam-
ple size is naturally much larger than in the case of extreme
temperature events. Furthermore, correct simulation of the
temporal mean of climate variables is one of the first require-
ments for numerical climate models.

The long-term temporal evolution of a time series of av-
eraged temperature observations (e.g. global or daily mean
temperature) is often characterised by a single number, the
slope of a linear trend model fitted to the data. In that case,
the variability is assumed to remain constant in time – when
fitting a linear trend by ordinary least squares, the mean is as-
sumed to evolve in time but the data distribution (and specif-
ically the variance) is assumed to remain unchanged over the
considered period. However, this is not necessarily a real-
istic assumption. Of particular interest is the assessment of
whether such a hypothesis is reasonable, or if the distribu-
tion itself changes in time, leading to different slope values
for different parts of the data distribution.

Quantile regression (Koenker and Basset, 1978; Koenker
and Hallock, 2001) provides a well defined statistical frame-
work for estimating the rate of change not only in the mean as
in ordinary regression, but in all parts of the data distribution.
This work addresses the temporal evolution of daily mean
temperature over Central Europe. Quantile regression is ap-
plied in order to thoroughly quantify the variability structure
of daily mean temperature, and assess whether just the mean
temperature evolves in time, or if there are changes in the
data distribution itself, thereby obtaining a more complete
picture of the temporal changes in daily mean temperature.

For regional studies, not only the temporal evolution
but also the spatial distribution of temperature changes
is of scientific interest. The regional variability of air
temperature observations is often analysed by taking each
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individual temperature time series and summarising the in-
formation for the region of interest in terms of maps of indi-
vidual features. An alternative approach to spatially charac-
terise regional variability is cluster analysis (e.g.Scotto et al.,
2009; Mahlstein and Knutti, 2010). The aim of the present
study is to describe regional temperature variability over Eu-
rope by combining quantile regression and a time series clus-
tering procedure in the analysis of European daily mean tem-
perature records. The data and methodological approach are
described in the next section, results are presented in Sect. 3
and concluding remarks are given in Sect. 4.

2 Data and methods

2.1 Data

Time series of daily mean temperature are obtained from the
blended European Climate Assessment (ECA) dataset (Tank
et al., 2002; Klok and Tank, 2009). Only stations in west-
ern Europe with data from at least January 1901 to Decem-
ber 2007 and with less than 2 % of missing observations have
been selected (Fig.1 and Table1). As a pre-processing step,
seasonality is removed from each temperature record via si-
nusoidal regression at annual and semi-annual frequencies
(e.g.Kedem and Fokianos, 2002). The ECA dataset is sub-
ject to quality control procedures but inhomogeneities that
could influence the analysis of extreme temperatures can re-
main (Wijngaard et al., 2003). The deseasoned data are
therefore inspected for potential outliers. The record from
Wien was removed from the analysis due to the presence of
some suspicious values (exceeding 7σ ) in the last part of the
record.

2.2 Statistical methods

2.2.1 Quantile regression

Quantile regression is a well-defined statistical framework
for regression on quantiles rather than regression on the
mean. Although it was first introduced in econometrics
by Koenker and Basset(1978), quantile regression is be-
ing applied in various geoscience contexts (e.g.Koenker and
Schorfheide, 1994; Cade and Noon, 2003; Baur et al., 2004;
Elsner et al., 2008; Barbosa, 2008).

Given a random variableY with cumulative continuous
distribution functionFY (y), the quantileτ is defined as
the valueQY (τ ) such thatP [Y ≤ QY (τ )] = τ , 0≤ τ ≤ 1.
The quantile functionQY (τ ) is defined from the cumula-
tive distribution functionFY (y) asQY (τ ) = F−1

Y (τ ). Then,
considering the conditional distribution ofY given X = x,
the conditional quantile functionQY |X(τ ;x) verifiesP [Y ≤

QY |X(τ ;x)|X = x] = τ . Whereas ordinary regression is
based on the conditional mean functionE[Y |X = x] and
minimisation of the respective residuals, quantile regression

Table 1. Daily mean air temperature data summary.

Station (Abbreviation) % Height
missing (m)

1 STOCKHOLM (STO) 0 44
2 VESTERVIG (VES) 0.04 18
3 KOEBENHAVN (KOE) 0.06 9
4 HAMMER ODDE FYR (HOF) 0.58 11
5 HAMBURG (HAM) 0.75 35
6 BREMEN (BRE) 0.98 5
7 BERLIN (BER) 1.51 58
8 POTSDAM (POT) 1.51 81
9 DE BILT (DEB) 0.05 2

10 HALLE (HAL) 0.04 104
11 LEIPZIG (LEI) 0 141
12 FRANKFURT (FRE) 0.27 112
13 BAMBERG (BAM) 1.56 239
14 PARIS (PAR) 0.01 75
15 STUTTGART (STU) 0.33 401
16 KREMSMUENSTER (KRE) 0.12 383
17 SALZBURG (SAL) 1.89 437
18 HOHENPEISSENBERG (HOH) 1.68 977
19 ZUERICH (ZUE) 0.21 556
20 SAENTIS (SAE) 0.25 2490
21 GRAZ (GRA) 0.52 366
22 SONNBLICK (SON) 0.08 3106
23 GENEVE (GEN) 0.26 405
24 LJUBLJANA BEZIGRAD (LJU) 1.1 299
25 LUGANO (LUG) 0.25 273
26 ZAGREB-GRIC (ZAG) 0.07 156
27 OSIJEK (OSI) 0.82 88
28 BOLOGNA (BOL) 0.15 53

is based on the conditional quantile function and minimisa-
tion of the sum of asymmetrically weighted absolute resid-
uals 6i=1ρ(τ)|yi −QY |X(τ ;x = xi)|, whereρ is the tilted
absolute value function. Further details can be found in
Koenker and Hallock(2001) andKoenker(2005).

2.2.2 Clustering procedure

In this section, the time series clustering procedure pro-
posed to classify the time series of daily mean temperature
based on the corresponding distributions for quantile slopes
at lower (0.05), middle (0.5) and upper (0.95) quantiles is
introduced. The starting point is the panel of time series
(X(1),...,X(T )). The strategy for clustering the time series
is carried out in three stages: firstly, for a fixed (but arbi-
trary) quantile, the algorithm starts with the estimation of
the distribution corresponding to quantile slope estimates;
second, the corresponding dissimilarity matrix is computed.
Finally, a dendrogram based on the application of classical
cluster techniques to the dissimilarity matrix is built and that
provides the different clusters formed by the distributions of
the quantile slopes. The agglomerative hierarchical method
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Fig. 1. Map of the stations used in the analysis. The station numbers
are as in Table 1.

with unweighted average distance (average linkage) is used
as grouping criteria.

The clustering procedure is based on the computation of
distances among pairs of distribution functions. Therefore an
adequate metric between univariate distribution functions is
required. The simplest one is the absolute difference among
the mean of the distributions, but two distributions can co-
incide in mean and be completely different in other aspects.
Alonso et al.(2006) andVilar et al.(2010) demonstrated that
the choice of metric plays a key role and should reflect the
final goal of the clustering procedure.Scotto et al.(2010,
2011), proposed to use the weightedL2-Wasserstein distance
as a metric since it could be approximated by a fast compu-
tational procedure and it has two nice interpretations: (1) as
a weighted sum of quantiles squared differences, so it takes
into account more than the mean/median behavior and (2) in
the case of a Gaussian distribution, a weighted sum of mean
differences and standard deviation differences. Since in the
present study, the interest is not only in the mean behavior
of the distribution but also in the uncertainty related to esti-
mation, this weightedL2-Wasserstein distance between two
quantile slope distributions has been adopted.

3 Results and discussion

3.1 Quantile slopes

Quantile regression has been applied to each tempera-
ture record in order to describe the temporal variability of

Fig. 2. Time series of daily mean air temperature and trends for
quantiles 0.05 (dashed line), 0.5 (solid line) and 0.95 (dotted line).

different quantiles of the data distribution. The quantile
slopes and corresponding standard errors have been derived
using the algorithm ofKoenker and D’Orey(1987). As an il-
lustration, detailed results are presented for Paris (PAR) and
Graz (GRA). The results for all the stations are presented in
Sect.3.2.

The Paris and Graz records are shown in Fig.2, along with
the quantile slopes at quantiles 0.05, 0.5 and 0.95, corre-
sponding respectively to the lowest 5 %, 50 % (median) and
95 % of the ordered observations. A more complete descrip-
tion of the quantile regression results is given in Fig.3, which
displays for the Paris and Graz records the quantile slopes
and the corresponding standard errors computed for quantiles
0.1 to 0.9 in steps of 0.02. Figure3 clearly shows a distinct
pattern for the two records. In the case of Paris, the derived
slopes are very similar for all quantiles, and also similar to
the usual ordinary least squares slope indicating that the dis-
tribution of temperature values is approximately symmetric
and the rate of change is the same for all parts of the data
distribution. However, in the case of Graz the lower, middle,
and upper quantiles behave differently with the upper quan-
tiles of the temperature data distribution increasing at a much
faster rate than the middle and lower values.

In order to further assess uncertainty on the quantile slope
estimates, a bootstrap procedure is applied. Bootstrap allows
us to obtain a distribution of slope values instead of a sin-
gle punctual estimate, but it is a delicate strategy in the case
of non-independent data, since the temporal structure of the
time series needs to be preserved in the bootstrap samples.
Furthermore, bootstrap procedures often assume stationarity,
an assumption whichis not verified by most hydro-climatic
series. In this work, maximum entropy bootstrap (Vinod
and de Lacalle, 2009) is used since it preserves the temporal
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Fig. 3. Quantile slopes (◦C decade−1) and corresponding standard
errors for Paris and Graz records. The horizontal dashed line repre-
sents the usual ordinary least squares slope.

structure of the original series in the bootstrap replicates
without assuming stationary behavior. For each time series
of daily mean temperature, 200 replicates have been obtained
by maximum entropy bootstrap – experiments (not shown)
indicate that in this case there is no need of using a bigger
number of ensembles. Quantile regression is then applied to
each replicate, resulting in a sample of 200 quantile slopes
instead of a single punctual estimate. The results are shown
as histograms in Fig. 4 and allow the assessment of the dis-
persion around the punctual quantile slope estimates. Graz
exhibits a clear, different distribution for the upper quantile
slope relative to the the median and lower slopes. The asym-
metry in the bootstrap distributions is a consequence of the
asymmetry of the quantile slope statistic.

3.2 Clustering

The analysis outlined in Sect. 3.1 is repeated for each one
of the 28 stations and the resulting punctual estimates are
displayed in Table2. Maximum entropy bootstrap is ap-
plied to assess uncertainty, yielding a set of distributions of
quantile slope estimates as shown in Fig. 4 for the two se-
lected records. In order to summarise those distributions,
the average linkage procedure is applied to obtain dendro-
grams of slopes for quantiles 0.05 (Fig. 5), 0.5 (Fig. 6) and
0.95 (Fig. 7).

Table 2. Quantile slopes (◦C decade−1) and corresponding stan-
dard errors (in parenthesis). The sign * denotes values that are not
statistically significant (for a 5 % significance level).

τ = 0.05 τ = 0.5 τ = 0.95

1 STO 0.190 (0.016) 0.065 (0.007) 0.029 (0.011)
2 VES 0.051 (0.013) 0.094 (0.005) 0.147 (0.009)
3 KOE 0.135 (0.011) 0.117 (0.006) 0.166 (0.010)
4 HOF 0.102 (0.009) 0.089 (0.005) 0.134 (0.009)
5 HAM 0.016* (0.014) 0.039 (0.007) 0.106 (0.011)
6 BRE 0.037 (0.013) 0.042 (0.007) 0.064 (0.012)
7 BER 0.091 (0.014) 0.068 (0.008) 0.090 (0.013)
8 POT 0.105 (0.014) 0.099 (0.008) 0.127 (0.013)
9 DEB 0.131 (0.013) 0.121 (0.006) 0.153 (0.012)
10 HAL 0.044 (0.015) 0.034 (0.008) 0.049 (0.012)
11 LEI 0.017* (0.015) 0.020 (0.008) 0.034 (0.013)
12 FRE 0.100 (0.012) 0.096 (0.008) 0.124 (0.011)
13 BAM 0.076 (0.013) 0.081 (0.008) 0.100 (0.012)
14 PAR 0.199 (0.012) 0.180 (0.007) 0.194 (0.010)
15 STU 0.091 (0.012) 0.098 (0.008) 0.111 (0.011)
16 KRE 0.077 (0.014) 0.089 (0.007) 0.114 (0.011)
17 SAL 0.096 (0.016) 0.092 (0.009) 0.085 (0.012)
18 HOH 0.073 (0.013) 0.118 (0.010) 0.190 (0.013)
19 ZUE 0.057 (0.011) 0.066 (0.008) 0.115 (0.012)
20 SAE 0.081 (0.015) 0.149 (0.009) 0.242 (0.011)
21 GRA 0.159 (0.013) 0.166 (0.007) 0.238 (0.009)
22 SON 0.136 (0.019) 0.177 (0.008) 0.205 (0.010)
23 GEN 0.081 (0.010) 0.084 (0.007) 0.080 (0.011)
24 LJU 0.143 (0.013) 0.109 (0.007) 0.182 (0.011)
25 LUG 0.152 (0.010) 0.158 (0.005) 0.113 (0.009)
26 ZAG 0.120 (0.013) 0.075 (0.008) 0.148 (0.013)
27 OSI 0.062 (0.016) 0.033 (0.008) 0.069 (0.011)
28 BOL 0.044 (0.011) 0.098 (0.006) 0.148 (0.009)

The dendrogram for the lower quantile clearly discrim-
inates two groups: stations with larger slopes, typically
>0.1◦C decade−1 (LUG, GRA, ZAG, LJU, DEB, SON,
KOE, PAR, STO) and the remaining stations with smaller
slopes. The cluster of large slopes further distinguishes the
stations with the highest slopes,>0.15◦C decade−1 (PAR
and STO) from the other stations. The cluster of small
slopes further subdivides into stations with moderate slopes
and stations with very small or non-significant trends (LEI,
HAM,OSI, ZUE, VES, BRE, BOL, HAL). The dendrogram
for the median quantile (Fig. 6) first distinguishes the sta-
tions with highest slopes,>0.15◦C decade−1 (LUG, GRA,
SAE, SON, PAR). Within the remaining stations, the major
subdivision discriminates the stations with the lowest slopes,
<0.04◦C decade−1 (LEI, OSI, HAL, BRE, HAM). A simi-
lar pattern is found in the dendrogram for the upper quantile
(Fig. 7). The first major subdivision clusters the stations with
highest slopes (GRA, SAE, SON, LJU, HOH, PAR). The
remaining stations are subdivided into clusters of moderate
slopes and a cluster of stations with the lowest slopes, typi-
cally <0.1◦C decade−1 (GEN, SAL, BER, OSI, BRE, HAL,
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Fig. 4. Bootstrap distribution of quantile slopes for Paris (left) and
Graz (right) records. From top to bottom: quantileτ = 0.05, τ =

0.5 andτ = 0.95. The dashed vertical line indicates the punctual
estimate (Table2).

Fig. 5. Dendrogram for 5 % quantile slopes.

LEI, STO). Although the clustering results mainly reflect the
quantile slope values for each station, the advantage of the
adopted clustering procedure is that it classifies the distribu-
tion of slopes resulting from the bootstrap analysis, instead
of a single punctual value.

Fig. 6. Dendrogram for 50 % quantile (median) slopes.

Fig. 7. Dendrogram for 95 % quantile slopes.

4 Discussion and conclusions

In the present study, quantile regression and clustering are
applied to the study of changes in daily mean air tempera-
ture over Central Europe. Quantile regression allows us to
compute trends at different quantiles of the data distribution
within a well-defined statistical framework. Maximum en-
tropy bootstrap allows the assessment of the uncertainty on
the computed slopes while taking into account data serial
dependence and non-stationary behavior. Finally, a classi-
cal clustering procedure allows us to summarise the resulting
distributions of sample quantile slopes.

As in ordinary regression, the slopes for a fixed quantile
are not the same across Europe, reflecting the spatial depen-
dence of air temperature trends. For example, in the cen-
tral part of the data distribution (median quantile), trends
vary from 0.02◦C decade−1 to 0.18◦C decade−1. Further-
more, quantile regression allows us to assess trends at dif-
ferent quantiles of the data distribution. While for some
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stations (e.g. PAR, GEN) the trend is the same for all quan-
tiles, the results show that most stations exhibit different
slopes for the 5%, 50% and 95% quantiles. This is also re-
flected in the difference between clusters for different quan-
tiles. Thus, the rate of temporal change is not the same for
all parts of the data distribution, as implicitly assumed in
ordinary regression. At the 5% quantile, the largest trends
are around 0.15◦C decade−1, while at the 95% quantile the
largest trends are around 0.20◦C decade−1. This indicates
a tendency towards larger increases in the upper part of the
data distribution (large positive temperature anomalies).

The largest gradient of spatial variability occurs at the
95 % quantile, with slopes ranging from 0.03◦C decade−1

to 0.24◦C decade−1. The largest trends (>0.2◦C decade−1)
are found in the Alps (GRA, SAE, SON). Most stations show
a much larger trend in the upper part (95% quantile) than in
the central and lower part of the data distribution, consistent
with the projected warming for Central Europe (Kjellstrom
et al., 2007). The northernmost station, STO, exhibits a con-
trasting behavior with highest trend (0.19◦C decade−1) at the
lowest quantile, decreasing to 0.03◦C decade−1 at the 95 %
quantile.

The quantile regression results are presented here in terms
of slopes at fixed quantiles for all the stations. An alternative
approach would be to perform clustering on the distribution
of slopes for all quantiles of each station (as displayed in
Fig. 3) in order to better compare changes in slopes across
different quantiles. This is computationally very intensive,
and further methodological work is required on how to in-
corporate the uncertainty on the slope estimate at each quan-
tile in such a clustering procedure. However, clustering of
slopes across quantiles remains a promising perspective for
further work, along with the application of the methodology
to outputs from regional climate models.
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