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Abstract. This study aims to utilise genetic algorithms for
the estimation of peak ground accelerations (PGA). A case
study is carried out for the earthquake data from south-west
Turkey. The input parameters used for the development of
attenuation relationship are magnitude, depth of earthquake,
epicentral distance, average shear wave velocity and slope
height of the site. Earthquake database compiled by the
Earthquake Research Institute of Turkey was used for model
development. An important contribution to this study is the
slope/hill data included into the dataset. Developed empir-
ical model has a good correlation (R = 0.78 and 0.75 for
the training and overall datasets) between measured and esti-
mated PGA values. The proposed model is also compared
with local empirical predictive models and its results are
found to be reasonable. The slope-hill effect found to be an
important parameter for the estimation of PGA.

1 Introduction

Many seismic design codes utilise smoothed acceleration
spectrums, which are scaled by spectrum coefficients for dif-
ferent seismic zones, for the determination of seismic loads
on buildings. Spectrum coefficient is usually a measure
of expected peak ground acceleration (PGA). On the other
hand, seismic hazard estimation is also an important aspect
of earthquake engineering. It is needed to determine seis-
mic safety of existing building stocks for mitigation works.
PGA values significantly affect the results of the hazard as-
sessment studies.

Many ground motion predictive models for PGA are pro-
posed in the existing literature. Various input parameters are
used in different models. Magnitude of the event and dis-
tance between site and source are common parameters in
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almost all models. However, attenuation behaviour is also
affected by source type, properties of propagation media, lo-
cal geology and topography (Kramer, 1996). On the other
hand, many of the existing empirical predictive relations are
obtained by regression analysis. Although, the attenuation
behaviour is very complex due to uncertainties caused by the
complexity of inputs, these empirical models have very sim-
ple formulations. The affect of the uncertainties may be re-
duced by the use of artificial intelligence (AI) techniques. In
recent years, some new ground motion predictive models are
proposed based on AI techniques (Güllü and Erçelebi, 2007;
Cabalar and Cevik, 2009).

Genetic algorithm (GA) is a popular computing technique
for the solution of optimization problems. It is a computer
simulation of production of successive generations from a
random initial population, which is a set of probable optimal
solutions. As well as classical optimization problems, GA is
utilised for curve fitting applications for the estimation of a
depended variable (Ergun et al., 2008). In this approach, for-
mat of the aimed function is defined in the code and coeffi-
cients of the predefined parameters are determined by genetic
operators. However, the success of regression for complex
problems is limited to the imagination of the user, which de-
fines the form of the curve. Instead of using predefined curve
formats, GA can be programmed so that it selects the effec-
tive parameters and determines their coefficients. Such an
application of GA is also available in the literature for the
geotechnical engineering problems (Sen and Akyol, 2010).

Turkey is a seismically active region of the world and it has
been affected by destructive earthquakes frequently. There is
a need to develop local empirical predictive models for the
region. There is a number of models developed for Turkey
(Aydan, et al., 1996; G̈ulkan and Kalkan, 2002; Kalkan and
Gülkan 2004; Ulusay et al., 2004). The recent models, which
utilise dataset developed in previous studies, also employ AI
approaches (G̈ullü and Erçelebi, 2007; Cabalar and Cevik,
2009) see Table 1.

Published by Copernicus Publications on behalf of the European Geosciences Union.

http://creativecommons.org/licenses/by/3.0/


2782 S. Yilmaz: Ground motion predictive modelling based on genetic algorithms

Table 1. Local empirical predictive relationships developed from Earthquakes in Turkey.

Author Attenuation model

Aydan et al. (1996) PGA= 2.8(e0.9Mse−0.025R
−1)

Ms : surface wave magnitude,R: Epicentral distance

İnan et al. (1996) PGA= 100.65M−0.9log(R)−0.44

M: magnitude,R: Epicentral distance

Gülkan and Kalkan (2002) lnY = b1+b2(M −6)+b3(M −6)2+b5ln(r)+bV ln(VS/VA)

Y : PGA or PSA;b1, b2, b3, b4, b5, bv , VA: regression coefficients;
r: Epicentral distance;VS: Shear wave velocity

Kalkan and G̈ulkan (2004) lnY = b1+b2(M−6)+b3(M−6)2+b5ln(

√
r2
cl

+h2)+bV ln(VS/VA)

Y : PGA or PSA;b1, b2, b3, b4, b5, bv , VA: regression coefficients;
r: Epicentral distance;VS: Shear wave velocity

Ulusay et al. (2004) PGA= 2.18e0.0218(33.3 Mw−Re+7.8427SA+18.9282SB )

Mw: moment magnitude,Re: Epicentral distance;SA, SH :
Soil constants

Beyaz (2004) logA = β0+(β1M2
w)+(β2log(R+1))

A: Peak acceleration at base-rock,β0, β1, β2: regression coefficients;
Mw: moment magnitude,R: Epicentral distance;

Cabalar and Cevik (2009) PGA=
(
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Mw: moment magnitude,R: Epicentral distance;VS:
Shear wave velocity

In this study, south-west Turkey is selected as a case study
for the development of GA based attenuation model. A
dataset is prepared for the region. Recent earthquake data
is also included in the dataset. It is well known that slope/hill
affect is an important source of PGA variations. Due to the
slope/hill affect, hazard level increased in some past earth-
quakes (Kaplan et al., 2008) in the region. Therefore, slope
data of the recording stations is also used in the dataset.

2 Data used and method

2.1 Seismicity of the South-West Turkey

Turkey suffers significantly from earthquakes, being on
Alpine orogenic system (Erdik et al., 1985). The African,
Arabian and Eurasian plates interact with the Anatolian plate.
Movement of African and Arabian plates to north-northeast
forces the movement of the Anatolian plate to the Eurasian
plate. Due to this movement, the west of Anatolian plate is
squeezed and horst and graben systems are formed in south-
west Anatolia (Fig. 1). These formations are the main source
of the seismic activity in the region. For more information on
the seismicity and tectonics of the region, Erdik et al. (1985)
and Westaway (2003) are important references.

Fig. 1. Major tectonic structures in West Turkey (modified from
Kocyigit, 1996).
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Figure 2. Strong motion epicenters and Recording stations 
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Fig. 2. Strong motion epicentres and Recording stations.

2.2 Empirical predictive models for Turkey

The first seismograph in Turkey was installed in 1973 in
scope of a project carried out by Earthquake Research Insti-
tute of Turkey (today called Disaster and Emergency Man-
agement Presidency). The first record was taken during the
1976 Denizli Earthquake. Some of the records from the net-
work were already used in some international datasets for
empirical predictive modelling. Moreover, local predictive
models based on earthquake data in Turkey have been devel-
oped in the last decade. Table 1 summarizes empirical pre-
dictive relations developed for Turkey. The relations devel-
oped before 2001 uses surface wave magnitude (Ms), which
is developed for strong earthquakes. The most reliable mag-
nitude scale is the moment magnitude (Mw). However, it has
complex calculation procedures and calculated for a limited
number of earthquakes. The recent models utilise moment
magnitude. However, the dataset used in this study includes
small to medium size earthquakes with records taken from a
distance of up to 100 km to the source. As it has the sim-
plest calculation procedure, duration magnitude is available
for most of the earthquakes. Some empirical relations are
also available in the literature for the conversion between
different magnitude scales (Ulusay et al., 2004). However,
such a conversion may introduce some extra errors due to
development of a model by using the data obtained from an-
other empirical model. Therefore, duration magnitude (Md)
is used for this study; instead of converting different magni-
tude scales to each other.
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Figure 3. Magnitude vs epicentral distance for training set 
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Fig. 3. Magnitude vs. epicentral distance for training set.

2.3 Ground motion dataset for south-west Turkey

Ground motion dataset used for the development of the em-
pirical predictive model proposed in this study was divided
into training and test datasets. Division is carried out by ran-
dom selection. Researchers proposed to select 20 % to 30 %
of the dataset for testing (Swingler, 1996; Nelson and Illing-
worth, 1990). In this study, 28 % of the overall dataset is
selected as testing data. Tables 2 and 3 list the training and
testing datasets, respectively. Station information can be ac-
cessed at Disaster and Emergency Management Presidency
(DEMP). All of the destructive earthquakes (M > 5.0) were
included in the database. However, to limit the affect of small
PGA values, records with small PGA values were eliminated.
The lower limit for the PGA is selected as 20 gals. Figure 2
shows geographic distribution of the epicentres of the earth-
quakes and recording stations used in this study.

Since the lower limit of 20 gals have been used for dataset
creation, there exist many near source recordings for small
magnitude earthquakes. Therefore, an epicentral distance
limitation of 2 km is selected to filter cut-off near-source ef-
fects. When the magnitude increases, upper bound of the
epicentral distance is also increases as illustrated in Fig. 3.
Considering the earthquake with magnitude smaller than 4.0,
there are only two records with epicentral distance greater
than 30 kilometers (32 km and 47 km). On the other hand, for
a greater magnitude number of records with greater epicen-
tral distances than 65 kilometers, there is only three. There-
fore, it seems to be rational that developed models can be
valid for the first 30 and 65 km for magnitudes smaller and
greater than 4.0, respectively.

2.4 Genetic Algorithms

Genetic Algorithm (GA) is an optimization and search
method based on the principle of survival of the fittest.
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Table 2. Training dataset.

Recording Date PGA Depth Epicentral Md
station (gal) (km) distance

(km)

Saraykoy 05.06.2006 22.84 11.1 16.07 4.10
Kuyucak 05.06.2006 66.78 11.1 24.23 4.10
Nazilli 05.06.2006 20.88 11.1 34.91 4.10
Finike 23.01.2005 25.00 12.1 85.03 5.20
Denizli 22.08.2005 33.36 11.7 7.38 3.20
Bornova 20.10.2005 31.92 15.4 59.87 5.90
Koycegiz 24.08.2004 27.98 10.5 9.85 2.90
Koycegiz 20.12.2004 27.40 12.5 36.61 5.10
Marmaris 20.12.2004 33.89 12.5 18.01 5.10
Saraykoy 23.07.2003 123.23 5.0 27.41 5.30
Kuyucak 23.07.2003 21.73 5.0 44.13 5.30
Nazilli 23.07.2003 25.94 5.0 53.26 5.30
Denizli 23.07.2003 45.84 5.0 46.11 5.30
Saraykoy 26.07.2003 47.54 5.0 20.34 5.00
Denizli 26.07.2003 25.79 4.3 38.58 5.50
Afyon 03.02.2002 113.50 5.0 66.38 6.00
Kutahya 03.02.2004 23.13 5.0 145.00 6.00
Afyon 03.08.2002 27.00 5.0 64.35 6.00
Afyon 03.02.2002 51.50 2.2 26.74 5.30
Burdur 03.04.2002 28.93 5.0 12.74 4.20
Burdur 02.02.2001 30.12 10.0 7.18 4.20
Bodrum 28.02.2000 42.94 15.4 47.01 3.80
Denizli 21.04.2000 27.56 14.7 14.76 5.20
Denizli 04.06.2000 40.22 5.9 19.48 3.40
Denizli 05.06.2000 27.16 5.0 25.02 3.40
Denizli 05.06.2000 36.87 1.2 4.85 3.90
Denizli 05.06.2000 21.58 5.0 29.19 3.60
Denizli 29.06.2000 22.25 5.0 6.26 3.10
Denizli 29.06.2000 28.38 5.0 21.69 3.60
Bodrum 08.12.1999 24.99 22.6 32.01 3.70
Edremit 05.03.1998 27.11 10.0 29.61 4.40
Cardak 04.04.1998 27.88 15.0 47.38 4.60
Dinar 04.04.1998 134.73 15.0 13.78 4.60
Bornova 09.07.1998 27.04 20.0 64.03 5.10
Kusadasi 29.05.1998 63.66 33.1 5.57 4.07
Gelibolu 25.10.1997 42.42 30.0 21.40 4.26
Kusadasi 20.02.1996 21.35 10.0 45.12 4.17
Kusadasi 02.04.1996 33.44 15.0 56.11 5.01
Dinar 29.06.1996 97.39 31.0 4.52 4.63
Dinar 26.09.1995 182.73 20.0 11.61 4.80
Dinar 27.09.1995 180.38 18.0 13.47 4.50
Dinar 28.09.1995 42.73 33.0 61.90 4.17
Cardak 01.10.1995 65.07 15.0 45.65 6.04
Dinar 01.10.1995 329.72 15.0 11.13 6.04
Cardak 01.10.1995 24.83 33.0 42.98 4.70
Dinar 01.10.1995 224.66 33.0 13.05 4.70
Dinar 03.10.1995 145.59 32.0 11.14 4.30
Dinar 04.10.1995 59.74 33.0 4.92 3.98
Dinar 06.10.1995 168.08 33.0 6.99 4.20
Izmir 16.12.1977 391.41 34.0 1.11 5.38
Dursunbey 18.07.1979 288.25 5.0 10.34 5.29
Edincik 05.07.1983 53.44 7.0 57.79 5.57
Edremit 05.07.1983 27.78 7.0 81.61 5.57
Gonen 05.07.1983 50.11 7.0 48.70 5.57
Balikesir 29.03.1984 223.89 12.0 2.39 4.73
Koycegiz 06.12.1985 114.46 8.0 14.23 4.73
Kusadasi 01.06.1986 94.43 21.0 15.33 4.17
Ilica 06.11.1992 37.81 17.0 61.76 5.76
Izmir 06.11.1992 38.34 17.0 31.93 5.76
Kusadasi 06.11.1992 83.49 17.0 41.45 5.76
Foca 24.05.1994 49.80 17.0 20.12 4.90
Foca 24.05.1994 57.65 16.0 19.91 5.10
Ilica 24.05.1994 26.88 16.0 56.10 5.10
Koycegiz 13.11.1994 96.51 15.0 17.79 4.63
Koycegiz 13.11.1994 57.16 10.0 9.85 4.30
Koycegiz 30.10.2007 21.12 28.9 56.01 5.01

Table 3. Test dataset.

Recording Date PGA Depth EpicentralMd
station (gal) (km) distance

(km)

Saraykoy 05.06.2006 22.32 10.4 21.85 3.90
Bornova 17.10.2007 22.52 18.6 57.26 5.80
Manisa 20.10.2005 22.00 15.4 83.22 5.90
Saraykoy 08.03.2004 35.69 5.0 13.39 3.60
Bodrum 04.08.2004 28.11 5.0 15.15 4.60
Bornova 10.04.2003 78.58 15.8 41.41 5.60
Saraykoy 26.07.2003 121.12 4.3 20.21 5.50
Kuyucak 26.07.2003 26.29 4.3 43.04 5.50
Nazilli 26.07.2003 27.16 4.3 53.13 5.50
Denizli 29.06.2000 20.39 6.1 10.35 3.40
Denizli 29.06.2000 21.36 1.0 43.42 3.30
Denizli 04.10.2000 66.38 8.4 12.72 4.70
Denizli 31.10.2000 44.13 14.2 23.52 3.40
Buldan 21.01.1997 38.51 18.0 11.09 4.91
Dinar 26.09.1995 81.02 24.0 13.56 4.30
Burdur 01.10.1995 43.92 15.0 48.26 6.04
Dinar 01.10.1995 171.79 33.0 6.53 4.35
Dinar 05.10.1995 128.84 33.0 5.71 4.40
Denizli 19.08.1976 348.53 3.0 14.75 5.10
Izmir 09.12.1977 272.97 19.0 6.57 4.91
Balikesir 05.07.1983 22.55 7.0 92.93 5.57
Foca 17.06.1984 24.17 15.0 98.03 5.10
Foca 04.08.1988 41.40 12.0 31.60 4.63
Koycegiz 13.11.1994 26.60 10.0 12.03 4.60
Koycegiz 13.11.1994 25.54 10.0 27.41 4.26
Çameli 29.10.2007 56.58 28.9 3.59 5.01

The solution process simulates natural selection mecha-
nisms. The method has been effectively used in many en-
gineering applications. GA was first introduced by Hol-
land (1975) although it started to be widely used after Gold-
berg’s book (1989).

A GA is initiated with a random population of many in-
dividuals. Each individual represents a probable solution to
the problem of concern. Then, using these individuals, new
offsprings are produced by crossovers and mutations in each
generation. Among the population, specific selection rules
are applied to the expanded population to reduce the size to
that of the original population. These rules are based on the
fitness of the individuals. The selection method is designed
to increase the chance of selection of the fittest individuals.
The fitness of individuals is a measure of optimality of the
solution represented by that individual. The procedure of the
GA generate better and better offsprings, in each generation
to make the solutions close to the objective function (Tung et
al., 2003). GA has been confirmed to offer many advantages
with respect to the classical optimization methods.

Offspring chromosomes are generated by usually combin-
ing two parent chromosomes. This is called crossover oper-
ation. An offspring has features of both parents. Firstly, two
individuals are selected for crossover and a random cut-off
point is selected for a crossover. Then each chromosome is
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Figure 4. Crossover Operation 
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Fig. 4. Crossover Operation.

Original Mutated 
010010111 011010111
111011101 111010101
101010011 101010111  

Figure 5. Sample mutation operations 
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Fig. 5. Sample mutation operations.

cut at that point and right parts of the strings are swapped.
This simplest crossover method is illustrated in Fig. 4. It is
also possible to select many cut-off points for a crossover op-
eration. The number of crossover operations in each genera-
tion is determined by crossover probability. Crossover prob-
abilities up to 0.80 give satisfactory results in many applica-
tions.

Mutation is an essential operator of the GA. A mutation
operation is simply carried out by changing 1 to 0 or vice
versa at a randomly selected bit among all chromosomes.
Premature loss of genetic information from the population is
highly probable in especially small populations. This is pre-
vented by mutations. Smaller mutation probabilities are ideal
to satisfy stability of the population for most of the problems.
Some sample mutation operations are shown in Fig. 5.

Increasing the population size is a problem for com-
puter memory. Population size expanded by mutations and
crossovers is reduced to original size by selection operators.
Selection is based upon the fitness of individuals. Fittest ones
have more chance to be selected to the next generation. Nor-
mally, less fit ones have less of a chance. Therefore, each
generation has a greater average fitness value than the pre-
vious one. Fitness of a chromosome is calculated by fitness
function. This function is a definition of the optimization
problem. In case of curve fitting applications functions uti-
lizing sum square error, root mean square error, etc., can give
satisfactory results. These operations are carried out until the
end criteria is satisfied (Fig. 6).

3 Empirical predictive models by GA

In most of the regression, a template formula is determined
by the researchers. In this study, a standard formulation is
not given to the code. An initial template is introduced to the
code. The final form of the formula is determined after GA
procedures are run. The initial template is given in Eq. (1).

PGA=X0+X1·f1(t
x2
1 )+X3·f2(t

x4
2 )+X5·f3(t

x6
3 ) (1)

 

Figure 6. Flowchart of the GA 
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Fig. 6. Flowchart of the GA.

Table 4. Input parameters and function alternatives.

Function inputs Solution domain

Coefficients,Xi −10.23≤ Xi ≤ 10.24
Powers,Xi −5.11≤ Xi ≤ 5.12
Functions,fi log(t), t, sin(t), et

Input parameters,ti m, d, r, z, h, vs , S1, S2, S3

+X7 ·f4(t
x8
4 ) ·f5(t

x9
5 )+X10·f6(t

x11
6 ) ·f7(t

x12
7 )

+X13·f8(t
x14
8 )·f9(t

x15
9 )+X16·f10(t

x17
10 )·f11(t

x18
11 )·f12(t

x19
12 )

In this formulation,Xi denotes coefficients or powers of the
terms. Function alternatives and input parameters to be se-
lected by the GA are denoted asfi andti , respectively. Up-
per and lower limits of the coefficients and powers and func-
tion alternatives and input parameters are summarized in Ta-
ble 4. GA selects optimal coefficients, powers, input param-
eters and functions. For example, if the optimal solution for
(X1,f1,t1,X2) is (3, log, r, 4), then the termX1 ·f1(t

x2
1 ) be-

comes3log(r4).
As the original inputs have very different intervals,

changes in input parameters of mutation by a bit or a
crossover may cause significant jumps at fitness value of the
individual. For example, magnitude,M, changes between
2.9 and 6.0, whereas shear wave velocity,VS, changes be-
tween 200 and 700 m s−1 in the dataset. To prevent big
jumps at fitness values due to change of parameters, all input
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Table 5. Upper and lower limits of original data used for mapping

Original Parameter Mapped parameter Pmin Pmax

Magnitude.Md m 2.5 6.5
Focal Depth.D d 0 35
Epicentral distance.R r 0 150
Focal distance.Z z 0 150
Slope height.H h 0 250
Shear wave velocity.VS vs 200 700
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Figure 7. Observed vs. Estimated PGA for the whole dataset 

 27

Fig. 7. Observed vs. Estimated PGA for the whole dataset.

parameters are mapped to similar intervals. Formulation of
the mapping procedure for the inputs is given in Eq. (2). This
formulation squeezes the variations in each parameter to in-
terval [1, 5].

p =
(P −Pmin)

(Pmax−Pmin)
·4+1 (2)

P is the original data;Pmin andPmax are upper and lower
limits of the data corresponding to mapped limits of 1 and 5,
respectively.p stands for the mapped data. Table 5 shows the
upper and lower limits of the input parameters. For example,
Md = 4 is mapped tom = 2.5.

Fitness function used for the evaluation of the individu-
als is shown in Eq. (3), wherePGAi is the observed data,
PGAi,e is the estimated value corresponding to ith record.
Fitness evaluation takes care of absolute error and the ratio
of greater estimated and real PGA values to those smaller.
So it is penalized for small PGA values with a small absolute
error, but estimations have 2 or 3 times the real values or vice
versa. Lastly, as larger PGA values are more significant for
engineering purposes, fitness term is multiplied by the real
PGA value to increase the weight of larger PGA values in
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Figure 8. Attenuation of the PGA with respect to epicentral distance 
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Fig. 8. Attenuation of the PGA with respect to epicentral distance.

the solution. Therefore, the domination of small PGA values
is prevented.

minf =

n∑
i=1

√
(PGAi −PGAi,e)2 ·

max
(
|PGAi |,

∣∣PGAi,e

∣∣)
min

(
|PGAi |,

∣∣PGAi,e

∣∣) ·PGAi (3)

After running GA for the minimization of the objective func-
tion, an optimal curve is obtained as the solution of PGA es-
timation problem. The proposed empirical formula is shown
by Eq. (4). The formula has a more complex structure than
the existing empirical predictive models. However, an im-
portant advantage of the proposed model is that it counts for
the slope affect. The formulation takes into account mapped
earthquake parametersm, r, z, handS3, which gets 1 for soft
soils and 0 for others.

PGA= 4.47−8.96·sin
(
e0.51 m0.97

)
(4)

+10.2·S3−8.8·em0.63
−9.35log(m4.44) · log(r4.72)

−8sin(e0.3 m1.74
) ·ez0.37

+7.6· m2.41
·log(er−4.8

)+0.017·e2·h

Estimated and recorded PGA values are plotted in Fig. 7.
There exists a good correlation especially for high-PGA
records, which are more important for the seismic design.
The final model in Eq. (4) has PGA attenuation with the epi-
central distance as shown in Fig. 8. It is quite reasonable that
PGA reduces with the increase in epicentral distance.

Attenuation of the PGA were plotted for different slope
heights for magnitudes ofM = 5 and M = 6 in Fig. 9.
According to developed model, slope heights up to 100 m
yields a limited increase in PGA. After this limit, PGA in-
creases rapidly. PGA increases about 12 gals between 100
and 150 m of slope height, which is also achieved between
150 and 170 m of slope height. Due to the limitations of
the dataset the formulation may not yield reliable results for
higher slopes.
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Figure 9. Attenuation of the PGA with respect to slope height for M=5 and M=6 
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Fig. 9. Attenuation of the PGA with respect to slope height forM = 5 andM = 6
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Figure 10. Distribution diagrams for Kalkan and Gülkan (2004) 
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Fig. 10. Distribution diagrams for Kalkan and G̈ulkan (2004).

Table 6. Performance of empirical predictive models recently de-
veloped for Turkey in case of south-west Turkey earthquakes.

Dataset Training Test Overall

Model R RMSE R RMSE R RMSE
Gülkan and Kalkan (2002) 0.58 12.11 0.61 18.29 0.59 10.10
Kalkan and G̈ulkan (2004) 0.75 6.22 0.72 11.01 0.74 5.45
Ulusay et al. (2004) 0.67 7.22 0.63 12.40 0.66 6.26
Beyaz (2004) 0.73 7.97 0.46 14.24 0.44 29.47
Cabalar and Celik (2009) 0.23 19.28 0.27 25.63 0.24 15.57
This study 0.78 6.68 0.71 10.98 0.75 5.65

The only parameter related to soil behaviour isS3, which
has a limited effect on the results. Mainly because of the
small number of records available for medium and hard soils.

In addition to parametric studies, the developed model is
also compared with existing models. The same dataset is

used in comparison with domestic relations. Results of those
were compared with the proposed attenuation relationship
in Table 6. According to the table, the attenuation model
proposed in this study gives satisfactory results. Its per-
formance is very similar to that of the model developed by
Kalkan and G̈ulkan (2004). Both relations yield good corre-
lation with low errors. Scatter diagram calculated for Kalkan
and G̈ulkan (2004) relation is given in Fig. 10. When com-
pared with Fig. 7, it is observed that both models overesti-
mate low PGA values and underestimates PGA values higher
than 100 gals. Deviation of the proposed formula is higher
for low PGA values. On the other hand, deviation of esti-
mations of proposed model is limited with respect to Kalkan
and G̈ulkan (2004) formulation for higher PGA values. In
Fig. 11, estimations of two models can be compared with the
recorded data in descending order. Peak points for both mod-
els belong to the same recordings. Better performance of the
proposed model for high-PGA values is also observed in this
figure.

4 Conclusions

This study proposes an empirical model for the estimation
of PGA based on genetic algorithms. The model is devel-
oped for the ground motion records obtained from south-west
Turkey, with magnitudes ranging from 2.9 to 6.0. Besides, an
evaluation of the existing attenuation models, developed with
the records from Turkey, has been carried out. The dataset for
the south-west Turkey was divided into training and test sets.
The main results are discussed below.

Among the existing models, the empirical predictive re-
lationship developed by Kalkan and Gülkan (2004) shows
the best performance for the RMSE for the overall dataset,
while the proposed model has a better correlation. How-
ever, the case is vice versa for the test dataset. In general,
the proposed model in this study gives similar results with
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Fig. 11. Distribution diagrams for Kalkan and G̈ulkan (2004).

the Kalkan and G̈ulkan model (2004). Among other models
proposed for Turkey, these two models generate more precise
estimates of PGA. In the training dataset and overall datasets,
the proposed model by this study has a better correlation than
the Kalkan and G̈ulkan (2004) model. Contrary to this fig-
ure, RMSE of the proposed model is lower than the Kalkan
and G̈ulkan model (2004) for the test dataset, but the training
and overall datasets. Besides, the proposed model has better
estimates for higher PGA values with respect to the Kalkan
and G̈ulkan (2004) model. This is the effect of weighting
PGA values in objective function. Due to such a weighting,
errors for low PGA values becomes less important than those
for high PGA values.

An important advantage of the proposed attenuation model
is that it counts for the slope affects on PGA. It is a local at-
tenuation model developed for the south-west Turkey, where
many hilly settlement areas exist. The use of the model for
these regions may produce more reliable results.

However, an important drawback of the models is that,
the characterisation of the soil under the recording stations
in Turkey is based on rough soil classifications. More pre-
cise soil parameters of each station are needed to improve
the quality of the ground motion predictive models in terms
of soil classification. Besides, very limited data is available
for strong motions with magnitude greater than 6. Therefore,
it should be noted that, results obtained from the proposed
model may not be valid for higher magnitudes.
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