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Abstract. We developed a multi-scale OBIA (object-based
image analysis) landslide detection technique to map shallow
landslides in the Baichi watershed, Taiwan, after the 2004
Typhoon Aere event. Our semi-automated detection method
selected multiple scales through landslide size statistics anal-
ysis for successive classification rounds. The detection per-
formance achieved a modified success rate (MSR) of 86.5 %
with the training dataset and 86 % with the validation dataset.
This performance level was due to the multi-scale aspect of
our methodology, as the MSR for single scale classification
was substantially lower, even after spectral difference seg-
mentation, with a maximum of 74 %. Our multi-scale tech-
nique was capable of detecting landslides of varying sizes,
including very small landslides, up to 95 m2. The method
presented certain limitations: the thresholds we established
for classification were specific to the study area, to the land-
slide type in the study area, and to the spectral characteris-
tics of the satellite image. Because updating site-specific and
image-specific classification thresholds is easy with OBIA
software, our multi-scale technique is expected to be useful
for mapping shallow landslides at watershed level.

1 Introduction

Landslide hazard is defined as the probability of occurrence
within a specified period of time and within a given area
of a potential damaging phenomenon of a given magnitude
(Varnes et al., 1984; Guzzetti et al., 1999). To perform a
landslide hazard assessment, mapping landslides is essen-
tial (Hansen, 1984). Among the different types of landslide
maps, landslide inventory maps portray the spatial distribu-
tion of known landslides (Guzzetti et al., 1999), as they are
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detected and delineated. To map landslide inventories, re-
searchers have traditionally relied on the analysis of aerial
photographs, combined with field investigations and the col-
lection of historical information (Guzzetti et al., 2000). How-
ever, new techniques have emerged, one of which is the
object-based image analysis approach (OBIA) (Martha et al.,
2010).

OBIA, commercialized through the Definiens software
package, has been widely adopted across the scientific com-
munity (Blaschke, 2010). Barlow et al. (2003, 2006), Mar-
tin and Franklin (2005), Park and Chi (2008), Moine et
al. (2009), Martha et al. (2010, 2011), Lu et al. (2011),
and Stumpf and Kerle (2011b) have resorted to OBIA in
landslide-related research. OBIA performs both segmenta-
tion and classification of an image. Segmentation merges
pixels into objects while classification is performed on these
objects (Thomas et al., 2003; Benz et al., 2004; Gitas et
al., 2004; Walter, 2004). Van Westen et al. (2008) consid-
ers that OBIA fares better than pixel-based methods in land-
slide mapping, precisely because of the grouping of pixels
into objects, which decreases the variance of spectral values
between landslide objects by averaging the pixels within the
object (Zhou et al., 2008). OBIA also benefits from the avail-
ability of spatial relations, shape characteristics, and expert
knowledge during classification (Zhou and Troy, 2008). We
therefore adopted OBIA for a case study of landslide inven-
tory mapping in Xiuluan, in the Baichi watershed, northern
Taiwan, following the 2004 Typhoon Aere.

One difficulty with OBIA is the choice of scale for analysis
(Dragut et al., 2010). The scale parameter in OBIA is an ab-
stract term which determines the maximum allowed hetero-
geneity for the resulting image objects (Definiens, 2007). By
modifying the value of the scale parameter, the size of image
objects varies (Kim et al., 2008). Also, for heterogeneous
data, the resulting objects for a given scale parameter will
be smaller than those for more homogeneous data. While
most research so far has relied on single scales for analysis
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(Blaschke, 2010) or chosen through trial and error (Blaschke
and Hay, 2001), Dragut et al. (2010) and Esch (2008) have
developed schemes to select and optimize the most appropri-
ate scales for analysis. Recently, Martha et al. (2011) and
Stumpf and Kerle (2011a) have also tried to determine scale
thresholds for multi-scale analysis of landslides through dif-
ferent statistical approaches. In this study, we also adopted a
multi-scale approach for landslide mapping, because land-
slide size statistics show that landslides occur in different
sizes (Malamud et al., 2004; Guzzetti, 2005). We used a
landslide size distribution to parameterise the scale parame-
ters and performed a case study, in which a multi-scale OBIA
methodology was developed to detect and classify landslides
and to produce a complete landslide inventory map, i.e. a
landslide inventory map including a substantial fraction of
all landslides at all scales (Malamud et al., 2004).

2 Study area and materials

2.1 Study area

The choice of the study area was driven by the necessity to
possess the input data – a satellite image, a digital eleva-
tion model (DEM) and a landslide inventory against which
to assess the validity of our methodology. We thus selected
Xiuluan, the 40 km2 northern section of the 120 km2 Baichi
watershed in northern Taiwan, on the west side of the Cen-
tral Mountain Range (Fig. 1). Baichi is the most upstream
section of the Shihmen Reservoir, a strategic resource for all
of northern Taiwan (Chiu et al., 2007; Chang and Chiang,
2009).

Geomorphologically, Baichi is representative of moun-
tainous watersheds in Taiwan, with a rugged topography,
heavily fractured bedrocks, shallow soils less than 2 m deep,
steep slopes, and frequent landsliding. Elevations range from
830 m a.s.l. in the northwest to 3320 m in the southeast. Cli-
matically, Baichi is influenced by typhoons in summer and
the northeast monsoon in winter. The mean monthly temper-
ature is 27.5◦C in July and 14.2◦C in January, with a mean
annual temperature of 21◦C. The annual precipitation aver-
ages 2370 mm. Because of typhoons, large rainfall events
usually happen from May to September. In this humid envi-
ronment, coniferous, broadleaf, and bamboo forests thrive
and cover most of the watershed. Aboriginal settlements,
road networks, agricultural fields, orchards and forest ex-
ploitation are concentrated in the eastern part of the water-
shed.

The study area was divided into 8 sub-watersheds, gen-
erated from a DTM in GIS with the hydrology tools. The
DTM is described in the following data section. Four of
the sub-watersheds were selected to constitute our training
area (20.58 km2), and the remaining four were kept for vali-
dation (18.87 km2). The partitioning of the sub-watersheds
between training and validation areas was done to ensure

Table 1. Landslide inventory data.

Count Max Mean Min Stdev
(n) (m2) (m2) (m2) (m2)

Training 97 90 363 2964 190 9812
Entire Inventory 190 90 363 2846 150 6203

both areas were not disproportionate, and contained approx-
imately equal numbers of landslides, and displayed similar
geomorphologic conditions and close proportions of natural
vs. human-related landuses.

2.2 Data

The methodology we developed to detect and map land-
slides was tested in Xiuluan after the passage of Typhoon
Aere. The typhoon struck the area over a three-day period
(23–25 August 2004). Through its intense and prolonged
rainfall, 1607 mm of total rainfall recorded over 57 h and
52.6 mm h−1 of maximum 24-h rainfall intensity, Typhoon
Aere caused numerous slope failures across the watershed
(Chiang and Chang, 2009). According to Rau et al. (2007),
Typhoon Aere is the worst typhoon ever to have struck the
Shihmen watershed. It caused losses of up to 45.7 million
USD and more than 15 fatalities. It also caused an inflow
volume 2.83 times greater than the maximum storage capac-
ity for normal operations of the Shihmen Reservoir (Cheng
et al., 2008).

We trained and validated our OBIA methodology with
a 190 landslide inventory derived from a bilateral research
project by the CNR – IRPI (Italian National Research Coun-
cil – Istituto di Ricerca per la protezione Idrogeologica)
(Table 1).

The air-photo interpretation was undertaken with the stan-
dard methodology and techniques CNR-IRPI applied in ear-
lier landslide mapping based on aerial photographs (Guzzetti
et al., 2006a). It used the pairs of 1:5000 colour aerial pho-
tographs taken on 2 September 2004 with a pixel size of
0.35 m and an estimated horizontal accuracy of 0.5 m, com-
piled by the Aerial Survey Office of Taiwan’s Forestry Bu-
reau. The inventory consisted of 119 shallow slides and
71 debris slides (Fig. 2). It was estimated by the interpreter
that 5 slides had a depth of 2 to 10 m, 6 2 to 5 m, 22 1 to 2 m,
42 1 m, and 115 less than 0.5 m.

To detect landslides in the study area after Typhoon Aere,
a SPOT-5 image taken on 2 November 2004 was selected.
We recognize that the time elapsed between the passage of
Typhoon Aere in late August and the moment the satellite
image was taken in early November may influence the detec-
tion results. Although there was no typhoon between late Au-
gust and early November, smaller precipitations could still
have an impact on landslide occurrence. Also, mitigation of
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Fig 1. Study area. 3 Fig. 1. Study area.

the landslides may have occurred between the September air
photo and the November satellite image, which could hinder
landslide detection performance assessment. However, we
chose this satellite image because it had little cloud interfer-
ence.

SPOT-5 possesses panchromatic and multispectral sen-
sors, with the nadir spatial resolution of 5 and 10 m, re-
spectively. A 2.5 m supermode image for the near infrared,
the red and the green band satellite images was purchased
from the Center for Space and Remote Sensing Research
of National Central University, at a level 3 of processing.

Level 3 images have undergone radiometric correction, ge-
ometrical correction, ground control point calibration and
ortho-rectification. The object-based image analysis of the
satellite image was conducted with Definiens Developer, Ell
Earth, version 7.0.3.

Finally, we used a 10 m DTM, compiled from the stereo
pairs of 1:5000 aerial photographs. The DTM was pre-
pared by a private contractor for a governmental project in
the Shihmen Reservoir watershed. The contractor did not
provide data accuracy statistics. We used this DTM be-
cause the alternative would have been the official 40 m DEM,
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Fig. 2. Landslide inventory from aerial-photograph interpretation. 3 

 4 

Fig. 2. Landslide inventory from aerial-photograph interpretation.

which was too coarse for geomorphic analysis. The DTM
was used in ArcGIS to generate sub-watersheds with the hy-
drology tool. The DTM was uploaded in Definiens to serve
in the classification process.

3 Methodology

Applying a multi-scale OBIA to landslide detection involved
three methodological steps. We first established the seg-
mentation mechanisms of the satellite image to ensure real-
world landslides and the objects obtained from segmentation
match. Second, we developed a classification scheme that
could correctly identify landslide objects and discard non-
landslide objects. Third, we set up tests to estimate the per-
formance of our technique, to compare its results with sin-
gle scale classification methods, and to validate against inde-
pendent landslide information. The overall methodological
workflow was summarized in Fig. 3.

3.1 Multi-scale segmentation for landslides

In OBIA, segmentation is the first step of an analysis. It par-
titions the image into objects. These objects can thereafter be
characterised and classified. Different multiple segmentation
options exist in the literature (Kerle and de Leeuw, 2009).
We used the multi-resolution segmentation included in the
Definiens software (Bentz et al., 2004; Definiens, 2007b),

because it provides the means for multiple segmentation at
different scales (Burnett and Blaschke, 2003; Benz et al.,
2004; Hay and Castilla, 2008; Lang, 2008).

Analyzing at multiple scales offers better results in object-
based methods (Hay et al., 1997; Baatz and Shäpe, 2000;
Hay and Marceau, 2004; Hay et al., 2005), because, of-
ten, no single scale can produce objects matching correctly a
phenomenon to be analyzed (Hay et al., 2001; Arbiol et al.,
2006).

In the case of landslides, Martha et al. (2010) estimated
that multi-scale processing, along with post-segmentation
merging, was one of the viable options to detect landslides
with OBIA. We focused on multi-scaling and classification
with appropriate sets of rules and thresholds at each scale
rather than post-segmentation merging, because it enabled us
to identify landslides objects during the classification process
through shape features characterizing the shallow landslides
in our training set. We also opted for multi-scaling because
of the valuable information which could be derived from the
landslide size statistics to define our scales for analysis.

For a given triggering event over a given area, previ-
ous studies have found that the probability density of the
occurred landslide areas fit a truncated inverse Gamma
distribution (Malamud et al., 2004; Guzzetti, 2005). The
distribution can be used to predict the size for the most abun-
dant landslides in a watershed and more generally the prob-
ability of having landslides of a given size. Although the
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Fig. 3. General methodological workflow. 3 
Fig. 3. General methodological workflow.

Table 2. Scale parameters and object size statistics.

Scale 500 200 100 70 50 30 10
parameter

Objects (n) 123 743 3004 6575 14 157 43 715 415 371
Mean (m2) 637 454 105 527 26 101 11 925 5538 1794 189
Min (m2) 10 361 793 244 69 28 25 6
Max (m2) 6 704 725 770 189 499 178 161 396 63 564 26 062 2988
Qu10 (m2) 26 940 9415 3632 2158 1243 440 50
Qu20 (m2) 93 064 21 253 7185 3763 2070 721 78

Qu10 and Qu20 stand for the 10th quantile and the 20th quantile; we listed them because landslides objects are often smaller than the majority of objects.

 1 

 2 

Fig. 4. Probability density of landslide areas from the landslide training set. 3 

 4 

Fig. 4. Probability density of landslide areas from the landslide
training set.

landslide inventory of the training set was small, its land-
slide size statistics still provided a base for selecting the array
of scales for segmentation. Figure 4 showed that segmenta-
tions resulting in objects with sizes ranging from 200 m2 to
90 000 m2 were required and that a larger concentration of
scales was needed for objects between 200 m2 and 1000 m2

to deal with the higher probability density in this range of
areas.

We heuristically selected scales which fitted these require-
ments in terms of object size and segmented the study area
seven times, for scale parameters of 500, 200, 100, 70, 50, 30
and 10. We named the segmentation levels after the scale pa-
rameter they were derived with, i.e. L500, L200, L100, L70,
L50, L30, and L10, with L500 having the largest object size
and L10 the smallest (Table 2). Our multi-scale segmentation
therefore resulted in seven successive object levels on which
landslide detection and classification was performed.
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Fig. 5. Classification ruleset flowchart. 3 
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Fig. 5. Classification ruleset flowchart.

Table 3. Features used for ruleset creation.

Rule feature Reference

Spectral NDVI Barlow et al. (2003)
Brightness Moine et al. (2009)

Shape Compactness Moine et al. (2009)
Length to width Moine et al. (2009)

Texture GLCM mean of the red band Martha et al. (2010)
Sub-objects stdev. of mean NDVI –

Relief Relief to length (adapted from
Relief to width Barlow et al., 2006)

3.2 Classification

In OBIA, once an image is segmented, its objects can be de-
tected and classified through rule set development and appli-
cation, in our case to obtain a landslide inventory map.

Our classification process relied on a similar set of rules
found in previous landslide OBIA research (Martin and
Franklin, 2005; Martha et al., 2010) (Table 3). It com-
bined spectral, relief, shape, and texture features to recog-
nize landslide objects and discriminate false positives, as de-
tailed in our rule set flowchart (Fig. 5). The general ap-
proach was to first recognize landslide candidates with NDVI
(normalized differential vegetation index) and then eliminate
false positives, as done in previous research (Martha et al.,
2010). Thresholds were obtained interactively by comparing
the spectral, relief, shape, and texture feature values of the
landslides from the training set with the feature values of the
non-landslide objects from the training area (Table 4).

We reproduced this detection and classification approach
for each level, starting with L500, and then successively
L200, L100, L70, L50 and L30. When an object was

detected and classified as a landslide at a given scale, we
no longer analyzed its sub-objects when classifying at the
next levels. We did not classify at L10, because L10 was
only used to generate sub-objects for L30. The need for sub-
object comes from the texture feature values derived from
sub-objects.

In Martha et al. (2010), after a first classification, detected
landslide objects were merged and then refined for more ho-
mogeneity through a chessboard segmentation, to eliminate
from the landslide objects the remaining non-landslide ele-
ments. With our multi-scale technique, this result was ob-
tained differently. We relied on a specific texture feature,
calculated from the NDVI mean and standard deviation of
the sub-objects, to determine its degree of homogeneity. It
eliminated objects, which, at a large scale, included both a
landslide and other land uses. We relied on this feature to
ensure that landslide classification did not occur at a large
scale if the object’s homogeneity was too low as defined in
Table 4.

Finally, the landslides classified at each successive scale
were mapped together to obtain a landslide inventory map
for the training area.

3.3 Tests

Three tests were performed to assess our methodology. First,
we determined the detection performance through the mod-
ified success rate (MSR) from Huang and Kao (2006). Sec-
ond, we compared results from our multi-scale approach
with the results under single scale approaches. Third, we
tested our multi-scale OBIA methodology against indepen-
dent landslide information, with the landslide set from the
validation area.
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Table 4. Detection and classification thresholds.

Rule L500 L200 L100 L70 L50 L30

Spectral
NDVI mean < 0.32

Brightness – [110–125] & 0.45<NDVImean<0.62 & S-O stdev> 0.18
Shape
Compactness 0.11*
Length/width 18** & 4*

Texture
S-O stdev < 0.15 < 0.16 < 0.17 < 0.18
GLCM Red – [90–135] & NDVI mean>0.05
Relief
Relief/width – – > 0.9∗ > 1.66∗ > 1.66∗ > 2∗

Relief/length – > 0.9∗ > 1.16∗∗∗ > 1.16∗∗∗ > 1.16∗∗∗ > 1.5∗∗∗

S-O stdev. stands for the NDVI mean standard deviation of sub-objects, while GLCM Red stands for the grey level co-occurrence matrix of the red band.∗, ∗∗, and∗∗∗ indicate that
the threshold applies respectively to the polygon, to the skeleton, and to both the polygon and skeleton of the objects. Brightness is used to detect landslides in darker sections of the
image.

 1 

Fig. 6. Comparison of landslide delineation between air-photo inventory and 2 

multi-scale OBIA detection. 3 

 4 

Fig. 6. Comparison of landslide delineation between air-photo inventory and multi-scale OBIA detection.

To assess the landslide detection performance of our
methodology, we calculated the MSR, defined as:

MSR= 0.5 (SRnumber+SRcells),

where SRnumber is the rate of successfully detected land-
slides [%] and SRcell is the area proportion of successfully
detected stable areas [%]. By having two equally weighted
components, MSR considers the detection of both land-
slide sites and stable areas. For example, if a methodology
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Table 5. MSR for multiscale detection.

Training set Validation set
SRcell (%) 98.6 98.9

SRnumber(%) 74.2 73.1
MSR (%) 86.4 86.0

Table 6. MSR for single-scale detection.

L500 L200 L100 L70 L50 L30 SDS

SRcell 1.00 1.00 1.00 0.99 0.99 0.99 1.00
SRnumber 0.01 0.18 0.29 0.41 0.37 0.40 0.48
MSR 0.51 0.59 0.64 0.70 0.68 0.70 0.74

SDS stands for the classification scheme obtained after complementing L30 with a
spectral difference segmentation.

successfully maps 90 % of landslides and only 50 % of sta-
ble areas, its MSR has a value of 0.70 (Chang and Chiang,
2009).

A second test was conducted to compare the detection per-
formance of our multi-scale approach with single scale ap-
proaches. We ran a single scale classification for L500, L200,
L100, L70, L50 and L30 and compared their detection accu-
racy to the multi-scale results. In addition, we also ran a
classification after improving the scale 30 segmentation with
a spectral difference segmentation, and compared again the
detection accuracy to the multi-scale results.

The third test consisted in the validation of our methodol-
ogy by replicating the study with new landslide data in the
validation area to assess the performance with independent
landslide information.

4 Results

The landslide inventory map (Fig. 7) obtained through our
multi-scale OBIA approach correctly classified 72 of the
97 landslides in the training area, resulting in an SRnumberof
74 %. The methodology correctly classified most stable ar-
eas with an SRcell of 99 %. As a result, the MSR was 86.4 %
(Table 5).

Detection performance using single scales instead of the
multi-scale methodology resulted in an MSR of 51 % with
L500 only, 58 % with L200, 64 % with L100, 71 % with L70,
69 % with L50, and 70 % with L30. When complementing
L30 with a spectral difference segmentation, the MSR im-
proved slightly to 74 % (Table 6).

The validation resulted in the correct classification of 68
landslides out of the 93 found in the validation area, for an
SRnumberof 73 %. The methodology correctly classified most
stable areas with an SRcell of 99 %. With an MSR at 86 %,

Table 7. Detection rate by landslide size class.

Very small Small Medium Large Very Large
0–20 % 20–40 % 40–60 % 60–80 % 80–100 %

Detection rate 0.61 0.68 0.74 0.76 0.89

the validation performance was therefore close to the one
achieved with the training data set (Table 5).

5 Discussion

In this section, we first discuss the performance achieved by
our multi-scale OBIA detection technique, before pointing
out the limitations inherent to our methodology. Finally, we
suggest potential applications.

5.1 OBIA, multi-scale, and landslide detection
performance

Crucial to the application of satellite remote-sensing to land-
slide mapping is the need for effective image classification
means (Tso and Mather, 2001; Landgrebe, 2003; Lu and
Weng, 2007). With an SRnumberof 73 % and an MSR of 86 %
when tested against independent landslide data, our semi-
automated multi-scale OBIA detection scheme achieved de-
tection performances in a similar range as the results of other
recent studies on landslide mapping with OBIA (Barlow et
al., 2006; Lu et al., 2011; Martha et al., 2010, Stumpf and
Kerle, 2011a). It achieved acceptable performance levels for
landslide susceptibility mapping, as defined in Guzzetti et
al. (2006b).

Our multi-scale methodology outperformed all the single-
scale classifications, with the best detection performance
with single-scale classifications reaching only an SRnumber
of 41 % and an MSR of 71 %. Recognizing that single-scale
classifications may be improved through additional treatment
of the results notably through merging and growing algo-
rithms available in Definiens, we complemented L30 with
a spectral difference segmentation, and obtained an MSR of
74 %, still much lower than the 86 % achieved with the multi-
scale methodology.

Our multi-scale detection approach performed well for
landslides of all sizes. We divided the landslide inventory
into 5 classes, based on the landslide size. Our technique
detected 61 % of the very small landslides (83–370 m2),
68 % of the small landslides (370–734 m2), 74 % of the
medium landslides (724–1121 m2), 76 % of the large land-
slides (1121–2437 m2), and 89 % of the very large landslides
(2537–90 000 m2) (Table 7). It therefore detected a substan-
tial amount of landslides of all sizes, even the smallest land-
slides.
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Fig. 7. Landslide inventory map from multi-scale OBIA detection. 3 
Fig. 7. Landslide inventory map from multi-scale OBIA detection.

Our multi-scale approach differed from Lu et al. (2011),
who detected correctly 80 % of the landslides at valida-
tion, because their methodology included change detection,
i.e. they analyzed the change between two successive satellite
images. However, OBIA change detection methodologies
might not have been appropriate in our area, because roads
frequently change their course to adapt to landslide events,
agricultural fields are harvested several times a year, and
bamboo forests can be harvested annually and all year-round.

5.2 Limitations

Our semi-automated multi-scale OBIA detection scheme had
limitations. Although we validated the methodology against
independent landslide data in sub-watersheds not included in
the training process, the performance results may not hold
once applied to map landslides occurring after a different
trigger. The detection thresholds were site-specific, since
they were determined by the landslide data and the stable
objects from the training area. We recognize that automation
of threshold detection, such as in Stumpf and Kerle (2011b)
and Martha et al. (2011), could mitigate this limitation.

The geographic and geomorphologic proximity between
the training area and the validation area may have ensured
the constancy of the detection performance at the validation
stage. This site-specificity limitation of OBIA classification
methods was partly confirmed by the low detection results we

achieved when applying the successful rule set from Martha
et al. (2010), available online, in our study areas. Besides be-
ing site-specific, the thresholds in the ruleset are also image
specific, at least for the rules based on spectral features, such
as NDVI.

To select our segmentation scales, we relied on landslide
size statistics. The analysis of landslide size statistics from
Taiwan has shown that in Taiwan, larger landslides contribute
more to the total inventory than in other areas in the world
(Chen et al., 2007; van den Eeckhaut et al., 2007). In a dif-
ferent context, the range of scales needed may differ.

Also, the inventory contained exclusively shallow slides,
which are frequent in Taiwan’s mountainous watersheds
(Chang and Chiang, 2009). Therefore, it may not work ap-
propriately in regions where other types of slides occur.

5.3 Potential applications

Despite the aforementioned limitations, our semi-automated
classification scheme still has potential applications to
improve landslide mapping for landslide hazard assessment.

With air photo interpretation, experts often need to de-
vote months to complete landslide inventory maps (Liu and
Woing, 1999; Galli et al., 2008). When large areas are
recurrently struck by typhoons, as is the case in Taiwan
(Chiang and Chang, 2011), it may become difficult to ac-
tually complete landslide inventory maps relying solely on
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air photo interpretation. Our multi-scale OBIA classification
can complement the interpretation of air photos in these sit-
uations.

While we recognize that we did not assess the robustness
and sensitivity of our technique to variation in input data,
we observe that with half of the landslide information for a
given watershed, we were able to design a semi-automated
classification with similar performance in training and vali-
dation. The current multi-scale segmentation can, in theory,
detect slides as large as 3 km2 based on the maximal object
size with the largest scale.

Also, updating the classification thresholds simply in-
volves comparing feature value statistics for known land-
slides and known stable objects. In Definiens, these statistics
can be calculated in a few minutes. The time for segmen-
tation and classification in our case study did not go over
half an hour. We therefore suggest that our semi-automated
detection method could, with the necessary adaptations, po-
tentially serve to speed up the air-photo mapping process in
case large areas are affected by shallow landslides.

6 Conclusions

We developed a multi-scale OBIA landslide detection tech-
nique to map landslides in the Baichi watershed, Taiwan, af-
ter the 2004 Typhoon Aere event. Our semi-automated de-
tection method consisted in successive classification rounds
at multiple scales. The detection performance achieved an
MSR of 86.5 % with the training dataset and 86 % with the
validation dataset. This performance level was due to the
multi-scale aspect of our methodology, as MSR for single
scale classification ranged between 51 % for L500 and 71 %
for L70. Our multi-scale technique proved that it could de-
tect a substantial amount of landslides of all sizes, including
very small landslides. The methodology developed presented
certain limitations: the thresholds we established for classi-
fication were specific to the area, to the landslide type in the
study area, and to the spectral characteristics of the satellite
image. However, updating site-specific and image-specific
classification thresholds is trivial with Definiens. Our multi-
scale OBIA detection technique could thus prove useful for
mapping shallow landslides in large areas.
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