
Nat. Hazards Earth Syst. Sci., 11, 1437–1446, 2011
www.nat-hazards-earth-syst-sci.net/11/1437/2011/
doi:10.5194/nhess-11-1437-2011
© Author(s) 2011. CC Attribution 3.0 License.

Natural Hazards
and Earth

System Sciences

Dynamical and statistical explanations of observed occurrence rates
of rogue waves

J. Gemmrich and C. Garrett

Department of Physics and Astronomy, University of Victoria, Victoria, BC V8W 3P6, Canada

Received: 21 September 2010 – Revised: 10 March 2011 – Accepted: 11 March 2011 – Published: 18 May 2011

Abstract. Extreme surface waves occur in the tail of the
probability distribution. Their occurrence rate can be dis-
played effectively by plotting ln(−lnP), where P is the
probability of the wave or crest height exceeding a partic-
ular value, against the logarithm of that value. A Weibull
distribution of the exceedance probability, as proposed in a
standard model, then becomes a straight line. Earlier North
Sea data from an oil platform suggest a curved plot, with
a higher occurrence rate of extreme wave and crest heights
than predicted by the standard model. The curvature is not
accounted for by second order corrections, non-stationarity,
or Benjamin-Feir instability, though all of these do lead to an
increase in the exceedance probability. Simulations for deep
water waves suggest that, if the waves are steep, the curva-
ture may be explained by including up to fourth order Stokes
corrections. Finally, the use of extreme value theory in fitting
exceedance probabilities is shown to be inappropriate, as its
application requires that not justN , but also lnN , be large,
whereN is the number of waves in a data block. This is un-
likely to be adequately satisfied.

1 Introduction

The media often present accounts of “rogue” waves, though
the meaning of the term is usually left undefined. In some
situations, any large surface wave is described as a rogue.
More technically, the term is reserved for those waves in the
tail of the probability distribution, exceeding the average by
some prescribed multiple. Greater scientific interest comes
from the question as to whether there are more abnormally
large waves in a given sea state than predicted on the basis
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of “simple” physics and statistics, and if so, what is the more
complicated physics or statistics involved.

The topic has been discussed in numerous papers, with
recent reviews and summaries in the proceedings edited by
Müller and Henderson(2005), the review paper byDysthe et
al. (2008) and the book byKharif et al.(2009). Garrett and
Gemmrich(2009) is a brief summary. Some of the questions
that arise in the analysis of wave data are:

1. What probability distribution functions (pdfs) for crest
height or trough to crest wave height should be used for
comparison with data?

2. How should these pdfs be used?

3. What physical or statistical effects can lead to a higher
occurrence rate of large waves than expected from sim-
ple theories?

4. Is generalised extreme value theory (e.g.,Coles, 2001)
useful in examining the infrequent events of large am-
plitude that occur in the tail of the pdfs?

The purpose of this short note is to examine these questions,
partly motivated by results cited byDysthe et al.(2008).

2 Theoretical probability distribution functions

2.1 Linear theory

If the sea surface heightζ is made up of a large number of
independent sinusoids, then its probability density function
p(ζ ) is Gaussian with

p(ζ ) = (2πσ 2)−1/2exp

(
−

ζ 2

2σ 2

)
(1)

whereσ 2 is the varianceζ 2 of the surface elevation.
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We are interested here in the height of crests, or the wave
heightH from trough to crest (just twice the crest height for
a plane wave in linear theory). For a sea of random sur-
face waves distributed over a very narrow frequency band,
Longuet-Higgins(1952) showed thatH has a probability dis-
tribution given by the Rayleigh formula

p(H) =
4H

H 2
s

exp

(
−

2H 2

H 2
s

)
(2)

whereHs = 4σ is the “significant wave height”. The ex-
ceedance probability forH/Hs is

P(H/Hs> z) = exp(−2z2) (3)

The corresponding exceedance probability for crest heights
is

P(η/Hs> z)= exp(−8z2) (4)

Naess(1985) has shown that for a finite but still narrow band-
width the pdf of wave heights is still given by a Rayleigh
distribution, but withHs in Eq. (2) reduced by an amount re-
lated to the bandwidth. Thus large wave heights become less
likely as the bandwidth increases, though the distribution of
crest heights is unaffected. The topic is discussed in detail by
Casas-Prat and Holthuijsen(2010).

2.2 Second order effects

In deep water, a single plane wave is distorted at finite am-
plitude. The second order correction in the Stokes expansion
(e.g.,Dean and Dalrymple, 1991) gives a surface elevation

ζ = acosθ +
1

2
ka2cos(2θ) (5)

wherea is the linear wave amplitude andθ is the wave phase
kx −ωt , with k,ω the wavenumber and frequency, andx, t

the space coordinate and time.
Allowing for the second order correction does not af-

fect the trough-to-crest height for a narrow-band spectrum
(though it may do so slightly for a finite bandwidth), but does
modify the distribution of crest heights.Forristall (2000) re-
viewed studies byTayfun (1980) and others that lead to an
expected exceedance probability for the crest heightη given
by

P(η/Hs> z) = exp

{
−

8

R2

[
(1+2Rz)1/2

−1
]2
}

(6)

whereR is the measurekHs of the steepness of the waves,
with k the wavenumber. The derivation of Eq. (6) is simple.
From Eq. (5), the full crest elevation has

η

Hs
=

ηl

Hs
+

1

2
R

(
ηl

Hs

)2

(7)

with ηl the crest height according to linear theory, so that

ηl

Hs
=

(1+2Rη/Hs)
1/2

−1

R
(8)

leading to Eq. (6) if ηl has the exceedance probability given
by Eq. (4); for the nonlinearη/Hs to exceed a particu-
lar value, the linearηl/Hs must exceed the value given by
Eq. (8).

Forristall(2000) also cited the formula

P(η/Hs> z)= exp

[
−8z2

(
1−

1

2
Rz

)2
]

(9)

of Kriebel and Dawson(1993). Expansion in powers ofRz

of the exponent in Eq. (9) agrees with that for Eq. (6) in the
(Rz)0 and(Rz)1 terms, but the formulae differ significantly
for relevant values ofR andz.

The correct wavenumberk to use in the parameter
R = kHs is uncertain. For the narrow band spectrum as-
sumed in the derivation of the underlying Rayleigh distri-
bution, k could perhaps be that at the spectral peak. For a
realistic spectrum,Forristall (2000) cites D. L. Kriebel for
the suggestion thatk be taken to correspond to waves with a
period 0.95 times the period of the waves at the spectral peak,
so thatk is 1.11 times its values at the peak, but this is clearly
somewhat arbitrary. Further, it is the local wavenumber that
is relevant, and this may be smaller than average for large
waves (Gemmrich and Garrett, 2008); i.e., large waves tend
to be longer than average. Simulations are clearly required
and will be discussed later.

The discussion here is on deep water waves, butForristall
(2000) cites Eq. (9) for the result that, in water of depthd, the
steepness parameterR should simply be replaced byRf (kd),
where

f (u) =
coshu(2+cosh2u)

2sinh3u
−

1

sinh2u
(10)

2.3 Presentation

Data on wave height or crest height exceedance may be com-
pared with formulae (3) and (6) or other formulae, but the
large waves then correspond to small values ofP at the
tail end of the distribution. As inDysthe et al.(2008), it
makes for a better presentation of simulations or data to plot
ln(−lnP) which, for Eq. (4), is

ln[−lnP(η/Hs> z)] = 2lnz+ ln8 (11)

and hence a straight line if plotted versus lnz.
Based on simulations for exceedance probabilities down

to 10−4, Forristall (2000) suggested the use of the Weibull
distribution (we use the notation ofDysthe et al.(2008) here)

P(η/Hs> z) = exp

(
−

zα

β

)
(12)

and similarly forP(H/Hs > z), with the values ofα andβ

depending on the sea state. This leads to

ln[−lnP(η/Hs> z)] = α lnz− lnβ, (13)
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again straight lines if plotted versus lnz. We compare this
later with our own simulations for realistic wave conditions,
but first apply the transformation ln[−lnP(η/Hs > z)] to
Eq. (6). The curves in Fig.1 for various values ofR are
approximated remarkably well by straight lines and we note
that this remains the case even ifR is increased by the factor
in Eq. (10) to allow for finite depth.

We note that the ordinatey of Fig. 1 is simply re-
lated to the exceedance probability by the transformation
P(η/Hs> z)= exp(−expy), with P decreasing asy in-
creases. The vertical distance between two curves in such
a plot gives the difference in exceedance probabilities for
a specified crest height, whereas the horizontal difference
gives the difference in the crest height expected for a speci-
fied exceedance probability.

A simple summary of the two effects of finite frequency
bandwidth and second- order effects is that the former moves
the plot for wave heightH above the Rayleigh line but does
not affect the plot forη, whereas the latter does not affect the
plot for H but moves the plot forη below the Rayleigh line.

The plot of Eq. (9) in Fig. 1, for a reasonable value ofR,
shows that it may also be approximated well by a straight
line for exceedance probabilitiesP greater than about 10−4,
as suggested byForristall (2000). However, over the range
of P from, say, 10−2 to 10−4, it departs slightly from the
Tayfun formula for the same value ofR. More importantly,
the plot of Eq. (9) curves down slightly for small values of
P , predicting more frequent large waves than Eq. (6). It will
be important to check this against numerical simulations but
first the results from data will be discussed.

3 Comparison with data

Dysthe et al.(2008) and other authors have compared ob-
servations with theoretical expectations, though usually with
data sets that are too small to examine waves occurring with
a frequency of less than, say, one in 105 or so. For exam-
ple, the data obtained from the Marlin oil platform in the
Gulf of Mexico during hurricane Ivan in 2004, and exam-
ined by Dysthe et al.(2008), only deal with scaled wave
height exceedance probabilities greater than 10−4. Most
recently,Casas-Prat and Holthuijsen(2010) examined 107

waves recorded by buoys in deep water off the coast of Spain.
They found that wave height exceedance probabilities were
well accounted for by the Rayleigh distribution modified for
finite frequency bandwidth, but the crest height exceedance
probabilities were only very slightly higher than predicted by
linear theory.Casas-Prat and Holthuijsen(2010) suggested
that the absence of more pronounced nonlinear effects was a
consequence of the hydrodynamic response of the buoys.

Casas-Prat and Holthuijsen(2010) did find more pro-
nounced nonlinear effects in the crest height exceedance
probability obtained from laser altimetric observations of 104

waves at a North Sea oil platform.Casas-Prat and Holthui-
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Fig. 1. The function in Eq. (6), demoted by (T ), for various values
of R and the function in Eq. (9), denoted by (KD), forR = 0.25. The
dashed line corresponds to the Rayleigh distribution (equivalently
R = 0). The horizontal lines correspond to different values of the
exceedance probabilityP .

jsen (2010) found that a Rayleigh distribution still fits the
data well, i.e. they would still chooseα = 2 in Eq. (12), but
β is increased by 25%. With only 104 waves, this is proba-
bly reasonably consistent also with the Weibull distribution
preferred byForristall (2000) and shown in Fig.1 here, us-
ing a moderate value for the wave steepness, but we will not
pursue further comparison.

More provocative and unusual data from a laser altime-
ter at a North Sea oil platform were presented byDysthe
et al. (2008) and are reproduced here in Fig.2. The ex-
ceedance probability for individual waves was obtained by
Dysthe et al.(2008) from the block maxima data by evaluat-
ing the probabilityF thatηmax/Hs< z. Then

P(η/Hs> z)= 1−F 1/N (14)

whereN is the number waves in a block. For probabili-
ties greater than 10−5 or so, the data for the crest height are
slightly to the right of the Rayleigh curve, as expected from
second order effects for waves with a small steepness and
slightly to the left of the Rayleigh line for wave heightH , as
expected for finite frequency bandwidth. However, the data
show a pronounced curvature of the exceedance probability
plot for probabilities less than approximately 10−4.5, partic-
ularly for the crest heightη. As pointed out byDysthe et
al. (2008), this behaviour is inconsistent with standard mod-
els. If the data are reliable, they suggest a dramatic increase
in the frequency of occurrence of rare large waves, or in the
size of waves occurring with a frequency of less than about
one in 30 000 (typically once every 3 days). The water depth
at Gorm is 40 m, but even taking the wavenumberk to cor-
respond to waves of 10 second period, this giveskd = 1.72
and the functionf from Eq. (10) is 1.22, indicating a slight
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Fig. 2. Data from the Gorm oil field in the central North Sea, replotted from Dysthe et al. (2008). As in the

figure in Dysthe et al. (2008), the filled circles are representative points, whereas the open circles represent

individual records. Here, the dashed lines show the Rayleigh distributions (4) and (3) for crest and wave heights

respectively. Values of the exceedance probabilityP are shown on the right hand axis.
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7

Fig. 2. Data from the Gorm oil field in the central North Sea, re-
plotted fromDysthe et al.(2008). As in the figure inDysthe et al.
(2008), the filled circles are representative points, whereas the open
circles represent individual records. Here, the dashed lines show the
Rayleigh distributions Eqs. (4) and (3) for crest and wave heights re-
spectively. Values of the exceedance probabilityP are shown on the
right hand axis.

shift to the right of the exceedance probability plot, but not a
dramatic change in slope at small exceedance probabilities.

Other data obtained using laser altimetry on a North Sea
oil platform were reported byStansell(2004). He exam-
ined 354 000 waves observed during stormy periods at the
Alwyn North field in a water depth of approximately 130 m
and also found a probability of occurrence of rogue waves,
with H ≥ 2Hs, greater than predicted by the Rayleigh for-
mula.

The curvature in the exceedance probability plots shown
in Fig. 2 and the associated increased probability of large
waves above that predicted by the standard formulae ofFor-
ristall (2000) clearly needs further observational confirma-
tion or refutation, but it raises the key question as to what
could cause the curvature. We thus proceed to examine the
implications of various simulations and statistical considera-
tions.

4 Comparison with simulations

4.1 Second order simulations

As mentioned earlier,Forristall (2000) undertook simula-
tions of typical wave spectra with accurate implementation of
second-order interactions. He found that, as expected, crest
heights increase over those given by linear theory, slightly

less if the directional spread of the waves is allowed for than
if not. Forristall (2000) found that theKriebel and Dawson
(1993) Formula (9) compares well with data and simulations
in water that is deep enough to not significantly influence the
waves, but gives too great an enhancement of crest heights in
shallow water. This agreement of simulations with Eq. (9) is
perhaps surprising given that, as shown in Fig.1, Eq. (9) dif-
fers slightly from the supposedly more accurate Eq. (6) for
the same value ofR.

More importantly, the analysis ofForristall (2000) was
for exceedance probabilities no smaller than 10−4, and we
see from Fig.1 that for smaller exceedance probabilities
theKriebel and Dawson(1993) formula departs significantly
from the straight line of Eq. (13). It seems worthwhile to
check from further simulations whether a plot of ln(−lnP)

versus ln(η/Hs) is well approximated by a straight line or
whether it curves down for small values ofP .

We confine our attention to deep water simulations and a
simple implementation of the second-order crest height en-
hancement. This ignores the set-down under wave groups
that is included in the accurate simulations ofForristall
(2000) but captures the main effect of second order inter-
actions. As inGemmrich and Garrett(2008, 2010), we
have performed simulations using JONSWAP spectra with
the peak enhancement factorγ equal to 1, 2, and 3.3, though
we focus onγ = 1 corresponding to the fully-developed seas
that are likely to be of the greatest concern. The simula-
tions are based on the Matlab Toolbox “Wave Analysis for
Fatigue and Oceanography” (WAFO Group, 2000), which
takes random spectral components with sine and cosine terms
that are independent and Gaussian. To have reasonably reli-
able statistics, for each situation we generate 275 time series,
each 60 days long, with a 10 s peak period (though this is
scaleable so that our results are independent of the choice)
and take 10 samples per second. In using Eq. (5), the local
wave amplitudea is taken as the crest or trough height from
the linear simulations and the wavenumberk is calculated us-
ing the linear dispersion relation and a period defined as the
time between successive zero up-crossings.

Ideally in our simulations we should not start with waves
from a JONSWAP spectrum but with a spectrum that only
becomes the desired JONSWAP spectrum after the addition
of the local second harmonic. However, we have found that
the change in spectral shape and level from the addition is
small, so we have ignored the problem and not carried out
the iteration that would be required to correct it.

The JONSWAP spectrum withγ = 1 with a 10 second
peak period hasHs = 3.95 m andR ≡ kHs = 0.18 if, as ear-
lier, we base the wavenumber on the linear dispersion rela-
tion and a period of 0.95 times the peak period. To allow for
different values ofR, we have also conducted simulations
with Hs 0.5, 0.8, 1.3, 1.7 times the reference value, giving
R = 0.09,0.14,0.23,0.30. The resulting exceedance proba-
bilities are shown in Fig.3.
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Fig. 3. The crest height exceedance probability for a simulated JONSWAP sea withγ = 1 and correction

for the second harmonic, with various values of the representative steepnessR=1.11kpHs. The dashed line

corresponds to the Rayleigh distribution, effectivelyR=0. In this and subsequent figures, values ofln(−lnP )

are shown on the left hand axis and values ofP itself on the right hand axis.

part of a uniform wave train. Dawson (2004) added up to fifth order corrections using this approach.

Here we add second, third, and fourth order corrections to the crest height, taking the starting point

9

Fig. 3. The crest height exceedance probability for a simulated
JONSWAP sea withγ = 1 and correction for the second harmonic,
with various values of the representative steepnessR = 1.11kpHs.
The dashed line corresponds to the Rayleigh distribution, effec-
tively R = 0. In this and subsequent figures, values of ln(−lnP)

are shown on the left hand axis and values ofP itself on the right
hand axis.

We see that, as for the idealised case discussed earlier, the
plots for crest height are close to the straight lines implied by
Eq. (13) for probabilities down to 10−7, providing general
support for the suggestion byForristall (2000) but casting
doubt on the usefulness of Eq. (9). In particular, it seems that
second-order effects cannot account for any downward cur-
vature seen in the exceedance probability plot of data at large
values ofη/Hs. We also find that the crest height exceedance
probability for a purely linear sea (effectivelyR = 0) matches
the Rayleigh distribution very well. Thus an observed differ-
ence from the Rayleigh distribution must be a consequence
of nonlinearities or other effects beyond simple theory.

For the scaled crest height,H/Hs, the exceedance proba-
bility displayed in the lower panel of Fig.3 shows only a very
weak dependence on wave steepness, as expected if changes
in the crest and trough height very nearly cancel each other.
The offset of the plots from the Rayleigh line is the expected
effect of finite frequency bandwidth.

4.2 Fourth order simulation

The second-order correction may, as discussed above, be im-
plemented accurately, as byForristall (2000), or through a
local approximation as used here. Higher order corrections
to the wave field may also be made using a local descrip-
tion of the wave field, i.e., assuming that a local wave crest
is part of a uniform wave train.Dawson(2004) added up to
fifth order corrections using this approach. Here we add sec-
ond, third, and fourth order corrections to the crest height,
taking the starting point as the linear simulation. Hence the
corrected crest height is taken as

η = a(1+
1

2
ka+

3

8
k2a2

+
25

24
k3a3) (15)

where the wave amplitudea and the wavenumberk are taken,
as before, from the linear simulations and the linear disper-
sion relation using the local period. We are thus ignoring the
change in the dispersion relation for a regular wavetrain of
nonlinear waves but assuming that, within the local wave, the
amplification of the wave crest height, even to fourth order,
occurs as for a regular wavetrain. Our simulations should
thus be regarded as exploratory rather than definitive. The
corrections to the displacement of the trough have opposite
signs for the second and fourth term in brackets in Eq. (15),
so that, at least for a narrow-band spectrum with crest and
trough amplitudes nearly equal, the wave height is increased
by a factor(1+

3
8k2a2).

The simulation results are shown in Fig.4 and correspond
to Fig. 3 but with the addition of higher harmonics. We see
that this addition of higher harmonics leads to downward cur-
vature of the plots at large values ofη/Hs. This suggests that
any similar curvature observed in data sets may be a con-
sequence of the higher harmonics. In particular, the Gorm
data shown in Fig.2 have exceedance probability plots for
both crest and wave heights that curve over at a point com-
parable to that expected for a steepnessR of approximately
0.25 in the simulation results shown in Fig.4. This inter-
pretation is weakened, however, by the small offset from the
Rayleigh line shown by the Gorm data in the higher proba-
bility sections of the plots that are nearly straight lines. A
false offset could be produced by the conversion from block
maxima having used an inappropriate value of the numberN

of waves per block, but there is no reason to expect this. In
any event, it is important to examine other possible causes of
the downward curvature in the plots.

5 Benjamin-Feir instability

Mori and Janssen(2006) have suggested that the enhanced
occurrence of large waves is related to the fourth-order cu-
mulant κ40 of the surface elevation, related to the kurtosis
µ4 by κ40 = µ4 − 3. They show thatκ40 has only a small
contribution from the non-resonant Stokes harmonics that we
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Fig. 4. The crest height exceedance probability for a simulated JONSWAP sea withγ =1 and correction for

the second, third, and fourth harmonics, for various valuesof R as in Figure 3. The dashed line corresponds to

the Rayleigh distribution.

and ocean waves. The notable feature of Figure 5 is that, while the probability of large waves is

enhanced, the plots do not show the downward curvature exhibited by the Gorm data discussed by

Dysthe et al. (2008).
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Fig. 4. The crest height exceedance probability for a simulated
JONSWAP sea withγ = 1 and correction for the second, third, and
fourth harmonics, for various values ofR as in Fig.3. The dashed
line corresponds to the Rayleigh distribution.

have considered so far but may have a significant contribu-
tion from the resonant wave-wave interactions that charac-
terise the Benjamin-Feir instability (though, as reviewed by
Dysthe et al.(2008), this instability is thought to occur only
if the waves are long-crested as well as steep).

TheMori and Janssen(2006) theory applies to waves that
are narrow-band and haveH = 2η, so we may scale their
Formulae (46) and (47) to give an exceedance probability for
crest height given by

P(η/Hs> z)= exp(−8z2)

[
1+

8

3
κ40z

2
(
4z2

−1
)]

(16)

This shows an increase in the probability of large waves over
that given by the Rayleigh distribution and is shown in Fig.5
for the range of values ofκ40 that they find appropriate for
laboratory and ocean waves.

The notable feature of Fig.5 is that, while the probabil-
ity of large waves is enhanced, the plots do not show the
downward curvature exhibited by the Gorm data discussed
by Dysthe et al.(2008).
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values of the parameterκ40.

6 Effects of non-stationarity255

As remarked by Longuet-Higgins (1952), if a non-stationarytime series of waves is treated as if

it were stationary, it will show a greater than expected probability of large waves. The point was

emphasized by Müller et al. (2005) and by Heller (2006). In the situation studied by Heller (2006),

the non-stationarity arises from the passage of a ship through a sea state that is inhomogeneous by

virtue of wave interactions with small-scale currents.260

We examine the problem analytically and numerically to see how non-stationarity affects the

straight line expected in a data presentation such as that ofFigure 1. Analytically, we consider

a wave record with significant wave heightHs for the whole record, butH1,H2 for the first and

second half, withH2

1
=H2

s (1+ǫ) andH2

2
=H2

s (1−ǫ). Then

P (η/Hs >z)=
1

2

[

exp

(

−
8z2

1+ǫ

)

+exp

(

−
8z2

1−ǫ

)]

. (17)265

Figure 6 showsln[−lnP (η/Hs >z)] from (17) for various values ofǫ. (The exceedance probability

for the wave height will be similarly affected and does not need to be examined separately.)

Figure 6 clearly demonstrates an increasing probability oflarge waves in a non-stationary time

series treated as stationary. For large waves, however, theline in Figure 6 for a particular value ofǫ

has a slope equal to that of the line for a stationary time series withǫ=0 rather than becoming less270

steep as occurs with the second-order correction to crest height. The result is not surprising, since

the first half of the right hand side of (17) dominates for largeη/Hs.
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Fig. 5. The crest height exceedance probability according to the the-
ory of Mori and Janssen(2006), for various values of the parameter
κ40.

6 Effects of non-stationarity

As remarked byLonguet-Higgins(1952), if a non-stationary
time series of waves is treated as if it were stationary, it will
show a greater than expected probability of large waves. The
point was emphasized byMüller et al.(2005) and byHeller
(2006). In the situation studied byHeller (2006), the non-
stationarity arises from the passage of a ship through a sea
state that is inhomogeneous by virtue of wave interactions
with small-scale currents.

We examine the problem analytically and numerically to
see how non-stationarity affects the straight line expected in
a data presentation such as that of Fig.1. Analytically, we
consider a wave record with significant wave heightHs for
the whole record, butH1,H2 for the first and second half,
with H 2

1 = H 2
s (1+ε) andH 2

2 = H 2
s (1−ε). Then

P(η/Hs> z) =
1

2

[
exp

(
−

8z2

1+ε

)
+exp

(
−

8z2

1−ε

)]
(17)

Figure6shows ln[−lnP(η/Hs> z)] from Eq. (17) for var-
ious values ofε. (The exceedance probability for the wave
height will be similarly affected and does not need to be ex-
amined separately.)

Figure6 clearly demonstrates an increasing probability of
large waves in a non-stationary time series treated as station-
ary. For large waves, however, the line in Fig.6 for a particu-
lar value ofε has a slope equal to that of the line for a station-
ary time series withε = 0, rather than becoming less steep as
occurs with the second-order correction to crest height. The
result is not surprising, since the first half of the right hand
side of Eq. (17) dominates for largeη/Hs.

It is possible that this tendency for ln[−lnP(η/Hs> z)] to
maintain the same slope for non-stationary data is a conse-
quence of assuming an abrupt change in the variance from
one value to another. It would be interesting to investigate
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through, from1+ǫ to 1−ǫ times the average, withǫ=0.2,0.4.0.6. The Rayleigh line is equivalent to that for
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It is possible that this tendency forln[−lnP (η/Hs > z)] to maintain the same slope for non-

stationary data is a consequence of assuming an abrupt change in the variance, from one value to

another. It would be interesting to investigate a linearly changing variance, proportional to1+αt275

over the range−T ≤ t≤T with 0<αT < 1, but this does not lead to a simple expression forP . A

model that is very close to this, however, takes the varianceto be proportional to(1+αt)−1. The

average variance is no longer equal to the variance att=0, but, after some algebra, we find that

P (η/Hs >z)= exp(−Bz2)
sinh(Bǫz2)

Bǫz2
(18)

whereǫ=αT and280

B=
4

ǫ
ln

(

1+ǫ

1−ǫ

)

. (19)

As ǫ→ 0,B→ 8 and (18) reduces to the expected Rayleigh distribution. We see that the slopes of

the plots in Figure 7 decrease asǫ increases. For a givenǫ, there is no significant change in slope as

η/Hs increases.

We find similar behavior for the simulated waves from the JONSWAP spectrum withγ =1 and285

no second-order correction, but withHs tapered as for the analytical example discussed above. The

exceedance probability plots are very similar to those of Figure 7 and are not shown.
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Fig. 6. The effect of non-stationarity, based on Eq. (17), for a time
series with a variance that changes halfway through, from 1+ε to
1−ε times the average, withε = 0.2,0.4.0.6. The Rayleigh line is
equivalent to that forε = 0.

a linearly changing variance, proportional to 1+αt over the
range−T ≤ t ≤ T with 0< αT < 1, but this does not lead to
a simple expression forP . A model that is very close to this,
however, takes the variance to be proportional to(1+αt)−1.
The average variance is no longer equal to the variance at
t = 0, but, after some algebra, we find that

P(η/Hs> z) = exp(−Bz2)
sinh(Bεz2)

Bεz2
(18)

whereε = αT and

B =
4

ε
ln

(
1+ε

1−ε

)
(19)

As ε → 0, B → 8 and Eq. (18) reduces to the expected
Rayleigh distribution.

We see that the slopes of the plots in Fig.7 decrease as
ε increases. For a givenε, there is no significant change in
slope asη/Hs increases.

We find similar behavior for the simulated waves from the
JONSWAP spectrum withγ = 1 and no second-order cor-
rection, but withHs tapered as for the analytical example
discussed above. The exceedance probability plots are very
similar to those of Fig.7 and are not shown.

6.1 Apparent non-stationarity

The flip side of not allowing for non-stationarity can occur if
a stationary record is split into blocks. These will have sig-
nificant wave heightsHs that fluctuate around the value for
the full record, producing misleading statistics if the crest or
wave height is normalized by the blockHs rather than the
Hs from the full record. (For typical wind seas,Donelan and
Pierson(1983) find a variation of 12% or so inHs calcu-
lated from 17 min blocks of data.) As remarked byForristall
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6.1 Apparent non-stationarity

The flip side of not allowing for non-stationarity can occur if a stationary record is split into blocks.

These will have significant wave heightsHs that fluctuate around the value for the full record,290

producing misleading statistics if the crest or wave heightis normalized by the blockHs rather than

theHs from the full record. (For typical wind seas, Donelan and Pierson (1983) find a variation of

12% or so inHs calculated from 17 minute blocks of data.) As remarked by Forristall (2005), a

wave that is not really particularly large might appear to beso if it occurs in a block of data with a

less than representative significant wave height.295

To investigate this we have taken 20 minute blocks from a simulated 40 year time series of a

JONSWAP spectrum withγ = 1 and a peak period of 10 seconds. Figure 8 shows the standard

presentation of the exceedance probability of crest height.

Surprisingly, the exceedance probability of a given crest height is less if the block values ofHs,

rather than the value from the whole record, are used. This implies that in blocks with smaller than300

averageHs the heights of large crests are even more reduced. However, the exceedance probability

plot using the block values ofHs is still reasonably well approximated by a straight line; there is no

change in behaviour for the large waves.
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Fig. 7. The effect of non-stationarity, based on Eq. (18), for a time
series with a variance that is proportional to(1+αt)−1 over the
range−T ≤ t ≤ T , with ε ≡ αT = 0.2,0.4,0.6.The Rayleigh line is
equivalent to that forε = 0.

(2005), a wave that is not really particularly large might ap-
pear to be so if it occurs in a block of data with a less than
representative significant wave height.

To investigate this, we have taken 20 min blocks from a
simulated 40 yr time series of a JONSWAP spectrum with
γ = 1 and a peak period of 10 s. Figure8 shows the standard
presentation of the exceedance probability of crest height.

Surprisingly, the exceedance probability of a given crest
height is less if the block values ofHs, rather than the value
from the whole record, are used. This implies that in blocks
with smaller than averageHs the heights of large crests are
even more reduced. However, the exceedance probability
plot using the block values ofHs is still reasonably well ap-
proximated by a straight line; there is no change in behaviour
for the large waves.

7 Generalised extreme value theory

While comparison with proposed exceedance probabilities is
possible, it is also sometimes suggested that extreme values
for wave or crest heights should be fitted with the canoni-
cal functions that emerge from extreme value theory (e.g.,
Coles, 2001) . This is a general theory that leads to a fam-
ily of asymptotic formulae for the exceedance probability for
the maximum in blocks of data containing a large number
of individual events. A particular member of this family is
the Gumbel distribution and we can see how this distribution
arises in a situation in which the exceedance probability for
individual events is given by Eq. (12).

We start with

F ≡ P(ηmax< z)=

[
1−exp

(
−

zα

β

)]N

(20)
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7 Generalised extreme value theory

While comparison with proposed exceedance probabilities is possible, it is also sometimes suggested305

that extreme values for wave or crest heights should be fittedwith the canonical functions that emerge

from extreme value theory (e.g., Coles, 2001) . This is a general theory that leads to a family of

asymptotic formulae for the exceedance probability for themaximum in blocks of data containing

a large number of individual events. A particular member of this family is the Gumbel distribution

and we can see how this distribution arises in a situation in which the exceedance probability for310

individual events is given by (12).

We start with

F ≡P (ηmax<z)=

[

1−exp

(

−
zα

β

)]N

(20)

whereηmax is the maximum ofη/Hs in a block ofN waves.

Hence, following Nerzic and Prevosto (1997) but changing their notation,315

P

(

ηmax−aN
bN

<z

)

=

{

1−exp

[

−
(bNz+aN)α

β

]}N

. (21)

We now define

aN =(β lnN)1/α, bN =
aN

αlnN
, (22)
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Fig. 8. The effect of apparent non-stationarity, based on using
Hs from short data blocks (thick lines) rather than from the whole
record (thin lines).

whereηmax is the maximum ofη/Hs in a block ofN waves.
Hence, followingNerzic and Prevosto(1997) but changing
their notation,

P

(
ηmax−aN

bN

< z

)
=

{
1−exp

[
−

(bNz+aN )α

β

]}N

(21)

We now define

aN = (β lnN)1/α, bN =
aN

α lnN
(22)

so that

exp

[
−

(bNz+aN )α

β

]
= exp

[
−lnN

(
1+

z

α lnN

)α]
(23)

' exp(−lnN −z) if z � α lnN (24)

= N−1e−z (25)

Hence

P

(
ηmax−aN

bN

< z

)
'

(
1−N−1e−z

)N

→ exp
(
e−z

)
as N → ∞ (26)

so that

F ≡ P(ηmax< z)' exp

[
−exp

(
−

z−aN

bN

)]
(27)

This is the Gumbel distribution. We may compare it with a
plot of (13) by noting that

P(η/Hs> z)≡ 1−F 1/N (28)

and evaluating the function ln[−ln(1−F 1/N )] with F from
(27). Figure9 shows this for the Rayleigh distribution with
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has no simple explanation in terms of the second order correction. Further examination of the qual-

ity of the Gorm data, and confirmation or refutation from other long data sets, is clearly required.

However, if the result holds up, we have shown that it might bea consequence of third and fourth

order Stokes corrections to the wave height and crest height. Our simulations of these higher order

corrections may be oversimplified as we treat each wave as if it were part of a uniform wave train,355

so further theoretical work is also required.

It has seemed worthwhile to seek other potential causes of the change in slope. We have found that

the Benjamin-Feir instability, as discussed by Mori and Janssen (2006), gives a higher probability

of large waves (like the second order correction) but not thechange in slope of the plot at low

probabilities. This slope change also seems to be unexplained by the effects of non-stationarity,360

though this does increase the likelihood of large waves in a record treated as stationary. The slope

change is also unaccounted for by statistical fluctuations in the value ofHs for short blocks from a

longer, stationary, record.

It could be argued that using the exceedance probability based on a Weibull distribution of crest or

wave heights prejudges the situation and that it is better toappeal to extreme value theory for block365

maxima and fit observations to the formulae predicted by thattheory. We have shown, however, that,

while the Rayleigh distribution of crest heights predicts an asymptotic Gumbel distribution for the

exceedance probability as the numberN of waves in a block becomes large, this is typically not a

good approximation to the true exceedance probability. Thereason is simply that the requirement
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Fig. 9. The function ln[−ln(1−F1/N )], with F from Eq. (27) tak-
ing α = 2 andβ = 1/8, plotted against lnz and compared with the
straight line representing 2lnz+ ln8.

α = 2 andβ = 1/8, for various values ofN . The Gumbel
distribution leads to a curve that can be shown to be tangent,
for large N , to the Rayleigh line at a point corresponding
to an exceedance probabilityP = 1/N . (This is a general
result; the approximating Gumbel distribution is tangent at
P = 1/N to the Weibull line for any values ofα andβ.)

Importantly, the Gumbel curve clearly does not provide a
reliable way of extrapolating the distribution to large values
of the block maximumηmax, corresponding to rare events,
with an exceedance probability smaller than 1/N . The main
reason for this is that the theory requires not justN but also
lnN to be large, as seen from Eq. (24). This is unlikely in
practical situations.

Thus the superficially attractive option of fitting gener-
alised extreme value (GEV) distributions to block maxima
obtained from data, without any a priori assumption about
the pdf of the individual crest heights, does not seem appro-
priate.

8 Discussion and conclusions

We have argued that the appropriate way to present the ex-
ceedance probabilityP for wave size is that used byDysthe
et al.(2008), namely to plot ln(−lnP) against the logarithm
of the wave parameter (scaled height or crest height). In such
a plot, the Weibull distributions proposed byForristall(2000)
lead to straight lines. We have shown a straight line provides
a good approximation for theTayfun (1980) distribution of
crest heights and also for simulated time series based on the
JONSWAP spectrum with a local second-order correction.
This conclusion extends down to exceedance probabilities of
the order of 10−7, supporting the conclusions ofForristall
(2000) that were limited to exceedance probabilities greater
than 10−4. The change in the slope of such a plot for low
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probability large waves, as discussed byDysthe et al.(2008)
for waves from the Gorm oil field in the North Sea, thus has
no simple explanation in terms of the second-order correc-
tion. Further examination of the quality of the Gorm data,
and confirmation or refutation from other long data sets, is
clearly required. However, if the result holds up, we have
shown that it might be a consequence of third and fourth or-
der Stokes corrections to the wave height and crest height.
Our simulations of these higher order corrections may be
oversimplified as we treat each wave as if it were part of a
uniform wave train, so further theoretical work is also re-
quired.

It has seemed worthwhile to seek other potential causes of
the change in slope. We have found that the Benjamin-Feir
instability, as discussed byMori and Janssen(2006), gives a
higher probability of large waves (like the second- order cor-
rection) but not the change in slope of the plot at low prob-
abilities. This slope change also seems to be unexplained
by the effects of non-stationarity, though this does increase
the likelihood of large waves in a record treated as station-
ary. The slope change is also unaccounted for by statistical
fluctuations in the value ofHs for short blocks from a longer,
stationary, record.

It could be argued that using the exceedance probability
based on a Weibull distribution of crest or wave heights pre-
judges the situation and that it is better to appeal to extreme
value theory for block maxima and fit observations to the
formulae predicted by that theory. We have shown, however,
that, while the Rayleigh distribution of crest heights predicts
an asymptotic Gumbel distribution for the exceedance prob-
ability as the numberN of waves in a block becomes large,
this is typically not a good approximation to the true ex-
ceedance probability. The reason is simply that the require-
ment for not onlyN , but also lnN , to be large, is not likely
to be met.

We conclude that crest height exceedance probabilities
less than, say, a few times 10−5, may be considerably greater
than obtained from the standard Weibull formulae ofFor-
ristall (2000) and this should be allowed for in predictions.
Simple Stokes corrections, beyond second order, seem to be
the only process that can give the observed shape of the prob-
ability curve, but continued investigation of low probability
large waves is required. This will be difficult, of course, as
105 waves only occur every ten days or so, so that statisti-
cally reliable results require very long data sets as well as a
valid measurement technique, but it is surely these very rare,
very large, waves that are of the greatest scientific and prac-
tical interest. In particular, we remark that even if an extreme
wave with a scaled crest or wave height is predicted to oc-
cur only once every 30 yr (corresponding to an exceedance
probability of approximately 10−8) at a fixed location, a fleet
of 100 ships would experience it every few months (though
less frequently, of course, if attention is limited to high sea
states).
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