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2Institut de Recherche sur les Phénom̀enes HorśEquilibre, UMR 6594,́Ecole Centrale Marseille,
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Abstract. The evolution of modulational instability,
or Benjamin-Feir instability is investigated within the
framework of the two-dimensional fully nonlinear potential
equations, modified to include wind forcing and viscous
dissipation. The wind model corresponds to the Miles’
theory. The introduction of dissipation in the equations is
briefly discussed. Evolution of this instability in the presence
of damping was considered bySegur et al.(2005a) andWu
et al. (2006). Their results were extended theoretically by
Kharif et al.(2010) who considered wind forcing and viscous
dissipation within the framework of a forced and damped
nonlinear Schr̈odinger equation. The marginal stability
curve derived from the fully nonlinear numerical simulations
coincides with the curve obtained byKharif et al. (2010)
from a linear stability analysis. Furthermore, it is found
that the presence of wind forcing promotes the occurrence
of a permanent frequency-downshifting without invoking
damping due to breaking wave phenomenon.

1 Introduction

SinceStokes(1847), fully nonlinear potential water wave
equations are known to admit two dimensional uniform
propagative solutions, the so called Stokes’ waves. However,
pioneer works ofLighthill (1965) provided a geometric
condition for the stability of these waves. Later on,
Benjamin and Feir(1967) showed analytically that Stokes’
waves of moderate amplitude are unstable to long wave
perturbations of small amplitude travelling in the same
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direction. This instability is named the Benjamin-Feir
instability (or modulational instability). This result was
derived independently byWhitham (1974) in an averaged
Lagrangian approach and byZakharov (1968) who used
a Hamiltonian formulation of the water wave problem.
Using this approach, the latter author derived the nonlinear
Schr̈odinger equation (NLS), and confirmed the previous
stability results.

Within the last fifty years, the study of this instability
became central for fundamental and applied research.
The modulation instability is one of the most important
mechanisms for the formation of rogue waves (Kharif and
Pelinovsky, 2003). A complete review on the various
phenomena yielding to rogue waves can be found in the
book of Kharif et al. (2009). In the absence of forcing
and damping, Stokes’ waves of specific initial steepness
are submitted to this instability, when they encounter
perturbations of specific wave numbers (Dold and Peregrine,
1986; Banner and Tian, 1998). In this case, they encounter
a nonlinear quasi-recursive evolution, the so called Fermi-
Pasta-Ulam recurrence phenomenon (Fermi et al., 1955).
This phenomenon corresponds to a series of modulation-
demodulation cycles, during which initially uniform wave
trains become modulated, possibly leading to the formation
of a huge wave. Modulation is due to an energy transfer
from the wave carrier to the unstable sidebands. In the
wave number space, these unstable sidebands are located
in a finite narrow band centred around the carrier wave
number. During the demodulation, the energy returns to the
fundamental component of the original wave train. Using the
Zakharov equation,Shemer(2010) questions the relevance
of the Benjamin-Feir index based on the linear modulational
stability analysis, to indicate the intensity of nonlinear
interactions of a carrier wave with finite amplitude sidebands.
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More precisely, he emphasized that nonlinear interactions
also occur for sidebands located beyond the Benjamin-Feir
instability domain.

A damped nonlinear Schrödinger equation (dNLS) was
derived byJoo et al.(1991) who revisited the Benjamin-
Feir instability in the presence of dissipation. They studied
numerically the evolution of narrow bandwidth waves of
moderate amplitude. More recently,Segur et al.(2005a)
theoretically investigated the modulational instability within
the framework of the dNLS equation and demonstrated
that any amount of dissipation stabilizes the modulational
instability in the sense of Lyapunov. Namely, they showed
that the zone of the unstable region, in the wavenumber
space, shrinks as time increases. As a result, any
initially unstable mode of perturbation will finally become
stable.Segur et al.(2005a) have confirmed their theoretical
predictions by laboratory experiments for waves of small
to moderate amplitude. Later,Wu et al. (2006) developed
fully nonlinear numerical simulations which agreed with the
theory and experiments ofSegur et al.(2005a).

From the latter study, we could conclude that dissipation
may prevent the development of the Benjamin-Feir instabil-
ity. This effect questions the occurrence of modulational
instability of water wave trains in the field.Segur et al.
(2005b) speculated about the effect of dissipation on the early
development of rogue waves and raised the question whether
or not the Benjamin-Feir instability was able to spawn a
rogue wave.

Nevertheless, these authors did not take the effect of
wind into account. When considering the occurrence
of modulational instability in the field, the role of wind
upon this instability in the presence of dissipation needs
to be addressed. Based on this assumption,Kharif et al.
(2010) derived a forced and damped nonlinear Schrödinger
equation (fdNLS) and extended the analysis ofSegur et
al. (2005a) when wind input is introduced. The influence
of wind was introduced through a pressure term acting at
the interface, in phase with the wave slope, accordingly
to Miles’ theory (Miles, 1957). This quasi-laminar theory
of wind wave amplification is based on the Miles’ shear
flow instability. This mechanism of wave amplification is
a resonant interaction between water waves and a plane
shear flow in air which occurs at the critical height where
the wind velocity matches the phase velocity of the surface
waves. Stokes waves propagating in the presence of such
a forcing, when not submitted to modulational instability,
encounter an exponential growth. They demonstrated,
within the framework of dfNLS equation, that Stokes’
waves were unstable to modulational instability as soon
as the friction velocity is larger than a threshold value.
Conversely, for a given friction velocity it was found that
only carrier waves presenting frequencies (or wavenumbers)
lower than a threshold value are subject to Benjamin-Feir
instability. Otherwise, due to dissipation, modulational
instability restabilizes in the sense of Lyapunov.

In a previous work,Kharif and Touboul(2010) investi-
gated the development of the modulational instability under
wind action and viscous dissipation within the framework of
fully nonlinear potential equations. This work is an extension
of that of Wu et al.(2006) when wind input is considered.
It extends the result ofKharif et al. (2010) to higher
orders of nonlinearity and larger band spectra, too. The
marginal stability diagram obtained theoretically byKharif
et al.(2010) was globally reproduced, with slight differences
observed for the youngest waves. This disagreement was
correlated to the way in which the viscosity is introduced in
the fully nonlinear equations.

In Sect. 2, we remind the main results obtained by
Kharif et al. (2010). Section 3 is devoted to a brief
presentation of the governing water wave equations and the
numerical method. Results of the numerical simulations and
comparison with those ofKharif et al. (2010) are given in
Sect. 4 and a conclusion is provided in Sect. 5.

2 The forced and damped NLS equation

Recently,Kharif et al. (2010) used a forced and damped
version of the nonlinear Schrödinger equation

i
(
ψt +Cgψx

)
−
ω0

8k2
0

ψxx − 2ω0k
2
0|ψ |

2ψ

= i
Wω0k0

2gρ
ψ − 2iνk2

0ψ (1)

to investigate both damping and amplification effects on the
Benjamin-Feir instability. Herein,W = ρaβu

2
∗/κ

2 represents
the wind effect andν water viscosity. Parametersk0 and
ω0 are the wavenumber and frequency of the carrier wave,
satisfying the linear dispersion relationω2

0 = gk0, g is the
gravity, Cg = ω0/2k0 is the group velocity of the carrier
wave,ρ andρa are the water and air densities, respectively,κ

is the von Karman constant,u∗ is the friction velocity of the
wind andβ is the Miles’ coefficient depending on the carrier
wave age. Equation (1) describes the spatial and temporal
evolution of the envelope,ψ , of the surface elevation,η, of
weakly nonlinear and dispersive gravity waves on deep water
when dissipation, due to viscosity, and amplification, due to
wind, are considered.

Kharif et al.(2010) found that the stability of the envelope
depends on the frequency of the carrier wave and the
friction velocity of the wind over the waves and plotted
the critical curve separating stable envelopes from unstable
envelopes. Namely, they showed that for a given friction
velocity u∗, only carrier wave of frequencyω0 which
satisfies the following condition are unstable to modulational
perturbations

4νκ2ω0

β(κc0/u∗)su2
∗

<1. (2)
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This condition can be rewritten as follows

A2�

β(A)
<1 (3)

where A = κc0/u∗ is associated to wind, whereas� =

ω0/(sg
2/4ν)1/3 is associated to dissipation. The parameters

c0 =ω0/k0 ands= ρa/ρ are the phase velocity of the carrier
wave and density ratio. Note thatA2�/β(A) is equal to the
ratio between the rate of damping and rate of amplification
and illustrates the competition between dissipative effects
and wind input. The non-dimensional numbersA and�
correspond to the wave age and non-dimensional carrier
wave frequency.

The modulational instability was found to be sustained as
soon as the friction velocity is larger than a threshold value.
Conversely, for a given friction velocity, it was found that
only carrier waves presenting frequencies (or wavenumbers)
lower than a threshold value are subject to Benjamin-Feir
instability. Otherwise, due to dissipation, modulational
instability restabilizes in the sense of Lyapunov.

3 The fully nonlinear approach and numerical method

3.1 Governing equations

The numerical approach used in this study is based on
the High-Order Spectral Method (HOSM), simultaneously
developed byDommermuth and Yue(1987) and West et
al. (1987). This method assumes that the flow is potential.
However, non-potential effects due to wind and viscosity can
be taken into account through a modification of the boundary
conditions at the surface.

The wind has already been introduced in the dynamic
boundary condition through a pressure term acting at the
free surface in several numerical potential models. Among
them, one may citeTouboul et al.(2006) and Touboul et
al. (2008) who introduced and discussed this approach for
BIEM methods andTouboul and Kharif(2006) andTouboul
(2007) who extended it to HOS methods. The pressure
term used here is based on the Miles’ theory (Miles, 1957),
accordingly to the approach ofKharif et al.(2010).

The viscosity was introduced heuristically byWu et al.
(2006) who used the HOS method to address the question
raised inSegur et al.(2005a) on the restabilisation of the
Benjamin-Feir instability of a Stokes wave train in the
presence of dissipation. The introduction was made through
the addition of a damping term in the dynamic boundary
condition. In our previous work (Kharif and Touboul, 2010),
we used the same formalism. The system of equations
considered was

φxx +φzz= 0 for −∞< z<η(x,t) (4)

∇φ→ 0 for z→ −∞ (5)

ηt +φxηx −φz = 0 for z= η (6)

φt +
1

2

[
(φx)

2
+(φz)

2
]
+gη =

−
Pa

ρ
−2νφzz for z= η (7)

whereφ is the velocity potential,η is the surface elevation,
t is the time, x and z are the horizontal and vertical
coordinates, respectively,g is the gravity,Pa is the pressure
at the surface elevation,ρ is the water density andν is the
kinematic viscosity. Wind effect is introduced throughPa.

Following Ruvinsky et al.(1991) and considering the
frequency-downshifting phenomenon (Skandrani et al.,
1996) introduced a damping term correlated to the vorticity
generated by viscosity in a thin layer near the water surface.
As a result, both kinematic and dynamic boundary conditions
were modified and an additional boundary condition was
derived describing the rate of change of the vortical
component at the surface. However, another approach was
derived properly byLundgren(1989) within the framework
of linearized equations through the modification of both
kinematic and dynamic boundary conditions, but avoiding
the use of the third boundary condition introduced by
Skandrani et al.(1996). Equivalence between the previous
formalisms was demonstrated byLonguet-Higgins(1992).
Recently,Dias et al.(2008) confirmed this result within the
framework of the linear theory and suggested extending it
to the case of the fully nonlinear set of equations.Joo et
al. (1991) derived a damped version of the NLS equation,
demonstrating that the linear damping term was correct up to
the third-order. The kinematic (6) and dynamic (7) boundary
conditions now read

ηt +φxηx −φz−2νηxx = 0 for z= η (8)

φt +
1

2

[
(φx)

2
+(φz)

2
]
+gη =

−
Pa

ρ
−2νφzz for z= η, (9)

while Eqs. (4)–(5) remain unchanged. The differences
between the sets of Eqs. (6)–(7) and (8)–(9) are weak, but
they are responsible for a significant change in the kinematic
and dynamics of the water waves. In the absence of wind
(Pa = 0), the linearized version of Eqs. (4)–(7) admits a
dispersion relationship which reads(
ω0+ iνk2

0

)2
= gk0−ν2k4

0, (10)

whereas the linearization of the system of Eqs. (4), (5), (8),
(9) yields to the following dispersion relationship(
ω0+2iνk2

0

)2
= gk0. (11)

It is clear that relation (10) corresponds to water waves

propagating with a phase velocityc =

√
g/k0−ν2k2

0 and

damped with a characteristic time scaleτ = 1/νk2
0, whereas
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the relation (11) corresponds to waves propagating with a
phase velocityc=

√
g/k0, and damped with a characteristic

time scaleτ = 1/2νk2
0. As a result, the first set of equations

corresponds to a modification of the physics of Stokes’ waves
and predicts a damping rate twice as low as usual (Lamb,
1932).

Once we know the proper set of equations, we follow
the classical decomposition ofDommermuth and Yue(1987)
and we introduce the velocity potential at the free surface
φs(x,t)= φ(x,η(x,t),t). The kinematic and dynamic free
surface conditions (8) and (9), once made non-dimensional,
now write

ηt = −φs
xηx +W

(
1+η2

x

)
+2

νk0

c0
ηxx (12)

φs
t = −η−

1

2
φs

2

x +
1

2
W2

(
1+η2

x

)
+ 2

νk0

c0
Wηxx

+ 2
νk0

c0

φs
xx −Wηxx

1+η2
x

− pa (13)

wherepa = Pa/ρc
2
0 = sβ(u∗/κc0)

2ηx is the pressure term
corresponding to Miles’ theory. Note that the coefficientβ

depends on the phase velocity of the carrierc0 and on the
friction velocityu∗ (seeConte and Miles, 1959). The group
νk0/c0 plays the role of the inverse of a Reynolds number.

3.2 Initial conditions

From a numerical point of view, one part of the initial
condition is obtained by considering a Stokes wavetrain (η̄,
φ̄) which is computed using the approach first introduced
by Longuet-Higgins(1985). A very high-order Stokes
wave of amplitudea0 and wavenumberk0 is calculated
iteratively. In the absence of wind and dissipation, the
infinitesimal perturbation components (η′, φ′) calculated
through a perturbative approach developed byKharif and
Ramamonjiarisoa(1988) correspond to a Benjamin-Feir
instability of wavenumberδk. The perturbed Stokes wave
is obtained by adding the infinitesimal perturbations at the
sidebandsk0±δk of the fundamental and its harmonics. For
fixed values of (A, �) two kinds of initial conditions are
used when wind and dissipation are considered. The first
kind (unseeded case) corresponds to the unperturbed Stokes’
wave(η,φ)= (η̄,φ̄), whereas the second kind (seeded case)
corresponds to the perturbed Stokes’ wave(η,φ)= (η̄,φ̄)+

ε(η′,φ′
+ φ̄zη

′), with ε= 10−3. In both cases, we consider
a Stokes wavetrain such asa0k0 = 0.11 andk0 = 5. The
wavenumber of the modulational instability isδk= 1. This
choice of the perturbation wave number corresponds to the
closest approximation of the most unstable wave number
that can be fitted in the computational domain. The order
of nonlinearity was taken equal toM = 6. In other words,
nonlinear terms have been retained up to the sixth-order. The
highest wavenumber taken into account in the simulations

is kmax = 50, corresponding to the ninth harmonic of the
fundamental wavenumber. The number of mesh points was
taken equal toN = 750, satisfying the stability criterion
N >(M+1) ·kmax. In the absence of wind and damping, the
unperturbed initial condition leads to the steady evolution of
the Stokes’ wavetrain, whereas the perturbed initial condition
leads to the well-known Fermi-Pasta-Ulam recurrence. We
propagate these initial wavetrains under various conditions
of wind and dissipation, to analyse the behaviour of the
modulational instability of the Stokes wavetrain.

4 Results and comparison

Since Stokes’ waves are propagating under the action of wind
and viscosity, this flow cannot be considered stationary nor
periodic, leading the definition of instability to be unclear.
To discuss the combined influence of wind forcing and
damping on the modulational instability, we need to define
a reference flow. Thus, we first consider the evolution of
the unperturbed Stokes’ waves in the presence of forcing and
dissipation (unseeded case). Afterwards, the evolution of
the initially perturbed Stokes’ wave train is considered under
the same conditions of wind forcing and damping (seeded
case). The nonlinear evolution of the Stokes’ wavetrain
perturbed by the modulational instability in the presence of
wind and dissipation is then compared to that of the reference
flow. In that way, the deviation from the reference flow can
be interpreted in terms of modulational instability and the
influence of wind forcing and dissipation can be analysed.
This approach, introduced in our previous work (Kharif and
Touboul, 2010), is modified here to introduce the energy of
the perturbation.

In the Figs.1 and2 are plotted the time evolution of the
amplitudes of the fundamental modek= 5 and sidebandsk=

4 andk= 6 for two kinds of initial conditions corresponding
to unseeded and seeded cases. The figures correspond to two
different conditions of wind forcing and damping.

Figure 1 shows the time evolution of the normalized
amplitudes a(t)/a0 of the fundamental modek = 5,
subharmonic modek = 4 and superharmonic modek =

6 with and without modulational instability. For both
cases, the simulations correspond to a wind parameter
A = 4 and to a viscosity parameter� = 0.59. Within
the framework of the NLS equation,Kharif et al. (2010)
showed that the wave train is unstable to modulational
instability for these values ofA and �. From this
figure, it appears that both wavetrains (unseeded and
seeded cases) present a similar evolution during the first
hundred periods of propagation,T being the fundamental
wave period. Then, the behaviour of the wavetrain is
strongly affected by the development of the modulational
instability. For the unperturbed case (unseeded case), the
fundamental component increases, since no occurrence of
the modulational instability is expected. However, due to
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Fig. 1. Time evolution of the normalized amplitudes of the
fundamental mode (k = 5), subharmonic mode (k = 4) and
superharmonic mode (k= 6) for (A,�) = (4,0.59). Fundamental
mode amplitude (—), subharmonic mode amplitude (—) and
superharmonic mode amplitude (—) for an initially unperturbed
Stokes’ wave (unseeded case). Fundamental mode amplitude
(—), subharmonic mode amplitude (—) and superharmonic mode
amplitude (—) for an initially perturbed Stokes’ wave (seeded case).
T is the fundamental wave period.

the accumulation of numerical errors, the spontaneous occur-
rence of the modulational instability cannot be avoided, but
not beforet = 900T . For the initially perturbed case (seeded
case), the development of the modulational instability is
responsible for the frequency downshift observed at around
t = 500T , already discussed bySkandrani et al.(1996) in
the presence of only molecular viscosity and byHara and
Mei (1991) in the presence of wind and eddy viscosity.
One can see that the subharmonic component increases
continuously whereas the fundamental and superharmonic
component decreases. The superharmonic component
decreases faster than the fundamental component. Hence,
wind energy goes to the subharmonic mode, whereas
dissipation reduces the fundamental and superharmonic
components. During the modulation process, a broadening
of the spectrum is observed, even if not presented here for
the sake of clarity.

On Fig. 3 one can observe the persistence of the
modulational instability through the evolution of the free
surface. BeyondT = 500T the dominant mode is
the subharmonic sideband corresponding to a permanent
frequency-downshifting. This result is obtained without
invoking dissipation due to breaking wave phenomenon as
shown byTrulsen and Dysthe(1990) within the framework
of gravity waves. However, it has to be mentioned that these
authors predicted a delay in the modulational instability in
the presence of strong winds and eventually its disappearance
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Fig. 2. Time evolution of the normalized amplitudes of the
fundamental mode (k = 5), subharmonic mode (k = 4) and
superharmonic mode (k = 6) for (A,�)= (4,0.61). Fundamental
mode amplitude (—), subharmonic mode amplitude (—) and
superharmonic mode amplitude (—) for an initially unperturbed
Stokes’ wave (unseeded case). Fundamental mode amplitude
(—), subharmonic mode amplitude (—) and superharmonic mode
amplitude (—) for an initially perturbed Stokes’ wave (seeded case).
T is the fundamental wave period.

for the strongest winds, using an approach based on a higher-
order nonlinear Schrödinger equation (Trulsen and Dysthe,
1992).

Figure 2 corresponds to(A,�) = (4,0.61). The wind
condition is similar to the previous numerical simulation,
but the dissipative effect considered is stronger. This case
corresponds to a linearly stable case of the modulational
instability, as obtained byKharif et al. (2010) in the
framework of the NLS equation. From this figure, one
can see that wind energy goes to the subharmonic mode,
whereas dissipation reduces the fundamental and super-
harmonic components, as previously observed. However,
modulation of modes decrease and they present a monotonic
behaviour. For the unseeded case, as expected, we observe
an exponential decay of the fundamental mode. Note
that there is no natural occurrence of the subharmonic
mode of the modulational instability as it was found in
Fig. 1. For the seeded case, the first maximum modulation
that occurs att = 410T is followed by partial damped
modulation/demodulation cycles. Figure4 illustrates the
disappearance of the modulational instability through the
evolution of the free surface. In this case, dissipation prevails
over amplification due to wind andSegur et al.(2005a)
have obtained linear and nonlinear stability of modulational
perturbations within the framework of the dissipative NLS
equation. More specifically they showed that dissipation
reduces the set of unstable wavenumbers as time increases.
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Fig. 3. Surface wave profiles at different times, obtained
while propagating initial condition corresponding to seeded
case with (𝒜,Ω) = (4,0.59). From top to bottom 𝑡/𝑇 =
1,291,436,596,793,846.
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Fig. 4. Surface wave profiles at different times, obtained
while propagating initial condition corresponding to seeded
case with (𝒜,Ω) = (4,0.61). From top to bottom 𝑡/𝑇 =
1,410,496,601,676,885.

Fig. 3. Surface wave profiles at different times, obtained while
propagating initial condition corresponding to seeded case with
(A,�)= (4,0.59). From top to bottomt/T = 1, 291, 436, 596,
793, 846.
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Fig. 3. Surface wave profiles at different times, obtained
while propagating initial condition corresponding to seeded
case with (𝒜,Ω) = (4,0.59). From top to bottom 𝑡/𝑇 =
1,291,436,596,793,846.

0 1 2 3 4 5 6
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

X

η

t/T = 001

0 1 2 3 4 5 6
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

X

η

t/T = 410

0 1 2 3 4 5 6
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

X

η

t/T = 496

0 1 2 3 4 5 6
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

X

η

t/T = 601

0 1 2 3 4 5 6
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

X

η

t/T = 676

0 1 2 3 4 5 6
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

X

η

t/T = 885

Fig. 4. Surface wave profiles at different times, obtained
while propagating initial condition corresponding to seeded
case with (𝒜,Ω) = (4,0.61). From top to bottom 𝑡/𝑇 =
1,410,496,601,676,885.

Fig. 4. Surface wave profiles at different times, obtained while
propagating initial condition corresponding to seeded case with
(A,�)= (4,0.61). From top to bottomt/T = 1, 410, 496, 601,
676, 885.
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Fig. 5. Time evolution of the normEn for (A,�)= (4,0.59) (—)
and(A,�)= (4,0.61) (—).

Consequently every mode becomes stable. The result of this
numerical simulation agrees with that ofSegur et al.(2005a)
and Wu et al. (2006) who considered only dissipation. In
their approach, a solution is said to be stable if every solution
that starts close to this solution att = 0 remains close to it
for all t > 0, otherwise the solution is unstable. To include
a nonlinear stability analysis they introduced a norm and
considered the stability as that from Lyapunov.

In our previous work, we assumed that the dominant
mode describes the main behaviour of a wave train and
we introduced a norm measuring the distance between the
fundamental modes of the unperturbed and perturbed Stokes
wave corresponding to the unseeded case and seeded case,
respectively. However, it is more consistent to consider
the energy of the perturbation. Thus, a new norm can be
introduced as

En(t)=

∫
∞

−∞

(
akS(t)−akUS(t)

)2
dk∫

∞

−∞
a2
kUS
(0)dk

, (14)

where akUS(t) is the amplitude of the water component
elevationη of wave numberk, for the initially unperturbed
wave train (unseeded case) andakS(t) is the amplitude of
the component of water elevationη of wave numberk, for
the initially perturbed wave train (seeded case). This norm
corresponds to the potential energy of the perturbation. Its
value characterises the deviation of the perturbed solution
from the unperturbed solution.

Figure 5 shows the time evolution of this norm for
two sets of parameters(A,�) = (4,0.59) and (A,�) =

(4,0.61). For the two cases, we can observe two regimes.
The first regime corresponds with the development of the
modulational instability and shows that it is the nonlinear

0 1 2 3 4 5 6 7 8 9 10 11
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 Ω

 A

Fig. 6. Theoretical (—) and numerical (– · –) marginal stability
contour lines. (◦) correspond to numerical results obtained in the
framework of Eqs. (4)–(7). The theoretical curve corresponds to
the Fig. 1 ofKharif et al.(2010).

interaction between the fundamental mode and its sidebands
which dominates with a weak effect of the wind forcing
and the dissipation. The second regime corresponding
to the oscillatory evolution of the norm is dominated
by the competition between wind forcing and dissipation.
The nonlinear interaction between the fundamental mode
and the sidebands is not the dominant mechanism. The
magenta curve exhibits oscillations around an averaged value
growing exponentially, whereas the yellow curve exhibits the
same oscillations around a constant value. We can claim
that the norm,En, presents globally exponential growth
or asymptotical saturation corresponding to instability and
stability, respectively. Herein, the stability can be interpreted
in terms of asymptotic stability. The first case is said to be
unstable, whereas the second case corresponds to a stable
solution. In the latter case, we expect that the solution will
remain close to the unperturbed solution. In other words,
nonlinear interactions are affected by the non-conservative
effects that are wind and dissipation, leading to a long time
disappearance of these interactions.

Many numerical simulations have been run for various
values of the parametersA and �. Figure 6 shows a
stability diagram which presents the comparison between the
present numerical results and those ofKharif et al. (2010)
obtained theoretically. The marginal curve corresponding to
the fully nonlinear equations is very close to the theoretical
marginal curve obtained within the framework the NLS
equation. The region above the critical curve corresponds
to stable cases, whereas the region beneath corresponds to
unstable cases. Bars in Fig.6 correspond to uncertainty
on stability or instability. Numerical results obtained in
our previous work (Kharif and Touboul, 2010) within the
framework of Eqs. (4)–(7) are plotted for the sake of
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reference (◦). The way of introducing the damping effect into
the kinematic boundary condition has little influence on the
results, especially for young waves. The present numerical
simulations demonstrate that the results derived byKharif
et al. (2010) within the framework of the NLS equation are
correct in the context of the fully nonlinear equations.

5 Conclusions

This study was aimed at extending the work ofKharif
et al. (2010) to the fully nonlinear case. Within the
framework of the NLS equation the latter authors considered
the modulational instability of Stokes wave trains suffering
both effects of wind and dissipation. They found that
the modulational instability depends on both frequency of
the carrier wave and strength of the wind velocity and
plotted the curve corresponding to marginal stability in
the (A, �)-plane. To distinguish stable solutions from
unstable solutions, we have introduced a norm based on the
potential energy of the perturbations. A nonlinear stability
diagram resulting from the numerical simulations of the
fully nonlinear equation has been given in the (A, �)-plane
which coincides with the linear stability analysis ofKharif
et al. (2010). In the presence of wind, dissipation and
modulational instability, it is found that wind energy goes
to the subharmonic sideband, whereas dissipation lowers
the amplitude of the fundamental mode of the wave train
yielding to a permanent frequency-downshifting.
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