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Abstract.  The evolution of modulational instability, direction. This instability is named the Benjamin-Feir
or Benjamin-Feir instability is investigated within the instability (or modulational instability). This result was
framework of the two-dimensional fully nonlinear potential derived independently bWhitham (1974 in an averaged
equations, modified to include wind forcing and viscous Lagrangian approach and Eakharov (1968 who used
dissipation. The wind model corresponds to the Miles’ a Hamiltonian formulation of the water wave problem.
theory. The introduction of dissipation in the equations is Using this approach, the latter author derived the nonlinear
briefly discussed. Evolution of this instability in the presence Schibdinger equation (NLS), and confirmed the previous
of damping was considered ISegur et al(20058 andWu stability results.
et al. (2009. Their results were extended theoretically by  within the last fifty years, the study of this instability
Kharif et al.(2010 who considered wind forcing and viscous pecame central for fundamental and applied research.
dissipation within the framework of a forced and damped The modulation instability is one of the most important
nonlinear Schidinger equation. The marginal stability mechanisms for the formation of rogue wavéhérif and
curve derived from the fully nonlinear numerical simulations pelinovsky 2003. A complete review on the various
coincides with the curve obtained Wgharif et al. (2010 ~ phenomena yielding to rogue waves can be found in the
from a linear stability analysis. Furthermore, it is found book of Kharif et al. (2009. In the absence of forcing
that the presence of wind forcing promotes the occurrenceand damping, Stokes’ waves of specific initial steepness
of a permanent frequency-downshifting without invoking are submitted to this instability, when they encounter
damping due to breaking wave phenomenon. perturbations of specific wave numbeBo{d and Peregrine
1986 Banner and Tian1998. In this case, they encounter
a nonlinear quasi-recursive evolution, the so called Fermi-
1 Introduction Pa_sta-UIam recurrence phenomentﬁer(ni_ et al, 1955. _
This phenomenon corresponds to a series of modulation-
Since Stokes(1847), fully nonlinear potential water wave demodulation cycles, during which initially uniform wave
equations are known to admit two dimensional uniform trains become modulated, possibly leading to the formation
propagative solutions, the so called Stokes’ waves. HoweveiOf & huge wave. Modulation is due to an energy transfer
pioneer works ofLighthill (1965 provided a geometric from the wave carrier to the unstable sidebands. In the
condition for the stability of these waves. Later on, Wave number space, these unstable sidebands are located
Benjamin and Feif1967) showed analytically that Stokes' In a finite narrow band centred around the carrier wave
waves of moderate amplitude are unstable to long wavelumber. During the demodulation, the energy returns to the

perturbations of small amplitude travelling in the same fundamental component of the original wave train. Using the
Zakharov equationShemer(2010 questions the relevance

of the Benjamin-Feir index based on the linear modulational
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interactions of a carrier wave with finite amplitude sidebands.
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More precisely, he emphasized that nonlinear interactions In a previous work Kharif and Touboul(2010Q investi-
also occur for sidebands located beyond the Benjamin-Feigated the development of the modulational instability under
instability domain. wind action and viscous dissipation within the framework of
A damped nonlinear Sctdinger equation (dNLS) was fully nonlinear potential equations. This work is an extension
derived byJoo et al.(1991) who revisited the Benjamin- of that of Wu et al. (2006 when wind input is considered.
Feir instability in the presence of dissipation. They studiedIt extends the result oKharif et al. (2010 to higher
numerically the evolution of narrow bandwidth waves of orders of nonlinearity and larger band spectra, too. The
moderate amplitude. More recentlgegur et al. (20053 marginal stability diagram obtained theoretically Kiarif
theoretically investigated the modulational instability within et al.(2010 was globally reproduced, with slight differences
the framework of the dNLS equation and demonstratedobserved for the youngest waves. This disagreement was
that any amount of dissipation stabilizes the modulationalcorrelated to the way in which the viscosity is introduced in
instability in the sense of Lyapunov. Namely, they showedthe fully nonlinear equations.
that the zone of the unstable region, in the wavenumber In Sect. 2, we remind the main results obtained by
space, shrinks as time increases. As a result, anKharif et al. (2010. Section 3 is devoted to a brief
initially unstable mode of perturbation will finally become presentation of the governing water wave equations and the
stable. Segur et al(20053 have confirmed their theoretical numerical method. Results of the numerical simulations and
predictions by laboratory experiments for waves of smallcomparison with those dfharif et al. (2010 are given in
to moderate amplitude. LateWu et al. (2009 developed  Sect. 4 and a conclusion is provided in Sect. 5.
fully nonlinear numerical simulations which agreed with the
theory and experiments &egur et al(20053.
From the latter study, we could conclude that dissipation2 The forced and damped NLS equation
may prevent the development of the Benjamin-Feir instabil-
ity. This effect questions the occurrence of modulational Recently, Kharif et al. (2010 used a forced and damped
instability of water wave trains in the fieldSegur et al.  version of the nonlinear Sobdinger equation
(20058 speculated about the effect of dissipation on the early @0
development of rogue waves and raised the question whethe(y; +Cq¥x) — — ¥xx — 2w0kg | 12y
or not the Benjamin-Feir instability was able to spawn a 8k
rogue wave. Waoko
Nevertheless, these authors did not take the effect of =1
wind into account. When considering the occurrence
of modulational instability in the field, the role of wind to investigate both damping and amplification effects on the
upon this instability in the presence of dissipation needsBenjamin-Feir instability. Hereiny = pafu2/x? represents
to be addressed. Based on this assumptidmrif et al.  the wind effect and» water viscosity. Parameteky and
(2010 derived a forced and damped nonlinear Sclimger g are the wavenumber and frequency of the carrier wave,
equation (fdNLS) and extended the analysisSEgur et  satisfying the linear dispersion relatiwg = gko, g is the
al. (20053 when wind input is introduced. The influence gravity, Cq = wo/2ko is the group velocity of the carrier
of wind was introduced through a pressure term acting atwave,p andp, are the water and air densities, respectively,
the interface, in phase with the wave slope, accordinglyis the von Karman constant, is the friction velocity of the
to Miles’ theory Miles, 1957). This quasi-laminar theory wind andg is the Miles’ coefficient depending on the carrier
of wind wave amplification is based on the Miles’ shear wave age. Equationl) describes the spatial and temporal
flow instability. This mechanism of wave amplification is evolution of the envelope), of the surface elevatiom, of
a resonant interaction between water waves and a plangeakly nonlinear and dispersive gravity waves on deep water
shear flow in air which occurs at the critical height where when dissipation, due to viscosity, and amplification, due to
the wind velocity matches the phase velocity of the surfacewind, are considered.
waves. Stokes waves propagating in the presence of such Kharif et al.(2010 found that the stability of the envelope
a forcing, when not submitted to modulational instability, depends on the frequency of the carrier wave and the
encounter an exponential growth. They demonstratedriction velocity of the wind over the waves and plotted
within the framework of dfNLS equation, that Stokes’ the critical curve separating stable envelopes from unstable
waves were unstable to modulational instability as soonenvelopes. Namely, they showed that for a given friction
as the friction velocity is larger than a threshold value. velocity u,, only carrier wave of frequencysy which
Conversely, for a given friction velocity it was found that satisfies the following condition are unstable to modulational
only carrier waves presenting frequencies (or wavenumbersperturbations
lower than a threshold value are subject to Benjamin-Feir
instability. Otherwise, due to dissipation, modulational Avi2ag
. - . . _—— <1 2
instability restabilizes in the sense of Lyapunov. B (rcco/us) su2

%pw—zw@ (1)
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This condition can be rewritten as follows b+ % [(¢X)2 i (¢Z)2] -
A 3 Py
B(A) < 3) —?—2\)(;522 for z=n (7

where A = kcp/u, is associated to wind, whered3 = . . N .
2 /4 \1/3 ; R whereg is the velocity potentialy is the surface elevation,
wo/(sg</4v)*/° is associated to dissipation. The parameters . . : .
t is the time, x and z are the horizontal and vertical

co=wo/ko ands = pa/p are the phase velocity of the carvier ., yinaiaq respectively, is the gravity, P is the pressure
wave and density ratio. Note thaf$2/B(A) is equal to the L% ) .
. . ... at the surface elevation, is the water density and is the
ratio between the rate of damping and rate of amplification, . o ; . .
. . L kinematic viscosity. Wind effect is introduced through
and illustrates the competition between dissipative effects ; . S
Following Ruvinsky et al.(1991) and considering the

and wind input. The non-dimensional humbetsand Q - )
correspond to the wave age and non-dimensional Carriefreque_ncy-downsh|ft|ng phenomenorSI(andram et a,I_._
FL99© introduced a damping term correlated to the vorticity

wave frequency. . - }
The modulational instability was found to be sustained asgenerated by viscosity in a thin layer near the water surface.
o o As aresult, both kinematic and dynamic boundary conditions
soon as the friction velocity is larger than a threshold value.

. 7 L were modified and an additional boundary condition was
Conversely, for a given friction velocity, it was found that . o .
. : . erived describing the rate of change of the vortical
only carrier waves presenting frequencies (or wavenumbers
: - ~component at the surface. However, another approach was
lower than a threshold value are subject to Benjamin-Fei

re . S
instability. Otherwise, due to dissipation, modulational derl_ved properly by_.undgren(1989 within thg frgmework
. o o . of linearized equations through the modification of both
instability restabilizes in the sense of Lyapunov.

kinematic and dynamic boundary conditions, but avoiding

the use of the third boundary condition introduced by

3 The fully nonlinear approach and numerical method ~ Skandrani et al(1996. Equivalence between the previous
formalisms was demonstrated hynguet-Higgins(1992.

3.1 Governing equations Recently,Dias et al.(2008 confirmed this result within the
framework of the linear theory and suggested extending it

The numerical approach used in this study is based oRg the case of the fully nonlinear set of equationko et

the High-Order Spectral Method (HOSM), simultaneously 3| (1991) derived a damped version of the NLS equation,

developed byDommermuth and Yug1987) and West et demonstrating that the linear damping term was correct up to

al. (1987) This method assumes that the flow is potential. the third-order. The kinematiﬁx and dynamic'() boundary
However, non-potential effects due to wind and viscosity canconditions now read

be taken into account through a modification of the boundary
conditions at the surface. N +oxix — ¢z —2vnx =0 for z=p (8)

The wind has already been introduced in the dynamic
boundary condition through a pressure term acting at theﬁ;+§[(¢x)2+(¢z)z]+gn =
free surface in several numerical potential models. Among
them, one may citdouboul et al.(200§ and Touboul et —E—Zw for 7— )
al. (2008 who introduced and discussed this approach for P) 2 =1
BIEM methods andouboul and Khari{2006 andTouboul
(2007 who extended it to HOS methods. The pressure
term used here is based on the Miles’ thedviilés, 1957,
accordingly to the approach &harif et al.(2010.

The viscosity was introduced heuristically byu et al.
(2006 who used the HOS method to address the questio
raised inSegur et al(20053 on the restabilisation of the
Benjamin-Feir instability of a Stokes wave train in the . 2
presence of dissipation. The introduction was made througk(w°+leS) = gko—v?kg, (10)
the addition of a damping term in the dynamic boundary
condition. In our previous workkharif and Touboul2010),
we used the same formalism. The system of equation
considered was

while Egs. @)—(5) remain unchanged. The differences
between the sets of Eq®)£(7) and 8)—(9) are weak, but
they are responsible for a significant change in the kinematic
and dynamics of the water waves. In the absence of wind
r{Pa=0), the linearized version of Eqs4)(7) admits a
dispersion relationship which reads

whereas the linearization of the system of Ed3, (5), (8),
ég) yields to the following dispersion relationship

2
(wo+2ivkg) = gko. (11)
Oxx +¢zz=0 for —oo<z<n(x,1) 4) . .

It is clear that relation {0) corresponds to water waves

V¢—~0 for z— —oo ) propagating with a phase velocity= 1/g/ko—vzkg and
N +oxnx —¢p, =0 for z=n (6) damped with a characteristic time scale- 1/vk§, whereas
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the relation {1) corresponds to waves propagating with a is kmax = 50, corresponding to the ninth harmonic of the
phase velocity: = \/g/ko, and damped with a characteristic fundamental wavenumber. The number of mesh points was
time scaler =1/2vkg. As a result, the first set of equations taken equal toN = 750, satisfying the stability criterion
corresponds to a modification of the physics of Stokes’ wavesV > (M +1) - kmax- In the absence of wind and damping, the
and predicts a damping rate twice as low as usbahb, unperturbed initial condition leads to the steady evolution of
1932. the Stokes’ wavetrain, whereas the perturbed initial condition
Once we know the proper set of equations, we follow leads to the well-known Fermi-Pasta-Ulam recurrence. We
the classical decomposition Bommermuth and Yuél987) propagate these initial wavetrains under various conditions
and we introduce the velocity potential at the free surfaceof wind and dissipation, to analyse the behaviour of the
¢3(x,t) = ¢ (x,n(x,1),t). The kinematic and dynamic free modulational instability of the Stokes wavetrain.
surface conditionsg) and @), once made non-dimensional,

now write
vko 4 Results and comparison
ne=—denx+ W <1+77)%> +2—nxx (12)
€0 Since Stokes’ waves are propagating under the action of wind
and viscosity, this flow cannot be considered stationary nor
s 1 2 1 5 2 kao periodic, leading the definition of instability to be unclear.
¢r=—n—5b% t5W (l"'”X) T EW”XX To discuss the combined influence of wind forcing and
vko ¢S, — W damping on the modulational instability, we need to define
XX XX . . .
+2ET772 — Pa (13) a reference flow. Thus, we first consider the evolution of
X

the unperturbed Stokes’ waves in the presence of forcing and
dissipation (unseeded case). Afterwards, the evolution of
the initially perturbed Stokes’ wave train is considered under
the same conditions of wind forcing and damping (seeded
case). The nonlinear evolution of the Stokes’ wavetrain
perturbed by the modulational instability in the presence of
wind and dissipation is then compared to that of the reference
3.2 |nitial conditions flow. In that way, the deviation from the reference flow can
be interpreted in terms of modulational instability and the
From a numerical point of view, one part of the initial influence of wind forcing and dissipation can be analysed.
condition is obtained by considering a Stokes wavetrajn ( This approach, introduced in our previous woktharif and
#) which is computed using the approach first introduced Toubou| 2010, is modified here to introduce the energy of
by Longuet-Higgins(1989. A very high-order Stokes the perturbation.
wave of amplitudeag and wavenumbekq is calculated In the Figs.1 and?2 are plotted the time evolution of the
iteratively. In the absence of wind and dissipation, the amplitudes of the fundamental mokle- 5 and sidebands=
infinitesimal perturbation componentsg’( ¢') calculated 4 andk = 6 for two kinds of initial conditions corresponding
through a perturbative approach developedKharif and  to unseeded and seeded cases. The figures correspond to two
Ramamonjiarisoa(1988 correspond to a Benjamin-Feir different conditions of wind forcing and damping.
instability of wavenumbeBk. The perturbed Stokes wave Figure 1 shows the time evolution of the normalized
is obtained by adding the infinitesimal perturbations at theamplitudes a(¢)/ag of the fundamental modet = 5,
sideband&g + 8k of the fundamental and its harmonics. For subharmonic mode = 4 and superharmonic mode=
fixed values of 4, Q) two kinds of initial conditions are 6 with and without modulational instability. For both
used when wind and dissipation are considered. The firstases, the simulations correspond to a wind parameter
kind (unseeded case) corresponds to the unperturbed Stokedl = 4 and to a viscosity parametee = 0.59. Within
wave (n,¢) = (77,¢), whereas the second kind (seeded casethe framework of the NLS equatiorkharif et al. (2010
corresponds to the perturbed Stokes’ waygp) = (i, ¢) + showed that the wave train is unstable to modulational
e(n', ¢’ +zm'), with e = 1073, In both cases, we consider instability for these values of4 and Q. From this
a Stokes wavetrain such agko =0.11 andkg=5. The figure, it appears that both wavetrains (unseeded and
wavenumber of the modulational instabilitydé = 1. This seeded cases) present a similar evolution during the first
choice of the perturbation wave number corresponds to théwundred periods of propagatiof, being the fundamental
closest approximation of the most unstable wave numbewave period. Then, the behaviour of the wavetrain is
that can be fitted in the computational domain. The orderstrongly affected by the development of the modulational
of nonlinearity was taken equal # = 6. In other words, instability. For the unperturbed case (unseeded case), the
nonlinear terms have been retained up to the sixth-order. Thbundamental component increases, since no occurrence of
highest wavenumber taken into account in the simulationghe modulational instability is expected. However, due to

where pg = Pa/,oc(Z) =3B (u*/Kco)an is the pressure term
corresponding to Miles’ theory. Note that the coefficignt
depends on the phase velocity of the cartigiand on the
friction velocity u, (seeConte and Miles1959. The group
vko/co plays the role of the inverse of a Reynolds number.
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Time evolution of the normalized amplitudes of the

fundamental mode k(= 5), subharmonic modek(= 4) and
superharmonic modé & 6) for (A, Q) = (4,0.61). Fundamental
mode amplitude ), subharmonic mode amplitude—) and
superharmonic mode amplitude § for an initially unperturbed
Stokes’ wave (unseeded case). Fundamental mode amplitude
superharmonic mode amplitude § for an initially unperturbed () subharmonic mode amplitude—) and superharmonic mode
Stokes’ wave (unseeded case). Fundamental mode amplitudgmplitude () for an initially perturbed Stokes’ wave (seeded case).
(—), subharmonic mode amplitude-) and superharmonic mode 7 s the fundamental wave period.

amplitude () for an initially perturbed Stokes’ wave (seeded case).

T is the fundamental wave period.

Fig. 1. Time evolution of the normalized amplitudes of the
fundamental mode k(= 5), subharmonic modek(= 4) and
superharmonic mode & 6) for (A, 2) = (4,0.59). Fundamental
mode amplitude ), subharmonic mode amplitude—) and

the accumulation of numerical errors, the spontaneous occurfor the strongest winds, using an approach based on a higher-
rence of the modulational instability cannot be avoided, butorder nonlinear Sclidinger equationTrulsen and Dysthe
not beforer = 9007 . For the initially perturbed case (seeded 1992.
case), the development of the modulational instability is Figure 2 corresponds tqA, ) = (4,0.61). The wind
responsible for the frequency downshift observed at aroungondition is similar to the previous numerical simulation,
1 =500, already discussed bgkandrani et al(199 in  pyt the dissipative effect considered is stronger. This case
the presence of only molecular viscosity andi$gra and  corresponds to a linearly stable case of the modulational
Mei (199]) in the presence of wind and eddy viscosity. jnstability, as obtained byKharif et al. (2010 in the
One can see that the subharmonic component increas@gmework of the NLS equation. From this figure, one
continuously whereas the fundamental and superharmoniggn see that wind energy goes to the subharmonic mode,
component decreases.  The superharmonic componeRfhereas dissipation reduces the fundamental and super-
decreases faster than the fundamental component. Hencgarmonic components, as previously observed. However,
wind energy goes to the subharmonic mode, whereagnodulation of modes decrease and they present a monotonic
dissipation reduces the fundamental and superharmonigenaviour. For the unseeded case, as expected, we observe
components. During the modulation process, a broadeningp, exponential decay of the fundamental mode. Note
of the spectrum is observed, even if not presented here fopat there is no natural occurrence of the subharmonic
the sake of clarity. mode of the modulational instability as it was found in
On Fig. 3 one can observe the persistence of theFig. 1. For the seeded case, the first maximum modulation
modulational instability through the evolution of the free that occurs atr = 4107 is followed by partial damped
surface. Beyond7T = 5007 the dominant mode is modulation/demodulation cycles. Figufeillustrates the
the subharmonic sideband corresponding to a permanerdisappearance of the modulational instability through the
frequency-downshifting. This result is obtained without evolution of the free surface. In this case, dissipation prevails
invoking dissipation due to breaking wave phenomenon aver amplification due to wind an&egur et al.(20053
shown byTrulsen and Dysth€1990 within the framework  have obtained linear and nonlinear stability of modulational
of gravity waves. However, it has to be mentioned that theseperturbations within the framework of the dissipative NLS
authors predicted a delay in the modulational instability in equation. More specifically they showed that dissipation
the presence of strong winds and eventually its disappearanaeduces the set of unstable wavenumbers as time increases.
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Fig. 3. Surface wave profiles at different times, obtained while Fig. 4. Surface wave profiles at different times, obtained while
propagating initial condition corresponding to seeded case withpropagating initial condition corresponding to seeded case with
(A,Q) = (4,0.59. From top to bottomr/T =1, 291, 436, 596, (A,Q)=(4,0.61). From top to bottomr/T =1, 410, 496, 601,
793, 846. 676, 885
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Fig. 5. Time evolution of the nornEp, for (A, ) = (4,0.59) (—)
and(A,Q)=(4,0.6D) ( ).

Consequently every mode becomes stable. The result of thi§iteraction between the fundamental mode and its sidebands
numerical simulation agrees with that®égur et al(20053 ~ Which dominates with a weak effect of the wind forcing
andWu et al. (200§ who considered only dissipation. In @nd the dissipation. The second regime corresponding
their approach, a solution is said to be stable if every solutiorf® the oscillatory evolution of the norm is dominated
that starts close to this solution a& 0 remains close to it PY the competition between wind forcing and dissipation.
for all r > 0, otherwise the solution is unstable. To include The nonlinear interaction between the fundamental mode

a nonlinear stability analysis they introduced a norm anda@nd the sidebands is not the dominant mechanism. The
considered the stability as that from Lyapunov. magenta curve exhibits oscillations around an averaged value

In our previous work, we assumed that the dominantdrowing exponentially, whereas the yellow curve exhibits the
mode describes the main behaviour of a wave train and@me oscillations around a constant value. We can claim
we introduced a norm measuring the distance between th1at the norm, E,, presents globally exponential growth
fundamental modes of the unperturbed and perturbed Stoked @Symptotical saturation corresponding to instability and
wave corresponding to the unseeded case and seeded Cag@bnlty, respectlvely._ Herein, the stab!llty can bg mte_rpreted
respectively. However, it is more consistent to consider" terms of asymptotic stability. The first case is said to be
the energy of the perturbation. Thus, a new norm can pdinstable, whereas the second case corresponds to a stable

introduced as solution. In the latter case, we expect that the solution will

remain close to the unperturbed solution. In other words,

ffooo (aks(t)—akus(t))zdk nonlinear interactions are affected by the non-conservative

Eq(t) = foo a2 (0)dk ’ (14) effects that are wind and dissipation, leading to a long time
—o0"kus disappearance of these interactions.

where a;,5(¢) is the amplitude of the water component Many numerical simulations have been run for various
elevationn of wave numbek, for the initially unperturbed values of the parameterd and Q. Figure 6 shows a
wave train (unseeded case) amd(r) is the amplitude of  stability diagram which presents the comparison between the
the component of water elevationof wave numbetr, for present numerical results and thosekdfarif et al. (2010

the initially perturbed wave train (seeded case). This normobtained theoretically. The marginal curve corresponding to
corresponds to the potential energy of the perturbation. ltghe fully nonlinear equations is very close to the theoretical
value characterises the deviation of the perturbed solutiomarginal curve obtained within the framework the NLS

from the unperturbed solution. equation. The region above the critical curve corresponds
Figure 5 shows the time evolution of this norm for to stable cases, whereas the region beneath corresponds to
two sets of parameter§A, ) = (4,0.59) and (A,Q) = unstable cases. Bars in Fi§.correspond to uncertainty

(4,0.61). For the two cases, we can observe two regimeson stability or instability. Numerical results obtained in
The first regime corresponds with the development of theour previous work Kharif and Touboul 2010 within the
modulational instability and shows that it is the nonlinear framework of Egs. 4§—(7) are plotted for the sake of

www.nat-hazards-earth-syst-sci.net/10/2589/2010/ Nat. Hazards Earth Syst. Sci., 1252582010



2596 J. Touboul and C. Kharif: Modulational instability under weak forcing and damping

reference (). The way of introducing the damping effectinto Dias, F., Dyachenko, A. I, and Zakharov, V. E.: Theory of
the kinematic boundary condition has little influence on the weakly damped free-surface flows: A new formulation based on
results, especially for young waves. The present numerical Potential flow solutions, Phys. Lett. A, 372, 1297-1302, 2008.
simulations demonstrate that the results derivecKburif Dold, J. W. and Peregrine, D. H.:.Wf’;\ter-wave modulation, Proc.
et al. (2010 within the framework of the NLS equation are _ 20th Intl. Conf. Coastal Eng., Taipei, 1, 163175, 1986.

correct in the context of the fully nonlinear equations. Dommermuth, D. G. and Yue, D. K. P.. A high-order spectral
method for the study of nonlinear gravity waves, J. Fluid Mech.,
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