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Abstract. Seismic-induced landslide hazards are studied
using seismic shaking intensity based on the topographic
amplification effect. The estimation of the topographic effect
includes the theoretical topographic amplification factors
and the corresponding amplified ground motion. Digital
elevation models (DEM) with a 5-m grid space are used. The
logistic regression model and the geographic information
system (GIS) are used to perform the seismic landslide
hazard analysis. The 99 Peaks area, located 3 km away from
the ruptured fault of the Chi-Chi earthquake, is used to test
the proposed hypothesis. An inventory map of earthquake-
triggered landslides is used to produce a dependent variable
that takes a value of 0 (no landslides) or 1 (landslides).
A set of independent parameters, including lithology,
elevation, slope gradient, slope aspect, terrain roughness,
land use, and Arias intensity (Ia) with the topographic
effect. Subsequently, logistic regression is used to find the
best fitting function to describe the relationship between the
occurrence and absence of landslides within an individual
grid cell. The results of seismic landslide hazard analysis that
includes the topographic effect (AUROC = 0.890) are better
than those of the analysis without it (AUROC = 0.874).

1 Introduction

Landslides triggered by earthquakes are one of the most
destructive natural disasters. Seismic landslide hazard
analysis is used to estimate the probability of slope failure
due to an earthquake. It is a useful tool for land-use planners
for preventing disasters. The highly susceptible slopes in
conventional hazard maps represent areas of high potential
failure triggered by earthquakes.
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Many modeling approaches for landslide hazard predic-
tion can be used to produce statistics-based susceptibility
maps. Logistic regression and discriminant analysis are the
most frequently used models (Brenning, 2005). Logistic
regression and statistical models have been developed using
the geographic information system (GIS) for landslide
susceptibility mapping (Atkinson and Massari, 1998; Row-
botham and Dudycha, 1998; Lee and Min, 2001; Ayalew and
Yamagishi, 2005; Mathew et al., 2007; Chang et al., 2008;
Garcia-Rodriguez et al., 2008; Yilmaz, 2009). Superposing
several layers of landslide-related factors using GIS can
be used to create a composite model based on various
weighting parameters. In order to predict the potential of
landslides, landslide-related factors must first be selected.
The main trigger factor of earthquake-induced landslides is
the intensity of seismic shaking. Some studies have not
included this factor, stating that seismicity was relatively
uniform throughout the study area (Ayalew and Yamagishi,
2005; Garcia-Rodriguez et al., 2008). Other regression
analyses have used trigger factors such as peak ground
acceleration (PGA), peak ground velocity (PGV), and Arias
intensity (Ia) with the interpolation method (Jibson et al.,
2000; Luzi and Pergalani, 2000) or empirical equations
(Carro et al., 2003; Pelaez et al., 2005; Lee and Evangelista,
2006; Wang et al., 2008). Most conventional analyses
neglect the topographic amplification effect.

Many studies have found sufficient evidence that shows
that topographic irregularity considerably affects the am-
plitude and frequency content of ground motion (Geli et
al., 1988; Bard and Riepl-Thomas, 2000; Assimaki et al.,
2005; Nguyen and Gatmiri, 2007). The occurrence of
landslides at or near ridge crests during moderate to large
earthquakes has also been attributed to the topography affect
(Harp et al., 1981; Harp and Keefer, 1990; Densmore and
Hovius, 2000; Sepulveda et al., 2005a, b). The topographic
amplification effect refers to the effect of surface topography
on the magnitude of ground acceleration. In general, seismic
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Fig. 1  Flowchart of the proposed method. 615 
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Fig. 1. Flowchart of the proposed method.

intensities are amplified at ridge crests and are de-amplified
at canyons or hill toes. Consequently, conventional analysis
that does not consider the topographic amplification effect
underestimates the stability in the crest area. Although the
natural topography is too complex for an accurate model
of topographic amplification to be developed for it, Geli et
al. (1988) indicated that it is possible to qualitatively predict
the magnitude of ground amplification due to the topographic
effect. Paolucci (2002) introduced a transfer function to
obtain the topographic amplification factors.

In the present study, a landslide triggered by 21 September
1999, Chi-Chi earthquake is used to build a seismic
landslide hazard model. Based on the amplified ground
motions, theIa values are extracted for each grid cell.
With geomorphological, geological, land-cover, and seismic
parameters, a logistic regression model is use to assess the
hazard of earthquake-induced landslides in the 99 Peaks
region. A flowchart of the proposed procedure is shown in
Fig. 1.

2 Study area

The study area is located in the Juo-Juo-Fong (99 Peaks)
region, central Taiwan, which lies within 24.000◦–24.115◦

latitude and 120.761◦–120.813◦ longitude. The epicentre
of 21 September 1999, Chi-Chi earthquake (Mw = 7.6) was
located about 17 km south of the study area. Surface fault-
rupture occurred along the Chelungpu fault about 3 km west
of the study area.

Geology is an import factor in landslide potential. The
geological map of the 99 Peaks region is shown in Fig. 2.
Chen and Wu (2006) surveyed the area and estimated
that Pliocene and Pleistocene rocks dominate the 99 Peaks
region. The Toukoshan formation in the 99 Peaks region can
be divided into two areas based on lithology. The eastern part
is Houyenshan member (Tkh), dominated by conglomerate
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Fig. 2. Location and geological map of the study area. Fig. 2. Location and geological map of the study area.

with thin to thick sandstone. The conglomerate layer in the
99 Peaks region has extremely high permeability (Chen and
Wu, 2006). The western part is Shiangshan member (Tks),
dominated by alternating layers of sandstone-intercalated
sandstone and shale and thin-bedded conglomerate. Other
formations are found at the base (Lo et al., 1999):

1. Alluvium(Al): composed of unconsolidated mud, sand,
and gravel;
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2. Terrace Deposits(Td): composed of gravel;

3. Cholan Formation (Cl): composed of sandstone,
siltstone, mudstone, and shale in a repeating alternating
sequence;

4. Kueichulin Formation(Kc): mainly composed of gray
to yellowish-brown massive sandstone which is partly
whitish-gray;

5. Fulungyuan Formation(Fl): composed of sandstone
and shale;

6. Hourdonqkeng Formation(Hd): composed of siltstone
and shale.

The Chi-Chi earthquake struck the 99 Peaks region and
triggered a large number of landslides. The digital inventory
of landslides was estimated by matching the ground surface
variation from SPOT images taken before and after the
events by the Central Geological Survey in Taiwan (CGST1).
For each landslide, the location, elevation, aspect, slope
angle, and area were recorded. The inventory documents
1136 landslides of various types that were triggered in the
study area. Most of the landslides were shallow slope
failures (Chen and Wu, 2006). Figure 3a shows the spatial
distribution of landslides induced by the Chi-Chi earthquake.
A total collapsed area of 7.22 km2 was caused by the Chi-
Chi earthquake. Landslide size ranged from less than
1.95× 102 m2 to more than 1.86× 105 m2. However, not
all landslide inventories were necessarily correctly mapped.
To ensure that landslide data were suitable for analysis, they
were screened in accordance to the following rules.

1. Landslide area: Fig. 4 shows the landslide fre-
quency/area graph (Stark and Hovius, 2001; Malamud
et al., 2004; Catani et al., 2005) produced by plotting
the slope of the cumulative number of landslides (y-
axis) versus their area (x-axis). This distribution
shows the scale behavior of natural event records
(earthquakes, landslides, etc.) characterized by a
linear relationship for large events and a rollover for
smaller events with decreasing frequency for very small
landslide areas. The rollover can partly be explained
by the undercounting of small events (less accurate
mapping) which can be taken into consideration by
using particular distribution fits proposed by Stark and
Hovius (2001). For our dataset, the proposed scaling
law holds for areas greater than 103 m2. It can thus
be concluded that there is a good degree of confidence
in the accuracy of the inventory for landslides with an
area greater than 103 m2. This is, landslides with areas
smaller 103 m2 were not analyzed.

1http://www.moeacgs.gov.tw, 2008

Fig. 3. Terrain map showing the distribution of landslides
triggered by the Chi-Chi earthquake in 1999:(a) original inventory,
(b) landslide source.

Fig. 4. Landslide area frequency plot.dn/dA is the derivative
of landslide frequency with respect to the total area andA is the
landslide area.

2. Slope gradient: the alluvium and cells of slopes of less
than 10◦ are regarded as stable during shaking. We
removed landslides with slope gradients of less than
10◦.

Landslide source areas were defined to include grid cells with
elevations above the median elevation for each landslide.
That is, the upper half of each landslide was considered as
the source area, following Jibson et al. (2000).

After the screening process, the number of landslides was
reduced to 1077; their distribution is shown in Fig. 3b.
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3 Amplified ground motion

The main trigger factor of earthquake-induced landslides
is the seismic shaking intensity. Arias intensity (Ia) is an
important measurement of ground motion since it simultane-
ously reflects multiple characteristics of the motion, whereas
most common scalar ground-motion measures, such as peak
ground acceleration (PGA), peak ground velocity (PGV),
and individual ordinates of spectral acceleration, reflect a
very specific aspect.Ia can capture and represent multiple
attributes of the overall ground motion based on the record.
The Arias intensity (Arias, 1970) is defined as:

Ia =
π

2g

∫ d

0
a2(t)dt (1)

where a(t) is the recorded ground acceleration,g is the
acceleration due to gravity,d is the total duration of
earthquake motion, andt is time. The Arias intensity was
first used for analyzing the occurrence of landslides by
Wilson and Keefer (1985); they found it to be the most
efficient intensity measure of earthquake-induced landslide
potential.

The free-field strong-motion stations around the 99 Peaks
region are TCU052, TCU065, TCU067, TCU071, TCU072,
TCU075, and TCU137. Station TCU052 is located at site C
(very dense soil or soft rock) and all other seismic stations
are located at site D (stiff soil). For the 99 Peaks region,
a Kriging algorithm was used to interpolate the shaking
intensities recorded at these stations to generate the contour
of shaking intensities. The distribution ofIa (Fig. 5) in
the study area was evaluated. It should be noted that
the distribution of shaking intensities was derived from the
seismic stations outside the study area. The distribution of
shaking intensities cannot be used to determine the response
of the topographic effect inside the study area.

This study considers the topographic effect in relation to
seismic intensity. A three-dimensional (3-D) staggered-grid
finite differences model (Ohminato and Chouet, 1997) is
constructed to estimate the effect of topography on ground
motion amplification. The scheme introduces stress-free
boundary conditions into the finite difference method by in-
cluding 3-D topographic characteristics. The displacements
and stresses in the three directions (NS, EW, up, down) in
each cell unit (within the medium or below the free surface)
can be calculated during the wave propagation. The model
is suitable for simulating seismic wave propagation. Details
of the formulation and implementation can be found in
Ohminato and Chouet (1997).

After the staggered-grid finite difference model is con-
structed with the real digital elevation model, the topographic
amplification factorsH k

f (f ) are calculated by subjecting the
model to seismic motion with incident plane shear waves,
with two cases of polarization, in the EW and NS directions,

Fig. 5. Arias intensity generated by interpolating the shaking
intensity recorded at a seismic station.

respectively. The time dependence of the incident wave is
described in terms of a Ricker wavelet:

f (t) = (a−0.5)exp(−a) (2)

a =
∣∣π (t − t0)/fp

∣∣2 (3)

wheref (t) is the Ricker wavelet,fp is the peak frequency
of the Fourier spectrum, andt0 is an appropriate time shift
parameter.

The topographic amplification factorsH k
NS(f ) at site k

in the NS direction are calculated using the following steps
(Paolucci, 2002): (1) input the values of previous incident
waves with the polarization in the NS direction; (2) calculate
the responses at sitek along the NS direction based on
the digital elevation model and transform them into the
frequency domain; (3) calculate the responses of the flat
topography model at the free surface and transform them
into the frequency domainUmod el(f ); (4) calculate the
topographic amplification factors for each frequency using:

H k
NS(f ) = Y k

NS mod el(f )/Umod el(f ) (4)

Similarly, H k
EW(f ) is calculated with polarization of the

input incident wave in the EW direction.
The frequency response at the surface of irregular

topography can be expressed as (Paolucci, 2002):

Y k
i (f ) = H k

i (f ) ·Ui(f ) (5)

whereY k
i (f ) is thei-th component of the seismic response

at sitek, andU k
i (f ) is the corresponding reference motion

at the reference site (located at the flat surface) in thei-th
direction. In this paper, the ground motion record at a nearby
seismic station is regarded as the reference motion. The
transfer function,H k

i (f ), for the i-th direction at sitek is
regarded as the topographic amplification factor in this study.

Nat. Hazards Earth Syst. Sci., 10, 2475–2488, 2010 www.nat-hazards-earth-syst-sci.net/10/2475/2010/
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Table 1. Data sources and data types used in this work.

Data Data source Data type Resolution/Scale

DEM Satellite Geoinformatics Research Centre, NCKU, Taiwan Grid 5 m× 5 m
Geologic map Central Geological Survey, Taiwan Polygon coverage 1/25 000
Land cover Soil and Water Conservation Bureau, Taiwan Polygon coverage 1/5000

The steps of the procedure are summarized as follows:

1. Compute the topographic amplification factorH k
i (f ):

i. The seismic wave propagation model is constructed
with the digital elevation model (DEM) of the study
area.

ii. The response motionsY k
i mod el(f ) of the mountain

topography model are calculated by subjecting the
model to an incident plane wave.

iii. The model reference motionUmod el(f ) of the flat
surface model is derived by subjecting the model to
the same incident wave.

iv. The topographic amplification factorsH k
i (f ) are

calculated by combining the response motions of
the mountain model and model reference motion
Umod el(f ) of the flat model with Eq. (6). The
amplification factors at each cell are in the NS and
EW directions.

2. Calculate the topographic amplified motionak(t), Ia :

i. The reference motionUi(f ) is defined as the
ground motion without considering topographic
effects. The ground motion record at the seismic
station near the study area is chosen as the reference
motionUi(f ).

i. The amplified motionsY k
i (f ) are obtained by

combining the topographic amplification factors
H k

i (f ) and reference motionUi(f ) with Eq. (4).
The amplified motions are then transformed into
the time domain to generate the amplified time
history ak(t) for each cell in the NS and EW
directions.

iii. Based on the time historyak
i (t) for each cell, anIa

map is generated.

4 Landslide-influencing parameters

The factors that affect landslides are very complex. Various
factors are used for landslide hazard assessment. The present
study investigates the effects of topographic amplification in
the analysis of earthquake-induced landslide hazards. Hence,
we selected seven of the most frequently used factors based

on the general consensus that each variable must be indepen-
dent, operational, complete, non-uniform, measurable, and
non-redundant. Lithologic, geomorphological (elevation,
slope gradient, slope aspect, terrain roughness), land-cover,
and triggering parameters (Ia) were selected. The datasets
used in the landslide hazard assessment include: (1) a
geological map, (2) high-resolution digital elevation models
of the topography, and (3) a land-cover map. Table 1 shows
the sources and resolutions of these variables. All factors
were constructed using the ArcGIS software package.

A 5-m resolution DEM was produced by the Satellite
Geoinformatics Research Centre in the National Cheng
Kung University (NCKU) based on aerial photogrammetry.
All the geomorphological variables were derived from 5-
m resolution DEM data instead of being cited from the
standard 40-m DEM to preserve the integrity of the database.
The study area was divided into a grid of 5 m× 5 m cells.
The area contained 2534 rows and 1064 columns, for a total
of 2 696 176 grid cells. The Chi-Chi earthquake induced
landslides within 210 832 of the cells.

4.1 Lithologic parameters

Information on lithology classification (Fig. 6a) was derived
from the 1:25 000 geological database of the Central
Geological Survey of Taiwan (CGST1). The following
lithologies were used in the regression model: alluvium,
terrace deposits, Cl, Kc, Fl, Hd, Tkh, and Tks. The first class
(alluvium) was used as reference category. We calculated the
landside density for each class of variable (Fig. 7). Figure 7a
shows the landslide densities computed for the eight classes
of lithologic parameter. The class “Tkh” had the highest
landslide density (11.3%).

4.2 Geomorphological parameters

Many previous landslide studies used logistic regression,
elevation, and slope angle as the best predictor variables for
estimating the probability of landslide occurrence (Garcia-
Rodriguez et al., 2008; Ohlmacher and Davis, 2003; Ayalew
and Yamagishi, 2005). Each 5-m space cell in the DEM
had an interpolated elevation value (Fig. 6b). The landslide
density tended to increase with elevation until the maximum
density (26.74%) was reached in the range of 573.4–785.2 m
(Fig. 7b).

www.nat-hazards-earth-syst-sci.net/10/2475/2010/ Nat. Hazards Earth Syst. Sci., 10, 2475–2488, 2010
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Fig. 6. Spatial distribution of factors:(a) lithologic unit, (b) elevation,(c) slope gradient map,(d) slope aspect map,(e) terrain roughness,
(f) land-cover map.
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Fig. 6. Spatial distribution of factors:(a) lithologic unit, (b) elevation,(c) slope gradient map,(d) slope aspect map,(e) terrain roughness,
(f) land-cover map.

Some geomorphological factors, such as slope gradient,
slope aspect, and terrain roughness, were derived from
the DEM. Conceptually, the slope gradient was calculated
using 3× 3 cell neighborhoods around the processing cell
based on the average maximum technique (Burrough and
McDonell, 1998). Landslides usually occur on steep slopes.

The cells of slopes less than 10◦ were not analyzed in the
study area. The obtained slope gradient map is shown in
Fig. 6c. Landslide density tended to increase with slope
until the maximum density (21.9%) was reached in the range
63.94–83.6◦ (Fig. 7c).

Nat. Hazards Earth Syst. Sci., 10, 2475–2488, 2010 www.nat-hazards-earth-syst-sci.net/10/2475/2010/
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Fig. 6. Continued.

The slope aspect can influence soil strength and suscep-
tibility to landslides because it affects moisture retention
and vegetation cover. For earthquake-induced landslides,
slope aspect can also affect the distribution of landslide
density (Tibaldi et al., 1995; Chang et al., 2007; Garcia-
Rodriguez et al., 2008; Lee and Evangelista, 2006; Lee et
al., 2008). We used eight (North, Northeast, East, Southeast,
South, Southwest, West, and Northwest) aspects (Fig. 6d)
for logit modeling, with North as the reference aspect.
Figure 7d shows that the majority of landslides occurred on
South (9.7%) and Southeast (9.1%) facing slopes.

Terrain roughness measurements from the DEM provide
a better description if the undulation of the topographic
surface is considered. The spatial variability function of the
DEM measures the dispersion of the vector perpendicular
to the surface, following Garcia-Rodriguez et al. (2008).
The obtained roughness values were standardized and a
roughness map with 0–255 levels was created (Fig. 6e). The
landslides density correlates with terrain roughness (Fig. 7e).
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Terrain roughness measurements from the DEM provide
a better description if the undulation of the topographic
surface is considered. The spatial variability function of the
DEM measures the dispersion of the vector perpendicular
to the surface, following Garcia-Rodriguez et al. (2008).
The obtained roughness values were standardized and a
roughness map with 0–255 levels was created (Fig. 6e). The
landslides density correlates with terrain roughness (Fig. 7e).

4.3 Land-cover parameters

Information of land cover was compiled by the Soil
and Water Conservation Bureau of Taiwan (SWCB2), and
directly used as one of the GIS layers (SWCB, 19992)
without any additional processing.

2http://www.swcb.gov.tw/, 1999

The land-cover map (Fig. 6f) was classified into eight
classes, namely water bodies, residential, agriculture areas,
bamboo areas, grass, forests, and old landslides. These
classes were used for the logit model, with water bodies
used as the reference category. The correlation of landslide
density with land cover shows that the highest density occurs
for old landslides (Fig. 7f).

4.4 Trigger parameters

The trigger factor is associated with seismic intensity. The
parameterIa is an ideal index for representing seismic
intensity and is thus used for logistic regression. The
recorded ground accelerations of the Chi-Chi earthquake at
station TCU052 are shown in Fig. 8. Station TCU052 is
on the Pliocene stratum at site C (very dense soil or soft
rock). The elevation of the station is 215 m. The station is
located on a flat surface. The variation of the topography
of nearby hills is very slow. The seismic station might
have been affected by a surface wave generated at a nearby
hill, but the effect would have been small and could be
ignore. Hence, the record from the station can be regarded
as the reference motion (Eq. 5). For the Chi-Chi earthquake,
the recorded PGA andIa values at station TCU052 were
439 gal and 293 cm s−1, respectively. The location of station
TCU052 is about 2 km away from the Chelungpu fault, and
the epicentral distance is about 39 km. The duration of
the seismic record is about 25 s. The Chi-Chi earthquake
produced a rupture trace more than 100 km long following

www.nat-hazards-earth-syst-sci.net/10/2475/2010/ Nat. Hazards Earth Syst. Sci., 10, 2475–2488, 2010
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Fig. 7. Landslide density for each class of a variable:(a) lithology, (b) elevation,(c) slope gradient,(d) slope aspect,(e) terrain roughness,
(f) land cover,(g) Ia with amplification effects, and(h) Ia without amplification effects.

the Chelungpu fault. The 99 Peaks region is just above the
Chelungpu fault. The section of the Chelungpu fault under
the 99 Peaks region has S strike and dips of N 6◦ W and
28◦ E, respectively. These values of the strike and dip were
used to set up the incidence angle of incident shear waves in
the wave propagation model.

The amplified time historyak
i (t) at each grid cell in the

study area was generated using the previously mentioned
procedure. Ia for the amplified time history was then
determined at each grid cell, as shown in Fig. 9a. The
Ia distribution includes the topographic effect during the

Chi-Chi earthquake. In conventional landslide hazard
analysis, the distribution of shaking intensity is derived by
interpolating the recorded shaking intensities around the
study area. The interpolated shaking intensity distribution for
the Chi-Chi earthquake in the study area is shown in Fig. 9b
for comparison. The map of shaking intensity distribution
shown in Fig. 9b was generated using the recorded intensity
outside the study area, and thus does not indicate the
response of topographic amplification effects inside the study
area. Landslide density tended to increase withIa until the
maximum density (Fig. 7g and h).
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(a) (b)

Fig. 8. Ground acceleration of Chi-Chi earthquake recorded at station TCU052(a) in the NS direction and(b) in the EW direction.

Fig. 9. Arias intensity generated using(a) the proposed procedure with the topographic effect and(b) interpolated from shaking intensity
recorded in the seismic stations.

5 Logistic regression

Logistic regression is a mathematical modeling approach
that describes the relationship between one or several
independent variables and a dichotomous dependent variable
(Hosmer and Lemeshow, 1989). For example, the values 1
and 0 can represent the presence and absence of a landslide,
respectively. In logistic regression, the independent variables
can be categorical, numerical, or both (Menard, 2002).
For a binary response variable, it is convenient to model

probability in terms of the log odds of improvement, called
the logit, denoted as (Atkinson et al., 1998):

logit(Pi) =
ef (Xi )

1+ef (Xi )
(6)

wherePi is the probability of an event occurring associated
with a given observationi. The probability varies from
0 to 1 on an S-shaped curve andf (x) is the linear
combination. Logistic regression involves fitting an equation

www.nat-hazards-earth-syst-sci.net/10/2475/2010/ Nat. Hazards Earth Syst. Sci., 10, 2475–2488, 2010
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of the following form to the data:

f (Xi)=β0+

n∑
i=1

βiXi=β0+β1X1+β2X2+...+βnXn (7)

whereβi (i = 0,1,2,...,n) aren coefficients to be estimated
in the model, andXi (i = 0,1,2,...,n) are then values for
each of the explanatory variables.

For landslide susceptibility mapping, a commonly used
method is to create layers of binary values (dummy variables)
for an each class of independent parameter (Guzzetti et al.,
1999; Ayalew and Yamagishi, 2005; Dai and Lee, 2002;
Ohlmacher and Davis, 2003). The spatial databases of
each factor were used to determine the relationship between
landslides and each calculated factor using the Statistical
Package of Social Sciences (SPSS).

5.1 Analytical approaches

The following factors were used in this study: geomorpho-
logical, geological, land-cover, and seismic parameters. Four
variables were numerical: elevation, slope gradient, terrain
roughness, andIa . Three variables were categorical: slope
aspect, lithology, and land cover.

In order to prepare the database for the logistic regression,
data with different measuring scales were combined to obtain
better results. Before the main statistical analyses, the data
were normalized for logistic regression. If this procedure is
not carried out, it will be difficult to understand statistical
results and evaluate the role of each independent variable in
the final results. Many landslide susceptibility assessment
studies using logistic regression or linear regression used
landslide density to normalize each variable. In this study,
we used a different approach. Our approach was to reclassify
each of the seven variables into a range of 0–255 using Jenks
natural breaks method (Jenks and Coulson, 1963). This study
found that classification methods, such as equal interval,
quantile, Jenks natural breaks, and geometrical interval,
affect the accuracy of the final results. The Jenks natural
breaks method improved landslide prediction.

The sample size used to create the dependent variable
is important. It is generally recommended that similar
proportions of 1 (“landslide”) and 0 (“non-landslide”) cells
be used in the logistic regression. Hence, we took
2696 random samples, of which 1298 were landslide and
1398 were non-landslide cells (Fig. 10).

Considering the independent variables, we selected the
stepwise methodForward:Wald (SPSS software) to avoid
the multicollinearity problem between explanatory variables.
We then performed entry testing based on the significance
of the score statistics and removal testing based on the
probability of the Wald statistics. The mode was adjusted
using 7 steps: (a) elevation entered on step 1; (b) slope
gradient entered on step 2; (c) terrain roughness entered on
step 3; (d) slope aspect entered on step 4; (e)Ia entered on
step 5; (f) land cover entered on step 6; (g) lithology entered

Fig. 10. Distribution of random samples in the logistic regression.

on step 7. All factors were used and logistic regression
mathematical equations were formulated as shown in Eq. (7).
Then, we obtained the following equation:

f (x)=0.010·Elevation+0.014·Slope+0.009·Runghness

+0.018·Ia+Aspectc+Lithologyc+Landcoverc−5.142 (8)

where Elevation is the elevation value, Slope is the slope
gradient, Roughness is the terrain roughness value,Ia is
the Arias intensity value, and Aspectc, Lithologyc, and
Landcoverc are the logistic regression coefficient values. The
statistical significance of each coefficient in the model is
listed in Table 2.

5.2 Results and verification

The proposed earthquake-induced landslide model using the
logistic model is significant at the 0.01 level. The overall
statistics of this model are shown in Table 3. Among the
entire explanatory variable, are significant at 0.01 confidence
level. The receiver operating characteristic (ROC) analysis
summarizes the performance of a logistic regression model.
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Table 2. Logistic regression results and coefficient values used for
this study.

Step 7

Variable B S.E. Wald Exp(B) Sig.

Elevation 0.010 0.001 73.360 1.010< 0.01
Slope gradient 0.014 0.001 161.757 1.014< 0.01
Terrain roughness 0.009 0.001 65.966 1.009< 0.01
Ia 0.018 0.003 34.874 1.018 < 0.01

Aspect 106.514 < 0.01
– Northeast 0.529 0.228 5.376 1.697 0.020
– East 1.102 0.220 25.028 3.011< 0.01
– Southeast 1.498 0.209 51.401 4.474< 0.01
– South 1.378 0.207 44.441 3.968< 0.01
– Southwest 0.852 0.211 16.321 2.344< 0.01
– West 0.341 0.238 2.057 1.406 0.152
– Northwest –0.019 0.234 0.007 0.981 0.934

Lithology 17.242 < 0.01
– Cl –0.995 1.601 0.386 0.370 0.534
– Fl –0.893 1.353 0.435 0.410 0.509
– Hd –0.229 1.327 0.030 0.795 0.863
– Kc –0.985 1.301 0.573 0.373 0.449
– Td –18.675 10 459.537 0.000 0.000 0.999
– Tkh 0.031 1.244 0.001 1.031 0.980
– Tks 0.323 1.245 0.067 1.381 0.795

Land use 29.389 < 0.01
– Residential area –1.323 1.438 0.846 0.266 0.358
– Agriculture area –1.867 0.881 4.489 0.155 0.034
– Bamboo –1.924 1.381 1.943 0.146 0.163
– Grassland –1.523 1.502 1.027 0.218 0.311
– Forest area –0.819 0.855 0.918 0.441 0.338
– Old landslides 2.277 1.376 2.739 9.750 0.098

Constant –5.142 1.375 13.982 0.006> 0.01

B represents the estimated regression coefficients for the explanatory variables, with

the standard error (S.E.) given. The Wald statistics is the ratio of B to S.E. of the

regression coefficient squared. The significance of each explanatory variable (Sig.) is

given by the p-value. Exp (B) is the predicted change in odds for a unit increase in the

explanatory variable.

ROC curves can be used to provide predictions of landslide
probability (Zweig and Campbell, 1993). The curves are
obtained by plotting all combinations of sensitivities (on the
y-axis) and the proportion of false negatives (1-specificity;
on the x-axis) that can be obtained by varying the decision
threshold. The area under the ROC curve (AUROC) is an
estimate of the model accuracy (Hosmer and Lemeshow,
2000). The area measures discrimination, which is the
ability of the test to correctly classify pixels with and
without landslide risk. This measure of discrimination
is threshold-independent and takes values from 0.5 (no
discrimination) to 1 (perfect discrimination). Therefore, an
ROC plot closer to the upper left corner indicates a higher
overall accuracy of the test. The area corresponding to our
study from the ROC curve is shown in Fig. 12. The AUROC
is 0.890, which is considered excellent discrimination. The
results of the analysis that considers the topography effect
are better than those for the analysis without the topography
effect (AUROC = 0.874).

Table 3. Overall statistics of the logistic regression model.

Step –2 Log Cox and Nagelkerke Hosmer-
likelihood Snell R Square Lemeshow

R Square Chi-square

1 2882.483 0.271 0.361 13.765 n.s
2 2669.977 0.326 0.435 12.507 n.s
3 2559.234 0.353 0.471 20.663
4 2428.880 0.384 0.512 15.746 n.s
5 2391.706 0.392 0.523 11.744 n.s
6 2344.843 0.403 0.537 14.389 n.s
7 2323.067 0.407 0.543 15.081 n.s.

n.s. = not significant at the 0.05 level.

Fig. 11. Landslide susceptibility map based on logistic regression.

The probabilities of landslide occurrence were calculated
using Eqs. (6) and (8). The resultant landslide susceptibility
map is shown in Fig. 11. In order to evaluate the performance
of the proposed method, the calculated landslide suscepti-
bility maps were compared with the inventory of landslides
that were actually triggered by the Chi-Chi earthquake. The
accuracy curves (Chung and Fabbr, 1997) are introduced to
achieve this. To obtain the accuracy curves, the landslide
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hazard results are sorted in descending order. The values of
ordered cells were divided into 100 classes with accumulated
1% intervals. The number of landslide cells within the period
for each hazard class was counted. Relationships between
the cumulative hazard index ranking and the cumulative
percent of landslide occurrence are shown in Fig. 13. The
cumulative hazard index rank (x-axis) goes from high to low
susceptibility (i.e., from dangerous to safe areas). Therefore
a lower hazard index rank indicates a higher hazard and
higher potential for landslide occurrence. For example, 10%
class of the study area where the landslide hazard index hand
a higher can account for 63% of all landslides caused by the
Chi-Chi earthquake. In addition, the 20% class of the study
area where here the landslide hazard index hand a higher can
account for 81% of all landslides.

6 Discussion

A model that introduces the topographic effect into landslide
hazard analysis, as suggested by Peng et al. (2009a, b),
simply uses the vertically incident shear waves as the
incident wave for the wave propagation model. Although this
is a reasonable engineering simplification, it is unlikely to
represent the real situation during earthquakes. In the present
study, the strike and dip angles of the Chelungpu fault were
adopted to set up the incidence angle of shear waves in the
wave propagation model. This makes the incidence angle in
the wave propagation model close to that in real situations.
The reference motion (recorded in TCU052) is also used to
preserve information, making the modified ground motion
ideal for landslide hazard analysis.

Although the model includes the topographic effect in
the landslide hazard analysis, it ignores the distance effect
(path effect) for far-field earthquakes and the highly variable

Fig. 13. Cumulative frequency diagram showing cumulative
landslide hazard index rank occurring in cumulative percentage of
landslide occurrence.

near-field ground motion because the reference motion was
recorded at a single seismic station. In the small study
area, this problem may be insignificant because the distances
from cells to the fault surface are approximately equal for
a far-field earthquake. However, for a large study area
or for an area controlled by near-field ground motion, the
accuracy of the prediction may be reduced. For example,
Fig. 5 shows that there is an obvious variation between
records from stations TCU052 and TCU071; therefore, there
may be an inconsistency between the predicted and actual
seismic intensity in the southern part of the study area
because the reference motion used to simulate the wave
propagation was obtained from seismic station TCU052.
This drawback reduces the accuracy that predicts the hazard
between the south and north parts of study area in this
research, this is the main reason that the accuracy (AUROC)
of this modified model is not obviously increased relative to
the conventional model that estimates shaking intensity by
interpolating. Further research is thus required to combine
the effects of highly variable near-field ground motion (or
the path effect of far-field earthquakes) with the topographic
effect in hazard analysis.

7 Conclusions

The topographic effect was included in the analysis of
earthquake-induced landslides in the 99 Peaks region, central
Taiwan. The topographic effect was estimated using back
analysis. The 3-D staggered-grid finite difference model
proposed by Ohminato and Chouet (1997) was constructed
to calculate the theoretical topographic amplification factors
in the 99 Peaks region. The ground motion record
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of the Chi-Chi earthquake at a seismic station near the
99 Peaks region was chosen as the reference motion. By
combining the topographic amplification factors with the
reference motion, the amplified acceleration time history
and amplified shaking intensity parameters (Ia) of the
Chi-Chi earthquake were obtained. A logistic regression
model was adopted to perform the seismic landslide
hazard analysis. The regression model indices, including
the topography effect, were then used to generate the
landslide susceptibility maps. In order to evaluate the
performance of this procedure, a conventional method that
ignores the topographic amplification effect was also used.
The performance was tested by comparing the known
landslide location data with those calculated using landslide
susceptibility maps. The conventional method excludes the
factor of seismicity when calculating the hazard potential for
landslides as it lacks distinct variation throughout the study
area. This work shows that the topography amplification
effect is too significant to be ignored.
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