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Abstract. In the past decade it became customary to re-
late the probability of appearance of extremely steep (the so-
called freak, or rogue waves) to the value of the Benjamin-
Feir Index (BFI) that represents the ratio of wave nonlinear-
ity to the spectral width. This ratio appears naturally in the
cubic Schr̈odinger equation that describes evolution of uni-
directional narrow-banded wave field. The notion of this in-
dex stems from the Benjamin-Feir linear stability analysis of
Stokes wave. The application of BFI to evaluate the evolu-
tion of wave fields, with non-vanishing amplitudes of side-
band disturbances, is investigated using the Zakharov equa-
tion as the theoretical model. The present analysis considers
a 3-wave system for which the exact analytical solution of
the model equations is available.

1 Introduction

Extreme (rogue, or freak) waves appear locally and sponta-
neously in the sea. Usually waves with heights exceeding
twice the significant wave height are considered to belong
to this category. Parameters of those waves, and in particu-
lar the frequency of their appearance, constitute an important
design parameter in marine and off-shore engineering. There
are numerous indications that under certain circumstances
these waves may appear more frequently than expected for
a random Gaussian sea. In recent years, numerous experi-
mental studies aimed at experimental investigation of prob-
ability of appearance of extremely high waves were carried
out under controlled conditions in large experimental facili-
ties (Onorato et al., 2006, 2009; Shemer and Sergeeva, 2009;
Waseda et al., 2009; Shemer et al., 2010 and additional refe-
rences therein). Both unidirectional random wave fields and
those with directional spreading were considered. Random
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waves with an initially narrow-banded unidirectional Gaus-
sian spectrum were studied in Shemer and Sergeeva (2009).
Three series of experiments were carried out for different
values of nonlinearity determined by the characteristic wave
amplitude. It was found that the frequency spectrum of the
wave field undergoes significant variation in the course of
the wave field evolution along the tank. The initially narrow
spectrum becomes wider at the early stages of the evolution,
up to the distance from the wavemaker ranging from about
70 m for the highest characteristic amplitude employed, to
roughly twice that length for the weakest nonlinearity. After
attaining maximum, the spectrum gets narrower, its width,
however, remains larger than the initial one. The values of all
the statistical wave parameters appear to be strongly related
to the local spectral width. The deviations of various statisti-
cal parameters from the Gaussian statistics increase with the
width of the spectrum so that the probability of extremely
large waves is the highest when the local spectral width at-
tains maximum. The probability of extremely steep waves
also increases with the degree of nonlinearity.

The effect of the spectral width for a constant nonlinearity
ε, defined as a product of the dominant wavenumberk0 by the

r.m.s. value of the surface elevationσ =

(
η2

)1/2
, ε = k0σ ,

was studied, e.g., in Onorato et al. (2006) and in Shemer et
al. (2010) for a unidirectional wave field, and in Onorato et
al. (2009) in a large basin for a constant frequency spectrum
but with varying directional spreading. These studies demon-
strated that as either the frequency range or the directional
spreading widen, the probability of appearance of extremely
steep waves decreases.

To describe the evolution of random nonlinear wave
fields and following Alber (1978) and Onorato et al. (2001),
Janssen (2003) introduced the Benjamin-Feir index,
BFI = 21/2ε/(1ω/ω0), as a ratio of nonlinearityε to the
relative spectral width1ω/ω0, ω0 being the carrier wave
frequency and1ω the width of the frequency spectrum;
1ω/ω0 can be seen as a measure of wave dispersion.
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Janssen stressed that BFI can be expected to fully charac-
terise the evolution of a unidirectional wave field only within
the framework of the cubic Schrödinger equation (CSE) valid
for a very narrow spectrum, whereas for wider spectra this
is not the case. Nevertheless, quantitative estimates pertain-
ing to the character of random wave fields’ evolution that
are based on BFI are quite common. For example, Onorato
et al. (2006) use BFI to analyse the experiments carried out
for a relatively wide JONSWAP spectrum, while Onorato et
al. (2009) even invoke BFI in their experimental study of 2-D
random waves.

While there is a general consensus that BFI can be useful
as a rough indicator characterising the random field evolution
pattern, application of this index as a quantitative predictive
tool raises some questions. One commonly acknowledged
problem with the BFI is a non-unique way in which both the
nonlinearityε and the spectral width1ω/ω0 are defined. For
example, the value ofω0 is often defined as corresponding
to the spectral peak. A more robust definition of the domi-
nant wave frequency (and, thus, via the dispersion relation, of
the dominant wavenumberk0) in a random wave field would
invoke spectral momentum based of the free waves spectra
(see, e.g., Shemer et al., 2010). Similarly, the dimension-
less spectral width1ω/ω0 is sometimes defined according
to the energy level that corresponds to half of the spectral
peak value, whereas again, the definition based on spectral
momenta seems more appropriate. Alternative possible def-
initions of those parameters can result in quantitatively dif-
ferent values of BFI for identical wave spectra, especially for
wider and asymmetrically shaped spectra like JONSWAP.

An additional problem related to BFI is addressed here. By
its very nature, this index is closely related to the Benjamin-
Feir instability of the Stokes waves, and the coefficient pre-
ceding the ratio of nonlinearity to dispersion in the definition
of BFI reflects either the most unstable sideband disturbance
according to CSE, or the limit of the sideband linear stability
in a slightly different definition of BFI. Moreover, it is quite
common to refer to nonlinear evolution of the wave field as
stemming from the Benjamin-Feir modulational instability.

The Benjamin-Feir (BF) instability is a result of linear
analysis of a system that consists of a carrier wave with am-
plitude a0 and wave vectork0, and two infinitesimal side-
band disturbances with wave vectorsk1 andk2 that satisfy
the condition

2k0 = k1+k2. (1)

The linearized (with respect to the sideband disturbances
amplitudes) governing equations are used to carry out the sta-
bility analysis that delineates the boundaries of Stokes wave
instability domain and allows determining the most unstable
modes. Random wave fields have spectral “tails” extending
well beyond the wavenumber domain around the dominant
wave determined by the spectral width. The amplitude of
those spectral components, while small relative to that of

the dominant wave, is finite. It is, thus, instructive to con-
sider nonlinear evolution of a 3-wave system consisting of
a carrier wave with a given steepness, and two side distur-
bances with initially much smaller but still finite amplitudes.
The three-wave system defined by (1) can be seen as a ba-
sic “molecule” in the evolution pattern representing one of
the numerous possible nonlinear interactions in a wave field
with a given spectrum. The advantage of such a system is
that it allows an exact analytic solution of the wave evolution
problem based on the Zakharov (1968) equation (Shemer and
Stiassnie, 1985; Stiassnie and Shemer, 2005). The availabil-
ity of the analytic solution enables the parametric study of
the 3-wave system that can shed light on behaviour of much
more complicated random wave fields.

2 Theoretical background

The nonlinear evolution of each of the waves due to quartet
interactions at the 3rd order in the nonlinearity parameterε

is described by the Zakharov equation

i
∂Bj

∂t

∞

=

∫ ∫ ∫
−∞

Vj,l,m,nB
∗

l BmBnδ

(
kj +kl −km −kn

)
ei1j,l,m,ntdkldkmdkn (2)

where the interacting quartets are defined by theδ-function
and the frequency detuning

1j,l,m,n = ωj +ωl −ωm −ωn (3)

The interaction coefficientsVj,l,m,n = V (kj ,kl,km,kn) are
given in Krasitskii (1994). The free-surface elevation is re-
lated to the generalized amplitudeB(k,t) by

η =
1

2π

∞∫
−∞

(
|k|

2ω

)1/2{
Bei(k × x−ωt)

+c.c
}
dk, (4)

where the frequencyω is related to wave vectork by the
deep-water linear dispersion relation

ω2
= g | k | (5)

Following Stiassnie and Shemer (1984) and Shemer and
Stiassnie (1985), consider an interaction wave quartet con-
sisting of a carrier wave with the normalized wave vector
k0 = (1,0) that is taken twice, and a pair of sideband distur-
bancesk1,2 = (1±p,±q), so that (1) is satisfied. The de-
viation from unity of the wavenumber is denoted aspm for
the most unstable pair of disturbances andp` for the limit
of the linear instability. The linear instability analysis based
on the CSE yieldsp` = 21/2pm = 23/2ε, where the nonlin-
earity ε = k0a0 represents the carrier wave steepness. The
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Janssen’s (2003) comment regarding the limits of applicabil-
ity of BFI is based, in part, on the fact that the linear rela-
tion betweenp` (or pm) andε breaks down when the sta-
bility analysis is performed using either the linearized Za-
kharov equation (Crawford et al., 1981; Stiassnie and She-
mer, 1984), or full nonlinear equations (McLean et al., 1981).
The dependence ofpm andp` on the carrier wave steepnessε

is plotted in Fig. 1 according to calculations based on the cu-
bic Schr̈odinger and Zakharov equations. As demonstrated
by Stiassnie and Shemer (1984), the linear stability results
based on the Zakharov equation do not differ notably from
those obtained by McLean et al. It is obvious from Fig. 1 that
the two models yield identical results only for vanishingly
small values ofε; for steeper carrier waves, the CSE-derived
values ofp` andpm are significantly higher than those based
on the more accurate Zakharov model.

The main goal of this study is to analyse nonlinear interac-
tions of a carrier wave with sidebands of initially finite am-
plitude. For a 3-wave system considered here, the integro-
differential equation (2) degenerates into a system of three
first-order nonlinear ordinary differential equations:

i
dB0

dt
= (�0−ω0)B0+2V0,0,1,2e

i1ω tB∗

0B1B2 (6a)

i
dB1

dt
= (�1−ω1)B1+2V1,2,0,0e

−i1ωtB∗

2B2
0 (6b)

i
dB2

dt
= (�2−ω2)B2+2V2,1,0,0e

−i1ωtB∗

1B2
0 (6c)

where the frequency detuning

1ω = 10,0,1,2 = 2ω0−ω1−ω2 (7)

and the so-called “Stokes-corrected” frequencies are:

�0 = ω0+V0,0,0,0 | B0 |
2
+2V0,1,0,1 | B1 |

2
+2V0,2,0,2 | B2 |

2 (8a)

�1 = ω1+2V1,0,1,0 | B1 |
2
+V1,1,1,1 | B1 |

2
+2V1,2,1,2 | B2 |

2 (8b)

�2 = ω2+2V2,0,2,0 | B0 |
2
+2V2,1,2,1 | B1 |

2
+V2,2,2,2 | B2 |

2 (8c)

Following Stiassnie and Shemer (2005), after some manipu-
lations one obtains from (6)

d

dt
|B0|

2
= −

d

dt
|B1|

2
= −

d

dt
|B2|

2

= 4V0,0,1,2Im
{(

B∗

0

)2
B1B2ei1ωt

}
(9)

The complex amplitudes of all three waves at all times, thus,
depend on a single auxiliary real functionZ(t) defined by

dZ

dt
= Im

{(
B∗

0

)2
B1B2ei1ωt

}
, Z(0) = 0 (10)

It follows from (9) and (10) that

|B0|
2
−|β0|

2
= −|B1|

2
+|β1|

2
= −|B2|

2
+|β2|

2
= 4V0,0,1,2Z (11)
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Fig. 1. The dependence of values ofp corresponding to the limit
of linear instability (p`) and to the linearly most unstable distur-
bance (pm) on the carrier wave steepness according to the NLS and
Zakharov equations.

where the initial complex amplitudesβj = Bj (0), j = 0,1,2.
From (6) and (10) one can show that

d

dt
Re

{(
B∗

0

)2
B1B2ei1ωt

}
= −�

dZ

dt
(12)

where

� = 2�0−�1−�2. (13)

In view of (8) and (11),� is a linear function ofZ that can
be presented as

� = �a +�bZ. (14)

Integrating (12) fromt = 0 gives

Re
{(

B∗

0

)2
B1B2ei1ωt

}
= Re

{(
β∗

0

)2
β1β2

}
−

Z∫
0

�dZ (15)

Using (10) and (15) yields(
dZ

dt

)2

= | B0 |
4
| B1 |

2
| B2 |

2

−

[
Re

{(
β∗

0

)2
β1β2

}
−�0Z−

�1

2
Z2

]2

= P4(Z) (16)

The coefficients of the 4th order polynomialP4(Z) are fully
determined by the initial conditions. It follows from (16) that

t =

Z∫
0

dZ/
√

P4(Z) (17)

It is possible to express the integral (17) in terms elliptic
functions (Byrd and Friedman, 1971). For wave parame-
ters considered in this study, the coefficient of the leading
termZ4 in the polynomial is positive in most cases, all roots
of P4(Z) are real and can be arranged so thatZ4 > Z3 >

0> Z2 > Z1. The following derivation is carried out for this
case, nevertheless, using appropriate expressions in Byrd and
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Friedman it can easily be modified to cases when the roots of
the polynomialP4(Z) are arranged differently. For the case
considered, the value ofZ can vary betweenZ2 andZ3, so
that the solution (17) is periodic with the period given by

T = 2

Z3∫
Z2

dZ
/

√
P4(Z) (18)

Shemer and Stiassnie (1985) and Stiassnie and She-
mer (2005) presented the following explicit expression for
(17):

Z =
Z4(Z3−Z2)sn2u−Z3(Z4−Z2)

(Z3−Z2)sn2u−(Z4−Z2)
(19)

wheresn is the Jacobi elliptic function of argument

u = sn−1(δ,κ)−a
1/2
o t/γ (20)

and modulus

κ =

√
(Z3−Z2)(Z4−Z1)

(Z4−Z2)(Z3−Z1)
(21)

In (20),

γ =
2

√
(Z4−Z2)(Z3−Z1)

, δ =

√
Z3(Z4−Z2)

Z4(Z3−Z2)
(22)

The modulation period (18) can be rewritten as

T =
2γ

a
1/2
o

K(κ), (23)

whereK is the complete elliptic integral of the first kind.
Note, that wave complex amplitudesB depend onZ and
are, therefore, periodic; it also follows from (9) and (11) that
the solution does not depend on the individual initial phases
of the participating harmonics, but rather on a single initial
phase given by

θ = 2argβ0−argβ1−argβ2. (24)

Thus, the solution, in terms of the Jacobi elliptic functions,
allows computing the variation of the amplitude of each of
the three wave components as a function of their initial am-
plitudes and of a single phase combinationθ .

3 Results

In all cases considered, the initial sideband amplitudes are
defined relative to that of the carrier wave, so thata1,2 =

c.
1,2a0. The coefficientsc1,2 mostly do not exceed 0.4, so

that the power of sidebands remains well below 20%. There-
fore, these sidebands are beyond the energy-containing part
of the spectrum and can be seen as belonging to spectral tails
that practically do not contribute to the effective width of the
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Fig. 2. Nonlinear evolution of a 3-wave system:p = 0.2; q = 0;
θ = 0.7π ; ε = 0.2; c1 = c2 = 0.3.

spectrum in any conceivable definition of this parameter. In
deep water the most unstable infinitesimal disturbances prop-
agate in the direction of the carrier wave (McLean et al.,
1981; Stiassnie and Shemer, 1984), so that the vectorsk1
andk2 are parallel to the carrier wave vectork0 andq = 0.
Unidirectional wave systems are, thus, considered first.

The results of the previous section indicate that a three-
wave system undergoes periodic Fermi-Pasta Ulam recur-
rence for an arbitrary value of the sideband wavenumber de-
viation p. A typical example of the temporal evolution of a
unidirectional 3-wave system is presented in Fig. 2 for the
carrier wave steepnessε = 0.2 and identical initial relative
amplitudes of sidebandsc1 = c2 = 0.2. The sidebands se-
lected in this example belong to the BF instability domain,
see Fig. 1. The dimensionless modulation periodT that char-
acterises the exchange of energy between the carrier wave
and both sidebands can be computed using (23). For the con-
ditions of Fig. 2, the dimensionlessT = 393.8, or about 62
periods of the carrier wave. This is in agreement with the
so called “dynamic” temporal evolution scale of the order of
ε−2 appropriate for 4-wave nonlinear interactions.

As follows from (11), the amplitude of periodic modula-
tion of each one of the 3 components is determined by a sin-
gle real variableZ; the range of variation inZ, 1Z, for given
initial conditions defines the extent of modulation and can,
thus, be seen as a measure of the intensity of nonlinear inter-
actions at a slow time scale. The domain of variation1Z is
determined solely by the values of the roots of the polyno-
mial P4(Z).

The effect of the initial amplitude of sidebands is inves-
tigated in Fig. 3 for a unidirectional wave system with the
carrier wave amplitudeε = 0.2, as a function of the side-
band wavenumber determined by the value ofp. In Fig. 3a,
both sidebands are assumed to have identical initial ampli-
tude, whereas in Fig. 3b and c, the initial amplitudes of either
the low frequency sideband withk3 = (1−p,0), or the high
frequency sideband withk2 = (1+p,0), respectively, are set
as zero. In those cases, the initial amplitude of the initially

Nat. Hazards Earth Syst. Sci., 10, 2421–2427, 2010 www.nat-hazards-earth-syst-sci.net/10/2421/2010/



L. Shemer: On BF instability 2425

non-zero sideband is increased by a factor of 21/2 compared
to the corresponding values in Fig. 3b, to keep the total power
of all 3 components identical in Fig. 3. The range of variation
of p extends in Fig. 3 well beyond the linear stability limits
computed using either the NLS or the Zakharov equations,
as plotted in Fig. 1.

For the case of identical sideband amplitudes considered in
Fig. 3a, the intensity of nonlinear interactions characterised
by 1Z increases monotonically with the amplitude of side-
bands. In the whole range of values ofp considered, the
values of1Z vary continuously withp and do not vanish,
although they decrease significantly for wider-spaced side-
bands. For higher initial sideband amplitudes, significant
nonlinear interactions exist even well beyond the BF stability
domain. The linear stability limit (corresponding top ≈ 0.44
for the BF stability analysis based on the Zakharov equation)
does not play any particular role. Moreover, the modulation
depth does not attain maximum for the most unstable distur-
bance. The exact value ofp where the intensity of nonlinear
interactions attains maximum depends on the initial ampli-
tude of the sidebands.

The evolution of an asymmetric wave system in which
only one sideband exists initially does not differ qualitatively
from that observed for the case of initially symmetric side-
band disturbances. However, notable quantitative differences
exist. For sideband wavenumbers adjacent to that of the car-
rier wave, the modulation intensity in Fig. 3b and c is smaller
by a factor close to 2 as compared to that in Fig. 3a. The val-
ues of1Z then decay faster with increase inp, although de-
crease in the amplitude of modulations is less steep in Fig. 3c
where the low-frequency sideband initially has non-zero am-
plitude, as compared to Fig. 3b. In Fig. 3b and c the most
intensive nonlinear interactions are obtained for sidebands
that are not too far from the carrier wave, rather than for the
values ofp corresponding to the most unstable disturbances
in the linear BF analysis.

The results of Fig. 3 can be supported by findings of She-
mer and Chamesse (2000) who studied experimentally the
BF instability of gravity-capillary waves on the basis of the
Zakharov equation. In the experiments a carrier wave was
generated by a plane wavemaker, while one of the sidebands
(with a frequency either higher or lower than that of the car-
rier) was excited with a small but finite amplitude by an in-
dependent auxiliary conical wavemaker; its frequency was
varied in a range exceeding the instability domain. The ap-
pearance in the measured spectrum of the sideband that has
not been excited directly was interpreted as a manifestation
of the BF instability. In the measured spectra, however, this
sideband was often visible even when the auxiliary wave-
maker was operated at frequencies outside of the instability
domain. The results of Fig. 3 are in general agreement with
those observations.

The examples presented in Figs. 2 and 3 were computed
for an arbitrarily selected initial phase angle combination
θ = 0.7π . The effect ofθ on the intensity of nonlinear in-
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Fig. 3. Effect of the relative initial sideband amplitude on the mod-
ulation depth forε = 0.2 and θ = 0.7π : (a) c1 = c2; (b) initial
low frequency sideband amplitudec3 = 0; (c) initial high frequency
sideband amplitudec2 = 0.

teractions is studied in Fig. 4 for the carrier wave amplitude
ε = 0.2 and a set of identical initial sideband amplitudes. In
Fig. 4a, the sidebands that are relatively close to the carrier
wave, p = 0.2, are considered, while in Fig. 4bp = 0.45,
beyond the limits of the BF linear instability. In Fig. 4a,
the phase dependence of1Z increases strongly with the ini-
tial sideband amplitude. For phase combination angles suf-
ficiently close to zero, the modulation intensity may become
even stronger for initially smaller sideband amplitudes. For
widely-spaced sidebands in Fig. 4b, the phase dependence of
1Z weakens notably; the values of1Z increase with the ini-
tial amplitude of sidebands for all initial phasesθ . Note that
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Fig. 4. Modulation intensity for the carrier wave steepnessε = 0.2 as
a function of the initial phase angleθ for: (a) p=0.2; (b) p = 0.45.

for c1 = c2 = 0.4, the modulation amplitude in the vicinity of
θ = 0 is higher forp = 0.45 in Fig. 4b as compared to that
for p = 0.2 in Fig. 4a.

Finally, the effect of directional spreading is examined in
Fig. 5 forθ = 0.7π , other conditions being as in Fig. 4. Note
that according to the exact linear stability analysis of finite-
amplitude waves by McLean et al. (1981), the instability
limits are 0≤ q ≤ 0.125 for p = 0.2, and 0≤ q ≤ 0.25 for
p = 0.45. As evident from Fig. 4a, for sidebands with finite
initial amplitude the nonlinear interactions are quite strong
well beyond those limits. Even more unexpected may be the
results of Fig. 4b that indicate that the most significant non-
linear interactions occur for wave vectors that correspond to
linearly stable disturbances. These interactions result in side-
band amplitudes that, for certain phases of the Fermi-Pasta-
Ulam recurrence process, can exceed that of the carrier, even
for initially relatively small values ofc1,2.

4 Conclusions

The notion of BFI was coined considering a 3-wave system
consisting of a carrier and initially vanishingly small side-
band disturbances. The 3-wave approach intrinsic to the BFI
concept is expanded here to include sidebands that, while
sufficiently small not to affect notably the spectral width,
have nevertheless finite initial amplitudes. The Zakharov

(a)
0 0.05 0.1 0.15 0.2 0.25 0.3

0

0.5

1

1.5

2

2.5

3

3.5

 q 

 Δ
Z

 

 

c
2
=c

3
=0.1

          =0.2
          =0.3
          =0.4

(b)
0 0.05 0.1 0.15 0.2 0.25 0.3

0

1

2

3

4

5

6

 q 

 Δ
Z

 

 

c
2
=c

3
=0.1

          =0.2
          =0.3
          =0.4

Fig. 5. Modulation intensity for the carrier wave steepnessε = 0.2
and the initial phase angleθ = 0.7π as a function ofq for:
(a) p = 0.2;(b) p = 0.45.

equation is used as the theoretical model. Contrary to enve-
lope equations (the CSE and its modifications), it does not
pose any restrictions on the spectral width. Advantage is
taken of the availability of an exact solution of the result-
ing system of equations in terms of Jacoby elliptic functions.
The analytical solution demonstrates that the 3-wave system
undergoes periodic Fermi-Pasta-Ulam recurrence. The inten-
sity of nonlinear interactions can be characterised by a single
real parameter1Z.

The present parametric study suggests that conclusions
based on the linear stability analysis in general, and in partic-
ular when the CSE is used, are largely irrelevant for a 3-wave
system in which initial sideband amplitudes are small but fi-
nite. The Benjamin-Feir analysis that considers the stability
of a finite amplitude Stokes wave to infinitesimal sideband
disturbances, therefore, cannot be seen as meaningful repre-
sentation of the evolution of a nonlinear wave field. The most
significant nonlinear interactions are not necessarily related
to the linearly most unstable disturbances. The domains of
the BF instability determined either by approximate models,
such as narrow-banded CSE and the Zakharov equation, or
by an application of fully nonlinear water-wave equations,
cannot serve as indicators of the intensity of nonlinear inter-
actions of a carrier wave with finite amplitude sidebands.
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The present results indicate that for a unidirectional wave
field and initial disturbances with non-vanishing amplitudes,
the values of sidebands’ wavenumber deviation from that of
the carrierp and the carrier wave steepnessε do not uniquely
define the nonlinear evolution pattern of the whole wave sys-
tem. This pattern appears to be crucially dependent also on
the initial sideband amplitudes and often on their phases as
well.

When sideband disturbances are allowed to propagate in
directions different from that of the carrier wave, as is the
case in laboratory studies in wave basins, or in field exper-
iments, the spectral width, calculated in most experimental
investigations from the measured frequency spectrum, be-
comes even less dominant in governing the nonlinear evo-
lution process, which becomes crucially dependent not just
on the sidebands’ initial amplitude but on their directions as
well.

The results of the present exercise with a simple determi-
nistic nonlinear wave system can be useful in analysing much
more complicated random wave fields. It should be kept in
mind, however, that statistics of random water waves in labo-
ratory and in sea is determined by a large number of interact-
ing triads and quartets, each having random combinations of
phases. Thus, extreme care should be exercised in the appli-
cation of the present findings to a wider context of statistics
of random nonlinear wave fields.
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