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Abstract. We present joint probability distribution functions
of future seasonal-mean changes in surface air temperature
and precipitation for the European region for the SRES A1B
emissions scenario. The probabilistic projections quantify
uncertainties in the leading physical, chemical and biological
feedbacks and combine information from perturbed physics
ensembles, multi-model ensembles and observations.

1 Introduction

Global Climate Models (GCMs) can provide detailed predic-
tions of future climate change, solving the physical, chemical
and biological equations which describe the climate system.
However, GCMs are not perfect representations of the real
world. The size of the grid is limited by the availability of
computer resources and the representation of sub-grid scale
processes is approximate, and limited by our ability to fully
understand and measure climate processes. The consequence
of this is that predictions of the future made using climate
models are uncertain.

Model development and improvement to reduce this un-
certainty is one of the principal activities of climate change
research. Nevertheless, climate change is occurring now, and
it is incumbent upon climate modellers to provide the best in-
formation as soon as they can, to allow society to plan for the
impacts of climate change. Our goal therefore is to quantify
the uncertainty in predictions of future climate change, and
using observational constraints to assess the relative likeli-
hood for different model projections, arrive at climate pre-
dictions that can be presented in the form of probability dis-
tribution functions (PDFs). PDFs are essential to the impacts
community for risk assessment of the impacts associated
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with climate change (Pittock et al., 2001). In this study, we
concentrate on projections of surface air temperature and pre-
cipitation for the European region, work undertaken as part
of the ENSEMBLES project (Hewitt and Griggs, 2004; van
der Linden and Mitchell, 2009). Projections sampled from
these joint PDFs are available from:http://ensembles-eu.
metoffice.com/secure/RT6data230609/datafor RT6.html

It should be emphasised that the PDFs measure our uncer-
tainty in the future climate based on our current understand-
ing of the climate system and our current ability to model
and observe it. They do not represent the frequency of oc-
currence of future events, but rather the weight of evidence
supporting different possible outcomes for a one-off future
event. Hence they cannot be verified over repeated trials, in
the same way that probabilistic weather or seasonal forecasts
can be.

Section 2 introduces some of the issues in producing prob-
abilistic climate projections, and outlines the approach we
have developed to make the problem tractable. Section 3 pro-
vides more details on the methodology. Section 4 describes
probabilistic projections of temperature and precipitation for
the European region, with illustrative examples. Some of the
issues in the use and interpretation of the PDFs are discussed
in Sect. 5, while in the concluding remarks in Sect. 6 we de-
scribe how probabilistic projections could evolve in the fu-
ture.

2 Probabilistic prediction of climate change

The method is based on a Bayesian approach outlined in
Rougier (2007) and implemented by Murphy et al. (2009) to
provide climate predictions for the United Kingdom at 25 km
horizontal resolution (UKCP09). The details of the imple-
mentation are complex, mainly because of the limitations in
computer resources required to run the large ensembles of
simulations required (see below). The reader is referred to
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the existing (Murphy et al., 2007, 2009) and forthcoming
publications for a more complete description of the method
and its implementation. In contrast to the UKCP09 predic-
tions, no regional downscaling is performed, although in all
other respects the techniques used are identical. The pro-
jections described here, and provided for the ENSEMBLES
project (van der Linden and Mitchell, 2009) are therefore
made at HadCM3 (Gordon et al., 2000) spatial scales of ap-
proximately 300 km resolution.

A GCM numerically solves the equations of fluid motion
that describe the atmosphere and ocean components of the
climate system, albeit on spatial scales that generally fail to
resolve all the cloud, thermodynamic, surface, cryosphere,
biological and chemical processes that affect climate feed-
backs and determine the response of the system to external
forcing. These sub grid-scale processes are necessarily rep-
resented by approximate bulk formulae, controlled by input
parameters whose values are not precisely determined since
they do not represent things we can measure directly. Dur-
ing model development, the set of model input parameters
that give the best simulation of current climate is sought,
although due to the high number of parameters, there is as
yet no way of being certain that the “best” set of parameters
has indeed been used. Within the Bayesian framework the
spread in response resulting from this modelling uncertainty
is systematically quantified, and used to make probabilistic
predictions.

In principle, given sufficient computing resources, appli-
cation of the Bayesian methodology to the climate predic-
tion problem should be relatively straightforward. Ideally,
one would run a very large set of transient simulations of
a GCM with interactive carbon-cycle fully coupled to a dy-
namic ocean model, simultaneously perturbing all uncertain
input parameters (including forcing), in order to fully sample
uncertainties in the key climate feedback processes that in-
fluence the climate response. The resulting ensemble of pos-
sible model projections (the modelled “prior“ distribution),
when weighted according to the ability of each model ver-
sion to simulate global patterns of observed mean climate
and recent historical trends, gives the “posterior” PDFs for
future climate change. Recognizing that structurally differ-
ent climate models possess potentially different systematic
errors, one would seek to create similar “perturbed physics
ensembles” (PPE) (Murphy et al., 2004) for as large a set of
independent climate models as possible, to fully explore the
range of possible climate response.

The ideal scenario outlined above is not possible given cur-
rent computing resources, so to make the problem computa-
tionally tractable, additional steps are required that introduce
complexity to the probabilistic prediction methodology, and
additional uncertainty to the projections. Firstly, we note
that transient simulations with a dynamic ocean model re-
quire long initial spin-ups to achieve quasi-equilibrium of the
ocean and prevent drift of the model base climate. As these
spin-ups are computationally very demanding, we choose

instead to explore the spread in equilibrium response ob-
tained for a doubling of CO2 concentration, with perturba-
tions applied to parameters of the atmospheric component
only and coupling to a simple mixed-layer (“slab”) ocean
model (Williams et al., 2001). Slab-ocean GCM simula-
tions are less computationally demanding and faster to run,
allowing much larger ensemble sizes that more fully explore
the climate response. For the ENSEMBLES predictions, we
have created an ensemble of 280 1×CO2 and 2×CO2 atmo-
sphere slab-ocean simulations. Even this relatively large en-
semble is still too small to provide robust predictions for the
distribution of response, due to the large number of uncertain
input parameters. We therefore use the slab ensemble simula-
tions to construct an “emulator” (Rougier et al., 2009), a sta-
tistical representation of the GCM calculated using function-
fits to the ensemble output. The model response (and asso-
ciated error) for untried parameter combinations can be es-
timated very rapidly using the emulator, so the response for
large samples of the uncertain parameters can be used, allow-
ing robust prediction of the equilibrium PDFs.

Impact modellers however wish to assess the risks of the
effects of transient climate change, rather than those associ-
ated with the equilibrium response. A time-scaling technique
has therefore been implemented, which allows the transient
regional response to be inferred from normalized equilibrium
patterns of change (Harris et al., 2006). The local response
in some surface climate variable of interest (e.g., surface
temperature, precipitation) is assumed to be proportional to
global mean surface temperature change1Tglb(t), which is
rapidly obtained using a Simple Climate Model (SCM). The
ability to vary climate forcing in the SCM also allows us
to efficiently sample carbon cycle uncertainties and aerosol
forcing uncertainty by tuning these components of the SCM
to the response of transient GCM simulations.

Furthermore, it is not yet practicable to envisage the cre-
ation of perturbed physics ensembles for more than one
structurally independent model. Recognizing that predic-
tions could still suffer from deficiencies arising from struc-
tural errors in the model which cannot be resolved by varying
its uncertain parameters (Rougier, 2007), we have developed
a technique to include information from other GCMs of es-
timates of the additional uncertainties associated with struc-
tural errors. This approach adjusts the projections to account
for potential biases arising from structural assumptions in
HadSM3, and by combining results from perturbed physics
and multi-model ensembles, avoids exclusive reliance on re-
sults from a single model. Further details of this step, and
time-scaling, are given in the next section.

3 Elements of the methodology

The methodology used here to generate the PDFs can be bro-
ken down into seven steps. These are summarised below,
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with each labelled step corresponding to the equivalent box
in the flowchart in Fig. 1.

Box 1: Equilibrium perturbed physics ensemble

A relatively large ensemble of 280 1×CO2 and 2×CO2 sim-
ulations with the Hadley Centre HadSM3 model coupled to
a simple slab ocean (Williams et al., 2001) has been pro-
duced. In each model version, 31 uncertain parameters in the
atmosphere and sea-ice components are varied (Murphy et
al., 2004; Webb et al., 2006; Collins et al., 2010).

Box 2: Equilibrium PDFs (emulated)

The 280 member ensemble does not fully sample the re-
sponse of the model to variations in the uncertain parame-
ters, since the parameter space is so large. We therefore con-
struct an emulator (Rougier et al., 2009) for the equilibrium
response of HadSM3, trained on the 280 simulations. The
emulator can predict the model response and associated error
for any combination of parameter values, and is fast to use.
Using the emulator, we can then robustly estimate the model
response, sampling a large number of times the uncertain
parameters, using expert judgement as to how they are dis-
tributed (Murphy et al., 2004). A sample size of one million
is used in this study. Each sampled projection is weighted
by its likelihood given observed data (Box 5), and combin-
ing the projections gives the posterior PDF for equilibrium
response.

Box 3: Four transient Earth system perturbed
physics ensembles

We have produced four smaller ensembles, each with 16
members, using the fully-coupled HadCM3 version of the
model, in which the atmosphere is coupled to a dynamic
ocean model (Gordon et al., 2000). An interactive sulphate
aerosol component is always included. The ensemble mem-
bers are driven by historical forcing, followed by the A1B
SRES future forcing scenario (Nakićenovíc and Swart, 2000)
to the end of the 21st century. In each of the ensembles, per-
turbations are applied separately to: (i) the atmosphere and
sea-ice parameters, (ii) ocean model parameters, (iii) param-
eters in the sulphur-cycle component, and (iv) parameters in
the land carbon cycle (e.g., Collins et al., 2006, 2007, 2010).
Ensembles (ii) to (iv) use the standard (unperturbed) atmo-
sphere parameter settings only. Land and ocean carbon cycle
components were only included in the case of ensemble (iv).

Box 4: Simple climate model

Since transient regional PDFs are required, we implement a
time-scaling approach (Harris et al., 2006), which maps equi-
librium changes in climate variables to transient changes un-
der specified emissions scenarios. For a given set of model
input parameters the normalised response is sampled from
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Fig. 1. Flowchart showing the links between the seven components
of the methodology described in more detail in Sect. 3 for the pro-
duction of probabilistic predictions of future climate change. Boxes
in red denote observational data, boxes in yellow represent ensem-
bles of GCM simulations, and boxes in green represent statistical
and other techniques required to convert the simulations into prob-
abilistic predictions.

the emulation of the equilibrium response, and scaled by
1Tglb(t) calculated from a SCM parameterised by global
climate feedbacks estimated from the equilibrium emula-
tion. The radiative forcings (including aerosol forcing) used
to drive the SCM are diagnosed from the HadCM3 simula-
tions (Box 3). Time-scaling is validated by comparison with
equivalent transient HadCM3 responses, and the errors as-
sociated with this step are included in the scaled projections
as an additional variance. Some of this scaling error is in-
ternal variability in the GCM response that cannot be pre-
dicted by a scaling of the mean response, and the rest is lack
of fit associated with the scaling technique. The responses
of perturbed climate-carbon simulations with HadCM3, and
the C4MIP ensemble of coupled climate–carbon cycle sim-
ulations (Friedlingstein et al., 2006) are used to tune land
carbon cycle parameters in the SCM. Likewise the response
of models in the CMIP3 archive (Meehl et al., 2007) and
the HadCM3 ocean perturbed physics ensemble contribute
to tuning of SCM parameters that control ocean heat uptake.
By sampling the land carbon cycle and ocean parameterisa-
tions in the SCM, we can efficiently sample uncertainties in
the main global-scale feedbacks. Local climate-carbon feed-
backs are therefore not modelled here, although for the Eu-
ropean region they are less important than in regions such as
the Amazon, where forest dieback and modification of local
climate have been obtained (Cox et al., 2000).

Box 5: Observations

A weighting scheme is used that estimates the likelihood of
each emulated version of HadSM3, based on ability to repro-
duce patterns for a large number of climate observables. The
variables selected are observed seasonal-mean climate for
sea surface temperature, land surface air temperature, precip-
itation, pressure at mean sea level, shortwave and longwave
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radiation at the top of the atmosphere, shortwave and long-
wave cloud radiative forcing, total cloud amount, surface
fluxes of sensible and latent heat, and latitude-height distri-
butions of zonally averaged atmospheric relative humidity.
The emulated equilibrium responses for the 48 observed cli-
mate fields (12 variables for 4 seasons) are used in the likeli-
hood expression to estimate relative weights associated with
the different parameter combinations. Our expression for
likelihood, Eq. (3.9) in Murphy et al. (2007), results from
a Bayes linear analysis (Goldstein and Wooff, 2007) where
uncertain quantities are represented in terms of means and
a covariance matrix, thus taking into account relationships
between variables. Likelihood weights are calculated in a re-
duced dimension space, with a single weight being assigned
for each model variant for all predicted variables (Murphy
et al., 2009). Discrepancy (Box 6 below) between struc-
turally different GCMs implies an additional modelling un-
certainty. This is included in the likelihood weighting as an
additional variance, and helps prevent poorly modelled vari-
ables from overly constraining the distribution. Weights are
also readjusted according to the ability of the scaled tran-
sient projections to reproduce historical trends in four large-
scale temperature variables (Braganza et al., 2003), which
together explain much of the variance in spatiotemporal re-
sponse (Stott et al., 2006). The historical trends used are:
(i) global mean temperature, (ii) the land-ocean temperature
difference, (iii) the inter-hemispheric temperature difference,
(iv) the north-south temperature gradient in Northern Hemi-
sphere mid-latitudes. Uncertainty in the magnitude of past
climate forcing is accounted for in this step through the SCM
(Box 4).

Box 6: Other models

Projections performed with the HadSM3 version with the
“best” possible set of input parameters will still possess
residual error (often termed “discrepancy”, e.g., Rougier,
2007) compared to both the observed past climate, and un-
observed future climate. This additional uncertainty should
be included in the projections. Discrepancy is a prior input
to the statistical framework used to provide the projections,
and should be calculated (as far as possible) independently
of the observations used to weight them. Here we assume
that structural differences between independent model pro-
jections in the CMIP3 archive (Meehl et al., 2007) provide
reasonable a priori estimates of possible structural errors be-
tween HadSM3 and the real world. To obtain these “best”
model residual errors, we search across the HadSM3 pa-
rameter space for the set of parameters that maximises the
likelihood of reproducing the emulated climate and response
to CO2 doubling for each of the CMIP3 models. These
estimates are made using the equilibrium simulations only.
The historical component of discrepancy increases the uncer-
tainty associated with comparisons between simulated past
climates and observations, and therefore affects the weights

applied to emulated projections from different parts of pa-
rameter space. The future component of discrepancy can al-
ter the projected values and increase the spread in the poste-
rior PDFs.

Box 7: Time-dependent regional PDFs

Sampling of the equilibrium weighted posterior distributions
(Box 2) is performed to simultaneously predict the nor-
malised local equilibrium response, and associated global
climate feedbacks, which are used to drive the SCM. The
predicted global temperature response1Tglb(t) is combined
with the local response to give the scaled projection. Un-
certainty in response resulting from incomplete knowledge
of the feedbacks between climate and the land carbon cycle
is included by tuning components of the SCM to 24 alter-
native realisations obtained from more complex coupled cli-
mate carbon-cycle GCM simulations (Box 4). Carbon cycle
uncertainty is thus accounted for through the global mean
temperature response alone. The final PDFs are obtained by
combining large samples of projections, with adjustment of
the weights according to skill in predicting historical trends
(Box 5).

Our methodology also allows us to predict the relative
contributions of different components of uncertainty to the
overall spread of the final PDFs. These include contributions
from natural variability, model parameter uncertainty, struc-
tural uncertainty, time-scaling, and carbon cycle uncertainty.
Parameter uncertainty, dominated by atmospheric process
uncertainty, generally provides the largest contribution al-
though the other components all contribute significantly. No
one single source of uncertainty dominates the total uncer-
tainty. Further discussion of the sources of uncertainty in the
PDFs can be found in Annex 2 of Murphy et al. (2009).

4 Probability distribution functions for Europe

The method for obtaining the equilibrium PDFs is illustrated
in Fig. 2, which shows equilibrium predictions for winter
mean temperature for the large Northern European region
(defined in Giorgi and Francisco, 2000) for a doubling of
CO2. The output from the HadSM3 ensemble is used to train
an emulator to map the HadSM3 input parameter values to
the prediction variable in question. This allows an estimate
of the prior distribution of the North European temperature,
based on assumptions about the distribution of parameter val-
ues, determined in consultation with modelling experts (Mur-
phy et al., 2004). In Annex 2 of Murphy et al. (2009), it is
shown that the posterior PDFs for UK climate change are rel-
atively insensitive to reasonable variations in assumptions for
the input parameter distributions. This is because the uncer-
tainty represented by the relatively wide prior is reduced by
weighting the ensemble according to the observational tests
described in step 5 above. The mean of the distribution may
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Fig. 2. Equilibrium probability distributions functions for winter
surface temperature change for the Giorgi-Francisco (2000) North-
ern Europe region, following a doubling of CO2 concentrations.
The green histogram (labelled QUMP) corresponds to the 280 equi-
librium HadSM3 simulations used to construct a statistical emula-
tor for this response. The red curve (labelled prior) is obtained from
a large sample of emulated responses and is the prior distribution
for this climate variable. The blue curve (labelled weighted prior)
shows the effect of applying observational constraints to the prior
distribution. The asterisks show the positions of our best emulated
values of the 12 CMIP3 multi-model members and the arrows quan-
tify the discrepancy between these best emulations and the actual
multi-model responses. These discrepancies have a broadening ef-
fect on the PDFs, and can shift the mean of the posterior distribution
(black curve) relative to the weighted prior.

be shifted and the uncertainty increased by including the dis-
crepancy term.

PDFs of transient seasonal-mean changes in surface air
temperature and precipitation have been calculated using the
techniques described above for the 2.5◦ latitude by 3.75◦

longitude HadCM3 grid boxes shown in Fig. 3, and for the
aggregate regions shown in Fig. 4. The aggregate regions
include 16 European river basins defined by ENSEMBLES
partners, the 8 so-called “Rockel” regions of Europe defined
for the PRUDENCE project (Christensen and Christensen,
2007), and the two Giorgi-Francisco regions covering Europe
(Giorgi and Francisco, 2000). The PDFs represent changes
in 20-year average climate for decadal steps starting from the
period 2010–2029 and finishing at 2080–2099, expressed as
anomalies computed with respect to a 1961–1990 climatol-
ogy period. The distributions are conditional on the SRES
A1B scenario of future emissions and represent a quantifica-
tion of the uncertainty associated with major known physical,
chemical and biological feedbacks, constrained by observa-
tions of the climate system.

Figures 5, 6 and 7 show examples of the formats in which
such PDFs can be presented; in this case the distributions are
for the Eastern Spain grid box. The plumes in Fig. 5 show

the evolution of selected percentiles of the marginal proba-
bility distributions for temperature and precipitation through
the 21st century, in response to forcing under the A1B sce-
nario. The term “marginal” here takes its usual meaning,
e.g., the marginal temperature distribution is obtained by in-
tegrating over all possible values of precipitation in the joint
probability distribution. Figure 6 shows two possible repre-
sentations of the joint distribution, in this case for the sum-
mer response in Eastern Spain for the period 2080–2100. In
Fig. 6a 10 000 sample points, drawn from the joint distribu-
tion estimated using the methodology described in Sect. 3,
are presented as a scatter plot. Each point can be treated as
equally likely, with their density representing the underly-
ing distribution. The PDFs produced for the ENSEMBLES
project for European climate change, are supplied as sample
data in this form. The use of 10 000 points is a compromise
and may not give a particularly smooth picture of the PDF:
many more sample points are required for this.

Analysis of the extreme tails of the distributions shows
they can be sensitive to the statistical assumptions of the
methodology (Murphy et al., 2009). This implies our con-
fidence for points in the extreme tails is less than that for
sample points in the central, more likely part of the distribu-
tions. For this reason the sample data has been “Winsorised”
at the 1st and 99th percentiles (see Sect. 5 below). The points
coloured red in Fig. 6a correspond to the top and bottom 1%
of the marginal distributions. Figure 6b presents the same
data as Fig. 6a, but in the form of a contour plot. Use of
a contour plot is recommended for presentation of results,
since attention is drawn to the region of high probability, un-
like the scatter plot presentation in Fig. 6a, where attention
is more directed to the extreme, unlikely parts of the joint
distribution. Correlation between the two variables is evi-
dent for some grid boxes and seasons. For example, larger
projected increases in summer temperature in Eastern Spain
are associated with higher probabilities for reduced rainfall.
Such relationships between variables reflect the response of
the climate system to forcing explored by the ensembles of
climate models used.

Figure 7 gives the marginal PDFs and CDFs (cumulative
distribution function) corresponding to the joint distribution
for summer temperature and precipitation change for the pe-
riod 2080–2100 in Eastern Spain, shown in Fig. 6. The red
curves, corresponding to distributions reconstructed from the
Winsorised sample data, are compared with distributions in
green obtained directly from the methodology without sam-
pling. Winsorisation, by definition, has no impact on values
below the 1st, and above the 99th percentiles (see also Sect. 5
below). The apparent peaks in the red curves do not represent
enhanced relative probabilities for these values, but rather the
integrated probabilities for obtaining changes below the 1st
or above the 99th percentiles. The 10, 50 and 90% percentile
values, obtained directly from the CDF, are marked on the
Figure. For comparison, Fig. 8 shows projections for win-
ter for a typical location in North East Europe, the Gulf of
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Fig. 3. The European region for which probabilistic projections have been provided as part of the ENSEMBLES project. All 106 HadCM3
land grid points as far east as Moscow and including Turkey have been selected and named. Southern Italy and the Mediterranean islands
are not included since they are classed as ocean points in this model.

Finland. In this case, there is a positive correlation between
increasing projected temperature and increased precipitation.

Maps of 10, 50 and 90th percentiles for summer and win-
ter surface air temperature and precipitation change by the
end of the century are shown in Figs. 9 and 10. Median
temperature changes vary substantially with location, and are
largest in the Mediterranean region in summer and in north
east Europe in winter. Note that the range of uncertainty, as
measured here by the 10–90% range, is large for this time
period: as much as 10 degrees Celsius in some locations.
This is due to a combination of factors; parameter uncertainty
in HadCM3, structural uncertainty from the CMIP3 ensem-
ble, carbon cycle feedback uncertainty, internal variability
and time-scaling uncertainty. No one source of uncertainty
dominates (Murphy et al., 2009).

For the predictions of changes in precipitation, the canon-
ical signals of summer Mediterranean drying and winter
Northern Europe wetting are evident, but again the uncer-
tainty range can be wide. For many grid boxes there are sig-
nificant probabilities of both drier and wetter future climates
and this may be important for impact studies. For some lo-
cations in Southern Europe, the PDFs of projected precipita-

tion change show significant probabilities for large increases,
when expressed as percentages. Care should be taken how-
ever in interpreting these percentages changes when the
present-day climatological precipitation (in the GCMs) is
small.

5 Use of PDFs

Some aspects of the data describing the European predictions
which arise predominantly because of practical considera-
tions should be borne in mind when interpreting the data and
using them to drive impact models.

1. The 10 000 points are random, equally-likely sample
values from the joint PDF for future temperature and
percentage precipitation change, relative to the 1961–
1990 baseline period. Actual changes may be con-
structed by adding these changes to observed climatol-
ogy for this baseline period. For some applications it
may be possible to use fewer points to characterise the
distribution, but the smaller the sub-sample, the greater
the chance of the distribution diverging from the fully
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Fig. 4. HadCM3 representation of the aggregate European regions for which probabilistic projections are supplied.

sampled population of 10 000. A simple test to check
the robustness of sub-sampling would be to test the con-
clusions of the impact study using different sub-sets of
the sample data.

2. The extremes percentiles of the PDFs are more sensi-
tive to assumptions in our methodology than more mod-
erate percentiles. Therefore, greater confidence can be
placed in the sample points which lie toward the centre
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Figure 5. Evolution of the median (white curve) and the 50, 60, 70, 80 and 90% confidence 

intervals for: (a) 20 year mean summer surface temperature change for the Eastern Spain grid 

point, (b) percentage change in 20 year mean summer precipitation for Eastern Spain. 
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Figure 6. (a) Scatter plot of 10,000 sampled data points from the joint PDF of surface 

temperature change and percentage precipitation change for the summer season for Eastern 

Spain, for the period 2080-2099 relative to the 1961-1990 baseline period. Points that lie in 

the top and bottom 1% of the marginal distributions are shown in red. (b) Contours of the 

Winsorised sampled joint probability distribution function in (a). 
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Fig. 5. Evolution of the median (white curve) and the 50, 60, 70, 80 and 90% confidence intervals for:(a) 20 year mean summer surface
temperature change for the Eastern Spain grid point,(b) percentage change in 20 year mean summer precipitation for Eastern Spain.
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Fig. 6. (a)Scatter plot of 10 000 sampled data points from the joint PDF of surface temperature change and percentage precipitation change
for the summer season for Eastern Spain, for the period 2080–2099 relative to the 1961–1990 baseline period. Points that lie in the top and
bottom 1% of the marginal distributions are shown in red.(b) Contours of the Winsorised sampled joint probability distribution function in
(a).

of the distribution, compared with the tails. It is there-
fore recommended that the 10th and 90th percentiles be
used as a measure of the spread of the PDFs. Proba-
bilities between 1 and 9%, and 91 and 99%, are to be
used with caution as these are less robust. The level of
robustness will vary according to variable, season and
location (with temperature projections generally more
robust than precipitation). Results concentrating on im-
pacts of climate change which involve the more extreme
percentiles of the distributions should be used with cau-
tion.

3. The sample points are “Winsorised” at the 1st and 99th
percentiles. i.e. points which in an initial calculation
lie below the 1st percentile of the distribution are re-
set to the 1st percentile value, and points which initially
lie above the 99th percentile are reset to the 99th per-
centile value. This is done because the extreme per-
centiles on the tails of the distributions contain an in-
creasingly important statistical component compared to
modelling uncertainty, and are not robust to variations
in methodological assumptions. Since the inherent im-
precision of estimates for the extreme percentiles leads
to a high risk of wrong decisions by impact modellers
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Fig. 7. PDFs and CDFs of surface temperature change and percentage precipitation change for the summer season for Eastern Spain for the
period 2080–2099, relative to the 1961–1990 baseline period.(a) The marginal PDF and CDF for surface temperature change (red curves),
corresponding to the Winsorised distribution in Fig. 6. The smooth PDF (green curve) is computed without Winsorisation from the original
10 000 sample of Gaussian distributions for mean scaled response. The 10, 50 and 90% percentile values are indicated on the CDFs.(b) The
marginal PDF and CDF for percentage precipitation change (red curves) corresponding to the distribution in Fig. 6, with the smooth PDF
computed without Winsorisation given in green.

and policy makers (Berthouex and Hau, 1991), we Win-
sorise the data and also recommend that risk-based de-
cisions be based on lower percentiles. Larger ensem-
bles of GCM simulations, and better statistical tech-
niques would allow more precise determination of the
tails of the PDFs, but current understanding does not
yet allow robust prediction. The simple Winsorisation
applied here to the marginal distributions neglects cor-
relations between variables. It gives “spikes” in the tails
when plotting histograms of the 10 000 sample points
(Fig. 7), and can lead to rectangular boxes when con-
touring the extreme percentiles of the joint PDFs. How-
ever, it does not alter the 1st to 99th percentiles of
the marginal distributions compared to the original es-
timates, so robust impact analyses that rely on the cen-
tral percentiles will be little affected. In any visuali-
sation for impact analysis, restriction of contours to the

less extreme percentiles (e.g., 90–95%) will prevent dis-
traction from rectangular contours corresponding to this
small fraction of data, and is recommended, since confi-
dence in the extreme tails of the distributions is reduced.

4. Sample data for individual grid points cannot be aver-
aged across different locations to give projections for
larger regions. This is due to limitations in computer
resources, which meant it was possible to process tem-
perature and precipitation for all seasons for only a few
grid points at a time. Since statistical error covariances
are only correctly handled within a single batch, some
of the multivariate information required to sample data
to produce PDFs consistently across different locations
has therefore been lost. However, probabilistic projec-
tions for aggregate regions are possible if the methodol-
ogy is applied within a single calculation to predefined
areal mean GCM data. Projections have therefore also
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Figure 8. Evolution of the median (white curve) and the 50, 60, 70, 80 and 90% confidence 

ranges for: (a) 20 year mean winter surface temperature change for the Gulf of Finland grid 

point; (b) percentage change in 20 year mean winter precipitation for the Gulf of Finland; (c) 

contours of the Winsorised sampled joint probability distribution function for surface 

temperature change and percentage precipitation change for the winter season for the Gulf of 

Finland, for the period 2080-2099 relative to the 1961-1990 baseline period. 
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Fig. 8. Evolution of the median (white curve) and the 50, 60, 70,
80 and 90% confidence ranges for:(a) 20 year mean winter sur-
face temperature change for the Gulf of Finland grid point;(b) per-
centage change in 20 year mean winter precipitation for the Gulf
of Finland;(c) contours of the Winsorised sampled joint probability
distribution function for surface temperature change and percentage
precipitation change for the winter season for the Gulf of Finland,
for the period 2080–2099 relative to the 1961–1990 baseline period.

been produced for the 26 aggregate regions in Fig. 4 re-
quested by ENSEMBLES Work Package 6.2, including
the two Giorgi and Francisco European regions (Giorgi
and Francisco, 2000).

5. Climate projections for the United Kingdom have re-
cently been published using a similar methodology
(Murphy et al., 2009). An ensemble of Regional Cli-
mate Model (RCM) projections at 25 km horizontal res-
olution was also produced for the UK region. This en-
abled an additional downscaling step, allowing proba-
bilistic projections at 25 km scales that better represent
rainfall and orographic, coastal and other local effects
in the projections. It is recommended that impact stud-
ies for the UK region use data from this project, avail-
able at:http://ukcp09.defra.gov.uk/. The evidence from
the UKCP09 regional downscaling analysis is that the
large-scale GCM response for surface temperature is
more representative of the response at finer scales than
it is for precipitation. In the case of winter precipita-
tion there is an enhancement of response at RCM scales
compared to the GCM simulations for many coastal lo-
cations in the UK, while in the more mountainous re-
gions of Scotland and Wales, the fine scale response is
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Fig. 9. Maps of the 10%, 50% (median) and 90% percentiles of the
PDF for: (a) European surface temperature change;(b) European
percentage precipitation change, for the winter season for the period
2080–2099 relative to the 1961–1990 baseline period.

reduced relative to the GCM response. These differ-
ences reflect modification of the response by surface to-
pography, and locally generated internal variability at
finer scales. The European projections described here
are performed at scales of the order of∼300 km, and
without further work to implement regional downscal-
ing, we cannot reliably infer the distributions of re-
sponse for scales finer than this.

6 Discussion

The PDFs described here are generated using one implemen-
tation of an algorithm to produce such probabilistic predic-
tions. The distributions are therefore conditional on the as-
sumptions made in that implementation. Nevertheless, every
attempt has been made to sample a wide range of uncertain-
ties in climate feedbacks in a systematic way. The PDFs are
constrained by a number of different types of observations
of the climate system (and account for uncertainties in those
observations), and the issue of structural uncertainty is ad-
dressed in a transparent way using the CMIP3 model archive
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Fig. 10. Maps of the 10%, 50% (median) and 90% percentiles of
the PDF for: (a) European surface temperature change;(b) Euro-
pean percentage precipitation change, for the summer season for
the period 2080–2099 relative to the 1961–1990 baseline period.

(Meehl et al., 2007). Murphy et al. (2009) (Annex 2) show
that the posterior distributions for UK variables are relatively
insensitive to variation in some of the key assumptions made
in the production of the PDFs. In addition, near-by grid
points tend to show similar spreads (i.e. there is a spatial
smoothness) which lends confidence to the projections.

It is expected that in the future, different implementations
of different probabilistic projection algorithms will be pro-
duced, rather like new improved GCMs are continually pro-
duced by modelling centres. In principle we would expect
this to reduce uncertainty. For example, the use of time-
scaling of equilibrium changes to produce transient PDFs
would not be used in future endeavours, thus eliminating
a relatively significant component of the total uncertainty.
Also, as GCMs are developed and improved we would expect
the discrepancy term to be reduced, as improved methods
of representing climate processes in models reduces struc-
tural errors with respect to the real world. Note, however,
that our estimate of discrepancy does not represent the ef-
fects of errors common to all models, so there is also the
possibility that fixing common structural deficiencies could

reveal new aspects to projections of climate change which
increase our estimates of uncertainty. It is also possible that
inclusion of additional Earth system feedback processes in
models could increase the spread of projected outcomes. For
example, we have not yet included the uncertainty associ-
ated with the representation of processes in the ocean part of
the carbon cycle, although these are less likely to be a sig-
nificant source of uncertainty compared with the terrestrial
component (Friedlingstein et al., 2006). Neither have we
included feedbacks associated with, for example, methane
hydrate feedbacks or rapid destabilisation of the Greenland
Ice Sheet, because understanding of these processes is not
yet sufficiently advanced to allow them to be represented in
model projections.
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