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Abstract. Multi-objective optimization was used to calibrate
a regional surface water-groundwater model of the Yaqui
Valley, a 6800 km2 irrigated agricultural region located along
the Sea of Cortez in Sonora, Mexico. The model simu-
lates three-dimensional groundwater flow coupled to one-
dimensional surface water flow in the irrigation canals. It
accounts for the spatial distribution of annual recharge from
irrigation, subsurface drainage, agricultural pumping, and
irrigation canal seepage. The main advantage of the cal-
ibration method is that it accounts for both parameter and
model structural uncertainty. In this case, results show that
the effect of including the process of bare soil evaporation
is significantly greater than the effects of parameter uncer-
tainty. Furthermore, by treating the different objectives in-
dependently, a better identification of the model parameters
is achieved compared to a single-objective approach, since
the various objectives are sensitive to different parameters.
The simulated water balance shows that 15–20% of the water
that enters the irrigation canals is lost by seepage to ground-
water. The main discharge mechanisms in the Valley are
crop evapotranspiration (53%), non-agricultural evapotran-
spiration and bare soil evaporation (19%), surface drainage
to the Sea of Cortez (15%), and groundwater pumping (9%).
In comparison, groundwater discharge to the estuary was rel-
atively insignificant (less than 1%). The model was further
refined by identifying zonalKv andKh values based on a
spatial analysis of the model residuals.

Correspondence to:G. Schoups
(gerrit@stanford.edu)

1 Introduction

Calibration of hydrologic models consists of an iterative pro-
cess during which the model parameters are adjusted such
that the model better mimics the observed dynamics of the
system under consideration. Due to the time-consuming
nature of this process, automated calibration methods have
been developed for finding optimal parameter values that
best fit the data. The match between simulated and observed
variables is usually quantified by a single objective function,
such as the root mean square error (RMSE). The calibration
is then cast as an optimization problem in which parameter
values are sought that minimize the objective function. These
optimization algorithms typically perform a local search of
the parameter space, starting from an initial estimate and
leading to a local optimum (e.g., Poeter and Hill, 1998; Do-
herty, 2000). In addition, global algorithms have been devel-
oped that search the entire parameter space and hence result
in globally optimal parameter values (e.g., Duan et al., 1992;
Vrugt et al., 2003a).

In many applications it is desirable that the model repro-
duces different types of observations (e.g., water levels and
drainage rates). In that situation, calibration of the model
to one data type does not guarantee successful simulation of
the other data types. Calibration to multiple targets is typ-
ically done by assigning weights to the different types of
data and combining them into a single objective function for
parameter optimization (Hill, 1998). However, the subjec-
tive prior selection of weights typically affects the calibrated
parameter values. In that case, the single-objective calibra-
tion can be repeated using different values for the weights
in each optimization run (Madsen, 2003), although this ap-
proach is computationally very intensive. Alternatively, a
full multi-objective optimization is conducted that identifies
the entire optimal set of non-dominated or Pareto solutions
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Figure 1 

 

Fig. 1. Location of the Yaqui Valley study area, the Yaqui Irrigation District, and extent of the groundwater model.

within a single optimization run (Gupta et al., 2003). These
Pareto solutions explicitly represent trade-offs between the
various objectives. The advantage is that no prior weights
need to be assigned to the different objectives, since they
are treated independently (Schoups et al., 2005). In addi-
tion, the multi-objective approach includes more information
about the hydrologic system in the parameter identification
process, thereby potentially leading to better estimates of the
parameters (Boyle et al., 2000). On the other hand, signifi-
cant trade-offs in fitting two or more objectives may indicate
an error in the model structure (Refsgaard and Henriksen,
2004), for example a relevant physical process may not be
accounted for or it may be wrongly parameterized.

This paper discusses the application of a multi-objective
global optimization approach to the calibration of a regional
surface water-groundwater flow model. The study area is the
6800 km2 Yaqui Valley in the state of Sonora, one of the most
important agricultural regions in Mexico. Irrigated agricul-
ture in the Yaqui Valley has since 1942 relied on the supply of
water from surface reservoirs. A recent prolonged eight year
drought (1996–2004) however has drawn down these reser-
voir levels below sustainable levels, resulting in severe cuts
in water supply and widespread fallowing (Addams, 2004).
For the first time in 40 years, due to the effects of the drought
on reservoir depletion, wheat was not grown in Yaqui Valley,
which is the center for the “Green Revolution” for wheat in

Mexico. Due to uncertainties in the future supply of surface
water for irrigation, farmers in the Yaqui Valley will depend
more and more on groundwater as an additional or even pri-
mary source of irrigation water.

The integrated surface water-groundwater model pre-
sented here revises the original model of Addams (2004) and
serves as a first step to developing a comprehensive water
management plan for the region. Unlike previous hydrogeo-
logic research in the Yaqui Valley (Diaz, 1995; Islas, 1998;
Steinich and Chavarria, 2000), the flow model presented here
incorporates all known spatially distributed stresses on the
system, including pumping, drainage, irrigation canal seep-
age, and field irrigation losses (Addams, 2004). Using hy-
draulic heads, canal seepage rates, and drainage volumes, a
multi-objective calibration problem is formulated and solved
using the recently developed Multi-Objective Shuffled Com-
plex Evolution Metropolis (MOSCEM-UA) global optimiza-
tion algorithm of Vrugt et al. (2003b).

The paper is organized as follows. First, the study area,
hydrology, and hydrogeology of the Yaqui Valley are briefly
described. The conceptual model for groundwater flow is
introduced, and the methods used for its initial parameter-
ization are discussed. This is followed by an introduction
to the calibration algorithm and the available measurements
used to calibrate the model. Next, the results of applying
the multi-objective optimization algorithm are discussed in
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Figure 2 
Fig. 2. Conceptual model of the Yaqui Valley surface water-groundwater system.

detail, highlighting the advantages of this approach com-
pared to more traditional methods and summarizing insights
into the regional flow system of the Yaqui Valley.

2 Methods

2.1 Study area: water resources and hydrogeology

Figure 1 shows the location of the Yaqui Valley, which lies
between the coastal plain of the Sea of Cortez to the south-
west and the Sierra Madre Mountains to the northeast. The
climate is semi-arid with an average annual precipitation
of ∼300 mm, most of it falling in the summer from June
to September. Annual potential evapotranspiration averages
2000 mm. Most of the farmland in the Valley is part of the
Yaqui Irrigation District (Fig. 1). The dominant crop is win-
ter wheat, which is grown from November to April, and is
irrigated using a combination of surface water and ground-
water. The surface water system consists of three reservoirs
in series on the Yaqui River, the largest and furthest down-
stream being the Oviachic reservoir (Fig. 1). Surface water
releases from Oviachic reservoir are conveyed to the Yaqui
Irrigation District by means of open unlined canals. Along
the way, water is diverted by the various agricultural water
management units, known as modules, that make up the Ir-
rigation District. Water is further distributed to individual
fields within each module by means of a network of sec-
ondary irrigation canals. Almost 600 wells have also been
installed (Fig. 1) to provide additional water for crop pro-
duction, although these are never all active in the same year.
Some of the wells are privately operated whereas others are
managed by the District. Throughout the Irrigation District,

a drainage network has been installed to drain surplus irriga-
tion water from fields out to the Sea of Cortez. These drains
are primarily open drainage ditches, with a small percentage
of subsurface drainage pipes, at a depth of 1 to 2 m below the
land surface. Most of the soils in the valley are clayey verti-
sols with organic matter contents less than 1% (Lobell et al.,
2002).

The Yaqui Valley coastal aquifer system is primarily
composed of alluvial fill consisting of Quaternary deposits
that include consolidated and unconsolidated gravels, sands,
clays, and evaporite deposits (Gonzales and Marin, 2000).
The groundwater system can be conceptually divided into
three layers, each of which has a particular hydraulic function
(Fig. 2). The first 10–20 m below the surface constitute the
shallow aquifer, which receives irrigation-related recharge
from canal seepage and field-level irrigation losses. Part of
the irrigation return and water from the seasonally rising lo-
cal water table is intercepted by the network of 1 to 2 m deep
agricultural drains. Another part is removed by the native
vegetation around the canals (phreatophytes) or it evaporates
from the shallow water table. The remaining water either
flows laterally toward the coast through the 10 to 20 m thick
water table aquifer, where it discharges beneath the estuary,
or it flows downward. Vertical flow is governed by the under-
lying discontinuous confining layer with a thickness ranging
from 5 to 80 m. In some locations it consists of clay and in
other regions it is rich in sand and gravel, so that overall it
exhibits a high degree of variability in texture and hydraulic
conductivity. Finally, the deep aquifer represents the zone
screened by most production wells in the region. Generally, it
lies 30 to 100 m below the surface, ranging in thickness from
30 to 170 m. The aquifer consists of Quaternary alluvium
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Figure 3 

 

Fig. 3. Locations of wells with well log and specific capacity data used to define model layers and hydraulic properties. The model grid is
also shown.

and underlying older unconsolidated Tertiary deposits. De-
pending on the magnitude of the contrast in hydraulic con-
ductivity with the overlying confining layer, the deep aquifer
behaves either as a confined, semi-confined, or unconfined
system. Addams (2004) provides more details on how layer
geometry was determined for modeling purposes.

An estimate of the available storage in the deep aquifer
under the Irrigation District is made by summing the avail-
able storage under confined conditions (above the top of the
screened wells), assuming a specific storage of 10−4 m−1,
plus the remaining storage under unconfined conditions, as-
suming a specific yield of 0.2 and counting 2/3 of the aquifer
thickness. This results in a value of approximately 100 000
MCM (Million Cubic Meters), which is about 16 times the
available storage in the Yaqui reservoir system (6000 MCM).
In addition, the supply of surface water is variable and uncer-
tain as was evident during the recent drought. Hence, avail-
able water in the deep aquifer will likely play a central role
in a sustainable water management plan in the Yaqui Val-
ley. Historically, groundwater use has been limited due to
the availability of cheap surface water and the relatively high
cost of pumping.

2.2 Hydrologic model

In this section, we discuss the concepts and methods used
to simulate flow in the integrated surface water-groundwater
system of the Yaqui Valley. For further details we refer to
Addams (2004). Special attention is paid to representation

of the near-surface hydrologic processes, such as recharge,
evaporation, and near-surface drainage, and to the coupling
between the surface water and groundwater systems. To re-
duce uncertainty, we independently estimate as many param-
eters as possible (e.g., recharge), and then find optimal values
for the remaining parameters.

The groundwater component of the flow model was repre-
sented using the transient 3-D groundwater flow equation,
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whereKx,Ky , andKz are hydraulic conductivity values in
the x, y, and z direction [L/T], h is hydraulic head [L],
t is time [T], W is a source-sink term [1/T] representing
recharge, pumping, evaporation, or drainage, andSs is spe-
cific storage [1/L], which when multiplied by the saturated
thickness gives the confined aquifer storage coefficient,S[-],
or the unconfined aquifer specific yieldSy [-]. Groundwater
flow was simulated using Modflow-2000 (Harbaugh et al.,
2000). The surface water component was simulated using a
routing model for flow in the main irrigation canals, includ-
ing a sink-source term representing water exchange between
the canals and the groundwater system (Prudic et al., 2004).

2.2.1 Spatial and temporal discretization

The lateral boundaries of the model domain are defined by
the contact between the alluvial deposits and bedrock in the
northwest, the Sea of Cortez near the shoreline in the south-
east, and nearly stationary groundwater flow lines in the
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northeast and southwest. The model domain was discretized
into a regular finite difference grid of three layers, each con-
taining 60 rows and 70 columns, resulting in a total of 12 600
cells with an area of 2×2 km2 each. This level of horizon-
tal discretization is deemed sufficient, since the interest is in
characterizing the regional flow system rather than account-
ing for flow near individual wells. Cell thicknesses range
from 5 to 170 m. The grid was oriented at a 25◦ azimuth
angle to align it with the principal direction of groundwater
flow from northwest to southeast. There were 5,064 active
cells within the model boundaries shown in Fig. 1.

In the vertical direction, the three layers represented the
shallow aquifer, confining layer, and deep aquifer as dis-
cussed earlier. The top of the first layer coincides with the
land surface elevation, which was determined from a Digi-
tal Elevation Model (DEM) and a paper elevation map ob-
tained from the National Water Commission (CNA) in Mex-
ico. The bottom of the first layer, which is also the top of
the second layer, was estimated by interpolating elevations
from selected well logs (Fig. 3) each of which exhibits a
change from coarse-grained to fine-grained material. Sim-
ilarly, the top of the third layer corresponds to a transition
from fine-grained to coarse-grained material observed in well
logs. This transition also often coincided with the top of the
well screen. Finally, the thickness of the third layer was de-
fined as twice the well screen lengths, giving thicknesses of
approximately 30 to 170 m. As such, the third layer rep-
resents the approximate aquifer thickness of the productive
aquifer material, rather than the total permeable thickness,
which extends deeper as evidenced by geophysical measure-
ments (Steinich and Chavarria, 2000).

The calibration period extends over 24 years, starting in
October 1973 and ending in September 1997, corresponding
to crop years 1974–1997. This period was selected for cal-
ibration because it covers a long record of observed aquifer
head data, including periods of increased groundwater pump-
ing, as well as a period of measured rates of agricultural
drainage (1988–1997). Since our primary interest is in the
long-term response of the groundwater system, the entire
simulation period was discretized into 24 annual stress pe-
riods for which average annual boundary conditions were
specified. Each stress period was divided into 10 time steps,
using a fixed time step multiplier equal to 1.2. At the start of
each annual stress period the initial time step in the model is
initially on the order of a week and increases each time step
by a factor of 1.2 throughout the year. The model was tested
with much smaller time steps (using initial time steps less
than 1 s) and essentially the same results were obtained for
the simulated water balance and aquifer heads. In addition,
water balance errors were always less than 0.01%. There-
fore, the degree of temporal discretization was sufficiently
accurate and led to reasonable computational times for the
3000 calibration simulations.

2.2.2 Initial conditions

Initial values for hydraulic heads were estimated by running
the model at steady-state using time-averaged boundary con-
ditions for the period 1972–1974 when data show that heads
in the deep aquifer, pumping rates, and reservoir releases
were all relatively constant. The head distribution from the
steady-state model was then used as initial condition for the
transient run from 1974 to 1997.

2.2.3 Irrigation, crop ET, and recharge

Recharge from field-scale irrigations is independently esti-
mated using a mass-balance calculated each year and for
each module in the Irrigation District,

R = SW +GW − ETc, (2)

whereR is annual recharge [L/T],SWis surface water deliv-
ery to the module (includes conveyance losses during trans-
port of water from the main irrigation canals to the fields)
[L/T], GW is irrigation using groundwater [L/T], andETc
is annual crop ET [L/T]. Annual rates of surface-water irri-
gation delivered to the entire Yaqui Irrigation District were
distributed over the modules assuming that the spatial distri-
bution of surface-water allocation was the same as that dur-
ing the period 1996–1999 when module specific data were
available. Annual groundwater pumping rates were avail-
able for each well throughout the entire calibration period.
Total groundwater irrigation within each module was esti-
mated by calculating total pumping from all wells located
within that module, excluding those wells that discharge di-
rectly into the main irrigation canals. Finally, district-wide
crop ET was estimated from annual crop acreage data and
local crop water demand values (Addams, 2004). The main
crop is winter wheat (50% of planted acreage), but a variety
of other crops are grown as well, including soybeans, maize,
cotton, safflower, and various vegetable crops. Estimates of
annual consumptive use for these crops were obtained from
local sources (CNA; Ortiz-Monasterio, personal communi-
cation, 2001). The total crop ET was then distributed over
the modules assuming the same spatial distribution as ob-
served for the period 1996–1999. Note that the recharge val-
ues calculated with Eq. (2) include recharge from irrigation
water applied at the field-scale, as well as conveyance losses
through the secondary irrigation canals, which distribute wa-
ter from discharge points on the main irrigation canals to
the fields. Average annual volumes of surface-water use,
groundwater use, and crop water demand (consumptive use)
for the period 1974–1997 were 2065, 271, and 1512 MCM,
respectively. For further details of the spatial treatment of
irrigation-related recharge and crop ET, see Addams (2004).

2.2.4 Canal seepage

Since the irrigation canals are unlined, significant amounts of
water (up to 500–600 MCM annually) are lost by seepage to
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Table 1. Calibration parameters and their prior uncertainty ranges.

Parameter Description Units Minimum Maximum Transformation

fKv,h(i) Scaling factors for hydraulic conductivity – 0.1 10.0 Log10
(v, vertical;h, horizontal;i=1. . . 3, layer index)

Sy Specific yield – 0.10 0.30 None
Ss Specific storage 1/m 10−5 10−3 Log10
fCd Scaling factor for drain conductance – 0.1 10.0 Log10
fKs Scaling factor for conductivity of canal bottom – 0.1 10.0 Log10

groundwater before canal water reaches the end of the canals.
Canal volumetric seepage rates are simulated by discretizing
the main canals into 145 reaches with inflow of surface water
from the Oviachic reservoir (Fig. 1) specified annually at the
head of each canal. Water is then routed through the canals
using a water budget for each reach,

Qout = Qin +Qgw −Qsw −Qseep, (3)

whereQout is outflow from the reach [L3/T], Qin is inflow
into the reach [L3/T], Qgw represents pumping of ground-
water into the canal [L3/T], Qsw is diversion of surface wa-
ter for irrigation [L3/T], andQseepis canal seepage into the
aquifer [L3/T]. Direct evaporation from the canals consti-
tuted less than 0.5% of the monthly seepage losses and was
neglected. Additions to each canal reach by groundwater
pumping,Qgw, are estimated from annual CNA records of
well-specific pumping, whereas water diversions to the agri-
cultural modules are calculated from annual surface water
use in each module,SW in Eq. (2), and the location of its
diversion points along the canals. The canal-groundwater in-
teraction term,Qseep, is calculated using Darcy’s law,

Qseep=
KswsLs

ms
(hs − h) for h ≥ hbot , (4a)

Qseep=
KswsLs

ms
(hs − hbot) for h < hbot , (4b)

whereKs is hydraulic conductivity of the canal bed [L/T],
ws is canal width [L],Ls is canal length [L],ms is thick-
ness of the canal bed [L],hs is head in the canal reach [L],
hbot is elevation of the canal bed bottom [L], andh is head in
the underlying water table aquifer [L]. For each canal reach,
values forws andLs were estimated from District records,
andms was set at a uniform value of 0.1 m. The elevation of
the canal bottom was defined relative to the land surface el-
evation. However, due to the coarse spatial resolution of the
groundwater model (grid cells of 2 by 2 km), the elevation of
the canal bottom was specified higher than the average land
surface elevation of the grid cell in areas of steeper topog-
raphy near the mountain front (Fig. 1). Uniform initial val-
ues forKs equal to 0.014 and 0.01 m/yr were estimated from
data on canal seepage rates and estimated water depths in the

canals, whereas the lined yet leaky parts of the canal were
assigned an initialKs of 0.001 m/yr. Due to the uncertainty
on the values ofKs , the initial estimates were multiplied by a
scaling factor,fKs [-], which was subject to calibration (Ta-
ble 1). Heads,hs , or water depths,ds=hs−hbot−ms , in the
canals are calculated using the following approximation to
Manning’s equation for a 45◦ trapezoidal cross-section,

ds = b
√
Qs, (5)

whereds is water depth [L],Qs is flow at the midpoint of
the canal reach [L3/T], andb is a coefficient [(L/T)−0.5] es-
timated as a function of roughnessn, slopeS, and widthws
of each canal reach (Addams, 2004). The canal-aquifer sys-
tem represented by Eqs. (1), (3), and (5) interacts through the
seepage term in Eq. (4), requiring an iterative solution at each
time step. The system was solved using the stream package
of Prudic et al. (2004) and Modflow (Harbaugh et al., 2000).

2.2.5 Recharge outside the Irrigation District

Outside the Irrigation District there are three additional
sources of recharge to groundwater: recharge from irriga-
tion in the Yaqui Colonies, Yaqui River infiltration, and
mountain-front recharge. The Yaqui Colonies, tribal lands
located to the north of the Irrigation District, have a perpetual
right to approximately 250 MCM/yr of surface water, which
was estimated to result in a constant uniform recharge rate of
0.37 m/yr based on the assumption of recharge mechanisms
similar to the District. Yaqui River infiltration upstream of
the irrigation canals (Fig. 1) was calculated annually from
tabulated Irrigation District data. Except in extremely wet
conditions, no water flows in the Yaqui River past the in-
take of the irrigation canals (Addams, 2004). Precipitation
is only a significant source of recharge near the mountain-
front boundaries (Fig. 1). This mountain-front recharge was
estimated as (Anderson et al., 1992),

log10 (Qmfr) = −1.34+ log10 (P ) , (6)

where Qmfr is the volume of mountain-front recharge
[MCM/yr], and P is the volume of precipitation on the
upland watershed [MCM/yr]. Although there is consider-
able inter-annual variability in precipitation, the resulting
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recharge is dampened by slow unsaturated zone percolation
(Flint et al., 2000). Therefore, long-term average precipi-
tation at the Oviachic Reservoir (0.2 m/year) was used for
P , resulting in constant recharge rates of 0.03 m/year and
0.04 m/year for the Bacatete and Baroyeca mountain fronts,
respectively. Direct precipitation in the valley was neglected
as a source of recharge in this semi-arid climate with summer
temperatures that reach 40◦C.

2.2.6 Non-agricultural ET and bare soil evaporation

In addition to crop evapotranspiration, one also needs to ac-
count for evaporation from native and riparian vegetation
along the irrigation canals and near the coast, as well as bare
soil evaporation after the crop growing season. Annual po-
tential evaporation averages 2 m/yr, approximately 60% or
1.2 m of which occurs from May to October, i.e., after the
main wheat growing season. Actual evaporation rates are
limited by the availability of moisture near the soil surface,
which mainly depends on the soil hydraulic properties and
the water table depth (Gardner, 1958; Gardner and Fireman,
1958). Hypothetical analysis of evaporation for a clay soil,
which is the main soil type in the area, as a function of wa-
ter table depth was estimated using Hydrus (Šimůnek et al.,
1998). Results suggest an approximate linear relation be-
tween relative evaporation, i.e. the ratio between actual and
potential evaporation, and water table depth, as shown in
Fig. 4. Maximum evaporation rates occur when the water
table is within 0.2 m of the land surface and no evapora-
tion takes place when the water table approaches 2 m depth.
These values were used to calculate evaporation as a func-
tion of water table depth. Maximum evaporation rate was
set at 2 m/yr outside the Irrigation District. Inside the Dis-
trict consumptive use by crops during the growing season is
already accounted for in Eq. (2), hence the potential evapora-
tion rate was set at 1.2 m/yr. Although this neglects any addi-
tional evaporation that may occur during the growing season,
the simulations indicated that the upper limit of 1.2 m/yr was
typically not reached within the District. A linear approxima-
tion was applied by fitting to the “data” points from Hydrus
and then calculating the relative evaporation as a function of
water table depth (Fig. 4).

2.2.7 Water table drainage through drainage network

Throughout the irrigation district, a drainage network has
been installed to keep the water table from rising to the
ground surface. The network drains (Fig. 5) surplus irriga-
tion water from fields out to the Sea of Cortez. These drains
consist partly of open drainage ditches, and partly of subsur-
face drainage pipes. In the model, groundwater flow to drains
is simulated as a linear head-dependent sink,

Qd = LdCd [h− hd ] (7)

whereQd is drain flow [L3/T], Ld is total drain length [L],
Cd is drain conductance [L/T],hd is drain elevation [L],
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Figure 4 
Fig. 4. Relation between relative evaporation and water table depth
for a clay soil, simulated with the HYDRUS code (triangles) and
approximated with a piecewise linear function.

andh is hydraulic head in the grid cell [L]. The total drain
length,Ld , in each grid cell was determined by overlaying
the drainage network map onto the model grid. Drain ele-
vations,hd , for each drain segment were determined from
land surface elevations and assuming a uniform drain depth
of 2 m. Finally, drain conductance values,Cd , were esti-
mated using monthly observed drainage volumes and water
table elevations from January 1996 to September 1997 for 13
sub-areas. These initialCd values were multiplied by a uni-
form scaling factor,fCd [-], which was subject to calibration
(Table 1).

2.2.8 Groundwater pumping

Annual well pumping data were gathered from CNA sources
for a total of 591 wells (Fig. 1), although only a part of these
are active in any given year. All pumping was assigned to the
main aquifer, i.e. layer 3.

2.2.9 Boundary conditions

The bottom boundary of the model domain approximately
corresponds to the deepest extent below which groundwa-
ter flow in the deep aquifer is not influenced by agricultural
pumping. Hence, a zero-gradient boundary condition was
used at the bottom boundary, which prevents any water from
leaving or entering the model through the bottom.

At the northwestern boundary, a flow line extends from
the Bacatete mountain range to the Sea of Cortez, hence
a zero-gradient boundary condition is assumed there. The
southeastern boundary also coincides with a flow line. His-
torically, these flow lines have been fairly stable and insen-
sitive to pumping within the Irrigation District. In addi-
tion, geophysical evidence suggests that there is high vol-
canic bedrock in the subsurface between the Yaqui and Mayo
River Valley to the southeast, which further justifies adopt-
ing a no-flow condition in this location (ITC, 1979). The
northeast boundary of the model corresponds to the bedrock-
alluvium interface, hence no flow is assumed to enter or leave
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Figure 5 

 

 

Fig. 5. Locations of wells with observed water table elevations and aquifer heads used for model calibration. The drainage networks with
measured drainage volumes are also shown. Numbers correspond to wells for which time-series are shown in Fig. 14.

the model there as well. Finally, the southwest offshore
boundary parallels the shoreline and is simulated as a con-
stant head boundary, with heads set equal to zero (sea level)
in the uppermost layer, allowing water to leave or enter the
domain through that layer. However, no-flow boundaries are
assumed for the second and third layers along the offshore
boundary to simulate artesian conditions observed in an off-
shore island well (Fig. 3). Because discharge of groundwater
occurs beneath the Sea of Cortez, it was important that the
model reproduce the head value in this offshore island well
because it constrains the degree of submarine confinement of
the aquifer. Vertical hydraulic conductivity in other locations
along the coastline was high enough to enable deep ground-
water discharge into the Sea of Cortez through the constant-
head boundary of the upper layer.

2.2.10 Hydraulic properties

The spatial distribution of horizontal (Kh) and vertical (Kv)
hydraulic conductivities was estimated from lithologic data
and well tests. It was assumed that the aquifer is horizon-
tally isotropic in each layer but vertically anisotropic, hence
Kx=Ky=Kh, andKz=Kv. For the deep aquifer, specific
capacity values were calculated for 41 wells with pumping
rates, static head levels, and dynamic pumping head levels
recorded at the time of drilling (Fig. 3). These specific ca-
pacity values were converted into transmissivity values us-

ing the following empirical relationship (Razack and Hunt-
ley, 1991),

T = 15.3 S0.67
c (8)

whereT is transmissivity andSc is specific capacity, both in
units of m2/day. Since the permeable formation extends for
some distance beneath the bottom of the well screen, corre-
sponding values forKh were estimated as,

Kh3 = T
/

2b (9)

whereb is the well screen length [L]. The resultingKh3 val-
ues were interpolated to the model grid. Finally, initial values
of vertical hydraulic conductivityKv were estimated to be an
order of magnitude smaller than the correspondingKh3 val-
ues, i.e.Kv3=Kh3/10.

Since no well tests were available for the shallow lay-
ers, initial conductivity values for them were estimated us-
ing well log data from 55 wells (Fig. 3). The lithological
categories observed in the well logs were aggregated into a
low permeable class (clay and caliche) and a high permeable
class (sand and gravel). At each well location, the total and
fractional thickness of these materials was calculated in the
upper two layers, respectively. These thicknesses were then
spatially interpolated within each layer to provide an initial
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estimate of the spatial distribution of hydraulic conductivity.
The spatial distribution ofKh in layer 1 was estimated as,

Kh1 = 101−x (10)

wherex is the interpolated clay fractional thickness (0–1),
resulting in values forKh1 between 1 and 10 m/day. A
hydrogeologically reasonable estimate of 10:1 was adopted
for the uncalibrated vertical anisotropy ratio in layer 1, or
Kv1=Kh1/10. Finally, for layer 2 the vertical hydraulic con-
ductivity was first estimated as,

Kv2 = 10−ay (11)

wherey is the interpolated clay thickness (0–50 m). The
value ofa was set to 0.1 in order to reproduce artesian con-
ditions observed in the offshore well in Fig. 3. This results
in initial estimates forKv2 between 10−5 and 1 m/day. Hor-
izontal hydraulic conductivity in the layer was estimated us-
ing a 10:1 anisotropy ratio, henceKh2=10Kv2.

Given the uncertainty of these initial estimates, theKv and
Kh values in each layer were scaled by factors,fKvi and
fKhi , wherei is the layer index. These six scaling factors
were subject to calibration (Table 1). Finally, spatially uni-
form values for specific yield,Sy [-], and specific storage,Ss
[1/L], were also estimated by calibration.

2.3 Parameter optimization

2.3.1 Calibration parameters and targets

A total of 10 parameters were subject to calibration, as listed
in Table 1. For each parameter a reasonable physical prior
range of values was specified centered around the initial es-
timates discussed in the previous section. The model is cal-
ibrated using data on water table elevations, aquifer heads,
drainage volumes, and canal seepage volumes for the period
1974–1997. Figure 5 shows the well locations with water ta-
ble and aquifer head observations during this period. Note
however that every well doesn’t necessarily have a measure-
ment each year. Water table measurements in September are
compared to simulated values at the end of each annual stress
period. Aquifer heads are measured annually in October,
when wells were turned off for 1–2 days prior to measure-
ment and when almost no pumping occurs since the main
growing season is from November to April. These measure-
ments are compared to simulated heads at the end of each
annual stress period. Since annually averaged groundwa-
ter pumping is used in the model, this implicitly assumes
that the head at the end of the water year is not affected by
intra-annual pumping changes. The third data set used for
calibration consists of annual drainage rates in the agricul-
tural drainage network (Fig. 5) during 1988–1997 measured
at various discharge locations near the Sea of Cortez. Finally,
the Irrigation District also maintained records of the total an-
nual volume of surface water lost by seepage from the main

canals during 1974–1997. Those values were compared to
the corresponding simulated volumes.

Since there are four different types of data to calibrate to,
we can formulate four independent root mean square error
objective functions,

RMSEk =

√√√√ 1

nk

nk∑
i=1

[
ψk,OBS(i)− ψk,SIM (i)

]2 (12)

wherek indicates the type of measurement (water table “wt”,
aquifer head “aq”, drainage volume “drain”, and canal seep-
age volume “seep”), RMSEk is the root mean square error
for data typek, nk is the number of measurements for data
type k (891, 3506, 130, and 48 respectively for “wt”, “ aq”,
“drain”, and “seep”),ψk,OBS(i) is theith observation of data
typek, andψk,SIM (i) is the corresponding simulated value.
Ideally, we would like to identify an optimal parameter set
that minimizes all four objective functions simultaneously.
However, this is typically not possible due to errors in the
conceptual model. Therefore, the trade-offs between match-
ing the different objectives were investigated by performing
a multi-objective calibration and evaluating the tradeoff rela-
tions in the Pareto optimal surfaces.

2.3.2 Calibration algorithm

The goal of the multi-objective optimization is to minimize
F(p)= 〈f1(p), f2(p), ......., fN (p)〉 with respect top, where
F is the vector of objectives,fk(p) is thekth objective func-
tion in Eq. (1), andp is a vector of model parameters (Gupta
et al., 2003). The solution to this problem will not be a sin-
gle “best” parameter set, but will consist of a Pareto optimal
set of solutions corresponding to trade-offs among the objec-
tives. Formally, the Pareto set consists of parameter com-
binationspi with the following properties: (1) for all non-
memberspn there exists at least one memberpi that dom-
inatespn, and (2) it is not possible to find another mem-
ber pj within the Pareto set that dominatespi . By defi-
nition, pi dominatespj if, for all k, fk(pi)<fk(pj ). Our
four-objective optimization problem was solved using the
Multi-Objective Shuffled Complex Evolution Metropolis al-
gorithm, MOSCEM-UA (Vrugt et al., 2003b). Within a sin-
gle optimization run, this algorithm generates a Pareto set
of parameter combinations that best fit the data according to
multiple objective functions. The algorithm starts by ran-
domly generatings parameter sets from uniform probabil-
ity distributions defined by the a priori specified parameter
ranges. For each parameter set, the model is run and the
values of the four objective functions are calculated. Based
on the performance on these objectives, each parameter set is
characterized by a single point in the multi-objective function
space. Using the concept of Pareto dominance defined ear-
lier, the initial population ofs parameter sets is divided into
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Figure 6 

Fig. 6. Bi-criterion plots for the four-objective calibration run after 3000 model evaluations with the MOSCEM-UA algorithm.

dominated and non-dominated points. The non-dominated
parameter setsi are assigned a fitness valueri ,

ri =
ni

s
(13)

whereni is the number of parameter sets dominated by pa-
rameter seti. The dominated parameter setsj on the other
hand are assigned a fitnessrj ,

rj = 1 +

∑
i≤j

ri (14)

where the summation is over all parameter setsi that dom-
inate parameter setj . Parameter sets with low fitness val-
ues are retained, resulting in a preference of non-dominated
parameter sets at the extremes of the Pareto front. This
strategy prevents convergence in the compromise region of
the objectives. The algorithm proceeds by dividing the ini-
tial parameter populations into a number of so-called com-
plexes. Within each complex new parameter sets are gener-
ated by sampling from a multi-normal distribution estimated
from all points in the complex, and new points are accepted
or rejected based on their fitness value. After a prescribed
number of iterations, all parameter sets are shuffled and new
complexes are formed. Repeated application of these steps
causes the population to converge to the Pareto set of so-
lutions. The Pareto parameter set also contains the single
objective solutions at the extremes of the Pareto solution set
(end-members). Therefore, using one optimization run the

MOSCEM-UA algorithm generates all information needed
to evaluate best parameter values for each data type (see
Vrugt et al., 2003b).

Here the MOSCEM-UA algorithm was run with an initial
populations of 200 parameter sets (sets of 10 parameters),
randomly selected from the prior ranges defined in Table 1.
This initial sample set was then divided into 5 complexes for
subsequent optimization for a total of 3000 model simula-
tions or evaluations.

3 Results and discussion

The results section is organized as follows. First, all four
calibration targets (water table elevations, aquifer heads,
drainage rates, and canal seepage rates) are considered simul-
taneously using the multi-objective analysis algorithm. This
analysis reveals trade-offs between the various objectives and
provides insight into parameter sensitivities. Second, a single
“best” parameter set is selected for which more detailed com-
parisons are shown between simulated and observed vari-
ables. Third, results from the multi-objective analysis in
combination with a spatial analysis of model residuals are
used to improve the model performance on aquifer heads. A
second calibration using the refined model is then performed,
focusing on aquifer heads alone.
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Figure 7 

 

Fig. 7. Bi-criterion plots for the four-objective calibration run after 3000 model evaluations with the MOSCEM-UA algorithm, without bare
soil evaporation.

3.1 Four-objective calibration

Figure 6 presents bi-criterion plots for the four-objective cal-
ibration after 3000 model evaluations with the MOSCEM-
UA algorithm. Each plot is a marginal multi-objective curve
showing two criteria out of four total criteria dimensions.
Each dot represents one forward simulation of the groundwa-
ter model. The large cross indicates the simulation that yields
the minimum distance in the four-dimensional normalized
objective function space. Two observations are made based
on these plots. First, from the first three plots in Fig. 6 it can
be seen that there is very little variation in the RMSEwt for
the range of parameter values considered here (Table 1). This
indicates that the simulation of water table elevations is quite
insensitive to any of the parameters. This may be explained
by the fact that the shallow water tables in the model are con-
trolled by drainage in the engineered agricultural drains and
evaporation, which tend to control and suppress large vari-
ations in simulated water table elevations. Second, the re-
maining bi-criterion plots that do not involve RMSEwt (bot-
tom three plots in Fig. 6), all exhibit trade-offs along a right
angle. This indicates that improvements in fitting one ob-
jective can be made without deteriorating the fit to the other
objective. In other words, these results suggest that there is
little trade-off between fitting the different objectives, and
that they can be considered independently. The absence of

any significant trade-offs indicates that the model is gener-
ally well conceptualized, and that most relevant hydrologic
processes are accounted for.

At this point it is useful to consider the effect of bare-soil
evaporation on the results of the multi-objective optimiza-
tion, particularly since the initial groundwater model concep-
tualization did not include bare soil evaporation as a signif-
icant physical process (Addams, 2004). Figure 7 shows the
same plots as Fig. 6, but now bare soil evaporation was omit-
ted. The main differences are that (1) without evaporation
there is much more scatter in the plots involving RMSEwt

(top 3 plots), and (2) there is a strong trade-off between the
drainage and canal seepage objectives. In other words, no
single parameter combination exists that yields a correct sim-
ulation of both drainage and canal seepage, suggesting that
a key physical process is missing in the conceptualization of
the shallow groundwater system. Correct simulation of canal
seepage results in too much water discharging through the
surface drains, hence pointing to an additional sink that needs
to be included (evaporation). On the other hand, drainage can
only be correctly simulated by reducing canal seepage (e.g.,
by decreasing the canal bed conductivity). It was not possi-
ble to discharge the extra water as subsurface flow to the Sea
of Cortez within the realistic range of hydraulic conductiv-
ities. None of these trade-offs are present in the plots that
include bare soil evaporation (Fig. 6). This illustrates that
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Figure 8 
Fig. 8. Dotty plots for the four-objective calibration run, showing sensitivity of the various objective functions to the calibration parameters.
(a) water table elevations,(b) aquifer heads,(c) drainage rates, and(d) canal seepage rates. All parameter scales are log-transformed, except
Sy . Bold frames highlight significant effects of a parameter on an objective function.
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Table 2. Parameter correlation coefficient matrix for a subset of simulations, identified by the following criteria: RMSEwt<3, RMSEaq<10,
RMSEdrain<30, and RMSEseep<50.

fKv1 fKh1 fKv2 fKh2 fKv3 fKh3 Sy Ss fCd fKs

fKv1 1.00 −0.04 0.04 0.11 −0.10 0.03 0.15 −0.20 0.03 0.07
fKh1 −0.04 1.00 0.06 −0.04 0.19 0.03 0.10 0.19 −0.11 0.07
fKv2 0.04 0.06 1.00 −0.12 0.11 −0.01 0.15 −0.21 0.02 −0.06
fKh2 0.11 −0.04 −0.12 1.00 −0.20 −0.02 0.01 −0.21 −0.01 −0.14
fKv3 −0.10 0.19 0.11 −0.20 1.00 0.01 −0.03 −0.02 −0.12 −0.17
fKh3 0.03 0.03 −0.01 −0.02 0.01 1.00 0.12 0.00 −0.25 0.16
Sy 0.15 0.10 0.15 0.01 −0.03 0.12 1.00 0.12 −0.18 −0.10
Ss −0.20 0.19 −0.21 −0.21 −0.02 0.00 0.12 1.00 −0.03 0.08
fCd 0.03 −0.11 0.02 −0.01 −0.12 −0.25 −0.18 −0.03 1.00 −0.14
fKs 0.07 0.07 −0.06 −0.14 −0.17 0.16 −0.10 0.08 −0.14 1.00

multi-objective optimization is a useful method for simulta-
neously dealing with parameter and model structural uncer-
tainty.

In the following paragraphs we investigate how well the
model parameters are identified by the four objective func-
tions. Figure 8 presents so-called dotty plots (Beven and
Freer, 2001) for each of the four objectives (a–d) as a func-
tion of each of the 10 calibration parameters. Note that all
parameter scales on the horizontal axes are log-transformed,
except forSy . Starting with the water table elevations, Fig. 8a
indicates that RMSEwt is relatively more sensitive to the hor-
izontal hydraulic conductivity of the deep aquifer,Kh3, and
the conductivity of the canal bottom,Ks , compared to the
other parameters. However, as discussed above, RMSEwt

is not sensitive to any of the parameters as evidenced by its
small variation (around 2.5–3 m). Secondly, Fig. 8b shows
that the simulated deep aquifer heads are most sensitive to
the deep aquifer hydraulic conductivity,Kh3, and less ob-
viously the vertical hydraulic conductivity of the confining
layer,Kv2. Best performance on aquifer heads, as indicated
by low values for RMSEaq , are obtained forfKh3 values
greater than 0. Hence, the multi-objective analysis shows that
increases inKh3 result in a better simulation of the aquifer
heads compared to using the initially estimated values for this
parameter (which corresponds tofKh3=0). The minimum
value of RMSEaq identified by the MOSCEM-UA algorithm
is 7.2 m (Fig. 8, Table 3). Figure 8b suggests that improve-
ments in the simulation of aquifer heads may be possible by
re-examining theKv2 andKh3 parameterizations. This will
be investigated in the next section. With regard to the sim-
ulation of drainage rates, Fig. 8c clearly demonstrates that
RMSEdrain mainly depends on the value of the drain conduc-
tances (fCd). On the other hand, RMSEseepis primarily sen-
sitive to the canal bed hydraulic conductivity,Ks (Fig. 8d).
Overall, the results in Fig. 8 suggest that the different objec-
tives are sensitive to different parameters, implying that each
objective could be fitted independently by finding the opti-

mum value(s) for its most sensitive parameter(s). This con-
firms the conclusions that were drawn from Fig. 6 about the
independence of the objective functions. It also means that
the interaction between the surface water and groundwater
systems is limited. We further conclude that improvements
in the simulation of heads in the deep aquifer are most likely
by reconsidering theKv2 andKh3 parameterizations, and this
could be done without significantly affecting the other three
objectives.

It is important to realize that these findings most likely
would have been obscured in a single-objective analysis, as
the different data types would have been lumped into a sin-
gle objective function, thereby blurring the sensitivity of the
parameters to certain data types. Furthermore, the sensitivity
and identifiability of the parameters would then essentially
depend on the weights assigned to the different data types.
Therefore, the independence of the different objectives in the
multi-objective analysis increases the information content of
the data and results in better parameter estimates.

What the dotty plots do not show is possible correlation
between the parameters, which if present could cause poor
parameter sensitivity and identifiability. Table 2 shows corre-
lation coefficients between the 10 parameters based on a sub-
set of simulations in the region of compromise of the four-
objective space, identified by the following criteria: RMSEwt

<3, RMSEaq<10, RMSEdrain<30, and RMSEseep<50. Note
that these correlations were calculated on the estimates of
the parameter values, not the log-transformed values. The
strongest correlation in Table 2 equals−0.25, between pa-
rametersfCd andfKs , suggesting that, for the sake of pa-
rameter identifiability, parameter correlations are small (Hill,
1998).

Table 3 summarizes the optimal parameter and RMSE val-
ues when minimizing the four objectives separately, as well
as for the compromise solution which minimizes the Eu-
clidean distance in the normalized objective function space
(shown as a cross in Fig. 6). The range in optimal parameter
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Table 3. Optimal parameter and RMSE values for various objectives. “Euclid-dist” refers to the distance in the normalized four-dimensional
objective function space.

Minimize Minimize Minimize Minimize Minimize
RMSEwt RMSEaq RMSEdrain RMSEseep “Euclid-dist”

fKv1 2.9 3.3 1.1 4.3 0.6
fKh1 7.8 1.6 7.3 1.2 2.0
fKv2 0.4 1.1 0.4 0.5 0.2
fKh2 9.3 7.3 1.6 0.5 1.7
fKv3 0.4 8.4 1.2 0.5 0.4
fKh3 8.6 9.1 2.9 0.9 7.0
Sy 0.26 0.11 0.15 0.18 0.2
Ss 2.0E-04 1.8E-05 6.6E-05 3.3E-05 5.3E-04
fCd 0.1 5.1 1.7 2.4 1.8
fKs 0.6 0.4 0.9 1.3 1.3
RMSEwt (m) 2.5 2.6 2.8 2.9 2.8
RMSEaq (m) 7.4 7.2 9.4 15.5 7.7
RMSEdrain (MCM) 41.4 23.6 15.3 23.6 17.6
RMSEseep(MCM) 125.2 154.9 72.8 25.4 26.6
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Figure 9 
Fig. 9. Scatter plots of simulated versus observed water table eleva-
tions, aquifer heads, drainage volumes, and canal seepage volumes.

values for the various objective functions is still quite large
compared to the prior ranges specified in Table 1. In other
words, the parameter uncertainty associated with the multi-
objective Pareto solution is large, typically an order of mag-
nitude. As was discussed earlier, this is due to the fact that
the different objective functions are sensitive to different pa-
rameters. However, this does not mean that the parameters
are necessarily not well identified or that the model is in
error. For example, canal seepage is very sensitive to the
canal bed hydraulic conductivity (Fig. 8), hence this param-
eter is known with certainty. Its Pareto uncertainty on the

other hand is large, because the other objectives are not that
sensitive to it. Note also that the parameter values of the
compromise solution usually lie close to the parameter value
obtained by minimizing the objective function that is most
sensitive to that parameter. For example, in the compromise
solution, parameterfKs takes on the value of 1.3, which is
the same as its optimal value when fitting to the seepage rates
only. The same can be said about parametersfCd andfKh3.
Furthermore, Table 3 shows that the compromise solution
does only slightly worse in fitting the four objectives com-
pared to the single objective results. Hence, little trade-off
or compromise exists between fitting the four objective func-
tions.

3.2 “Best” parameter set

Next, we select the compromise solution discussed in Ta-
ble 3 as our “best” model and examine how well it mimics
the observed dynamics in the system. The results are pre-
sented in Figs. 9, 10, 11 and 12. Figure 9 shows scatter plots
of simulated versus observed water table elevations, aquifer
heads, drainage rates, and canal seepage rates. The corre-
sponding RMSE values are listed in Table 3. The predic-
tion of water table elevations can be considered very good,
whereas the plot of simulated vs. observed aquifer heads
still shows a lot of scatter (RMSE=7.7 m). The spatial and
temporal variation in drainage volumes is fairly well pre-
dicted, (RMSE=17.6 MCM/yr), especially in view of the un-
certainty associated with the drainage measurements. Canal
seepage rates in the two canals are predicted quite well
(RMSE=26 MCM/yr), as is also apparent in Fig. 10, which
presents time-series of observed and simulated canal seep-
age and total drainage rates.
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Table 4. Time-averaged (1974–1997) water balance components in MCM for the different objective functions, as well as the compromise
solution (minimum Euclidean distance). Negative numbers are groundwater sinks (outflows) and positive numbers are groundwater sources
(inflows). An increase in storage is indicated by a negative number.

Minimize Minimize Minimize Minimize Minimize
RMSEwt RMSEaq RMSEdrain RMSEseep “Euclid-dist”

Infiltration 2445 2445 2445 2445 2445
Canal seepage 233 159 338 463 454
Crop evapotranspiration −1513 −1513 −1513 −1513 −1513
Non-agricultural evapotranspiration −720 −272 −497 −490 −531
Drainage −86 −500 −421 −533 −448
Groundwater pumping −271 −271 −271 −271 −271
Groundwater discharge to Sea of Cortez −2 −18 16 8 −12
Change in groundwater storage −85 −29 −96 −107 −123

Figure 11 shows pie charts of the simulated time-averaged
(1974–1997) annual water balance. The two main sources
of water inflow into the groundwater system are, first, irri-
gation water applied on agricultural fields and seepage from
secondary irrigation canals, termed “infiltration“ in Fig. 11
(2445 MCM/year or 84% on average), and second, seepage
from the main irrigation canals (454 MCM/year or 16%).
Groundwater discharge is composed of crop evapotranspira-
tion (1513 MCM/year or 53%), non-agricultural evapotran-
spiration and bare-soil evaporation (531 MCM/year or 19%),
surface and subsurface agricultural drainage discharging into
the Sea of Cortez through the outlets of the drainage net-
work (448 MCM/year or 15%), and groundwater pumping
(271 MCM/year or 9%). Note that subsurface groundwa-
ter discharge to the Sea of Cortez accounts only for 12
MCM/year which is less than 1% of the total annual out-
flow. These simulated values compare well to observed canal
seepage volumes (473 MCM/year on average) and drainage
volumes (499 MCM/year observed on average during 1988–
1997, compared to 477 MCM/year simulated over the same
period for that part of the drainage network that is moni-
tored). In order to get a sense of the uncertainty of the sim-
ulated water balance, Table 4 provides time-averaged wa-
ter balances for the four objective functions of the multi-
objective optimization. It is clear that most variation occurs
in the drainage, evaporation, and canal seepage components.
For example, when minimizing RMSEwt more water dis-
charges by evaporation (720 MCM) with very little drainage
(86 MCM). Note that the compromise solution (minimum
Euclidean distance) simulates a similar amount of drainage
as the RMSEdrain objective, and a similar amount of canal
seepage as the RMSEseepobjective.

Finally, we investigated the model performance on aquifer
heads using the best parameter set, and suggest an improve-
ment in the model structure based on a spatial analysis of
the model residuals. Figure 12a shows a map of the time-
averaged residual error, interpolated from errors calculated
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Figure 10 

 

Fig. 10. Time-series of observed and simulated canal seepage and
total drainage volume.

for the wells shown in the same figure. There are clear spatial
patterns, with regions of consistent over-estimation (residual
error greater than zero) and under-estimation (residual error
smaller than zero). This suggests that some adjustment is
needed in the spatial distribution of hydraulic properties, as
initially estimated from well log and specific capacity data.
Instead of using a single uniform scaling factor, we can use
the spatial patterns in the model residual map to construct
distinct zones of uniform scaling factors. This is discussed
further in the next section.

3.3 Model refinement for aquifer heads

Based on a comparison of simulated and observed values us-
ing the best parameter set identified by the multi-objective
analysis, we concluded that the model does reasonably
well in simulating water table elevations, canal seepage and
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Figure 11 

 

Fig. 11. Pie charts of the annual simulated water balance, averaged over the period 1974–1997 expressed as MCM and as percentages of the
total inflows and outflows. Recharge below the root-zone, calculated as the difference between infiltration and crop ET, constitutes 65% of
the total inflow into groundwater.

Table 5. Optimal parameter and RMSE values for various objectives. The different zones are mapped in Fig. 12b.

Zone Minimum (prior) Maximum (prior) Optimum Minimum* Maximum*

fKv2 1 0.01 100 1.0 0.08 9.4
2 0.01 100 0.01 0.01 0.19
3 0.01 100 37 6 97
4 0.01 100 0.013 0.01 0.15

fKh3 1 0.1 10 5 1.2 10
2 0.1 10 8.7 0.8 10
3 0.1 10 1.2 0.12 10
4 0.1 10 0.40 0.16 10

RMSEwt (m) 2.7
RMSEaq (m) 5.6
RMSEdrain (MCM) 17.4
RMSEseep(MCM) 26.2

* These are minimum and maximum values of all parameter sets with an RMSEaq<6 m.

drainage rates. However, results for the aquifer heads were
less satisfactory as shown by the large value of RMSEaq (7.7
m) and the model residual map in Fig. 12a. Unfortunately,
there is only limited information on the geology in this area.
The available information (well logs) was used to specify the
initial spatial distribution of conductivities, but there is con-
siderable uncertainty on these estimates. Here an attempt is
made to improve the model performance by including more
(indirect) information about the geology, namely in the form
of hydraulic heads in the deep aquifer. First, the spatial
patterns in the model residual map were used to construct
distinct zones of uniform scaling factors. This zonation is
shown in Fig. 12b. Results from the multi-objective cali-
bration also indicated that the simulation of aquifer heads is
most sensitive to the scaling factors forKh3 andKv2. There-
fore, the model was refined by introducing spatially varying
scaling factors forKh3 andKv2, defined by the zonation in

Fig. 12b. Based on the results of the multi-objective cali-
bration run, changing these parameter values will have little
effect on the simulation of water table elevations, drainage
rates, and canal seepage rates.

A single-objective calibration was performed on aquifer
heads only, using 8 calibration parameters, i.e. scaling fac-
tors forKh3 andKv2 for each of the four zones in Fig. 12b.
All the other parameters that were considered before (Ta-
ble 1) are now fixed at their “best” values as identified by
the multi-objective calibration (Table 3). The SCEM-UA
global optimization algorithm (Vrugt et al., 2003a) was used
to identify the parameter values that minimize RMSEaq . Op-
timal parameter values identified by the algorithm after 3000
model runs are listed in Table 5. Corresponding values for
the various RMSE values are also shown. We can see that the
zonation of the hydraulic properties resulted in a decrease of
RMSEaq from 7.7 (Table 3) to 5.6 m (Table 5). In addition,
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Figure 12 

 

 

 

Fig. 12. (a)Interpolated map of time-averaged model residuals for
simulated aquifer heads using the best parameter set of the multi-
objective calibration,(b) corresponding zones of uniformKv2 and
Kh3 scaling factors used in the single-objective calibration, and(c)
resulting time-averaged residuals after the second calibration.

the zonation also caused a better fit to steady-state aquifer
heads (1972–1974), as measured by a decrease in the steady-
state RMSE values from 6.3 to 3.0 m. Values of the other
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Figure 13 

 

 

Fig. 13. Calibrated maps ofKv2 (a) andKh3 (b) using the optimal
parameter set in Table 4 after the second calibration.

three objectives not included in the new calibration (Table 5)
are similar, even slightly better, than those before the second
calibration (Table 3). Nevertheless, spatial patterns in the
model residuals still exist (Fig. 12c), although the errors have
decreased. The optimal parameter values in Table 5 are con-
sistent with the spatial patterns of over- and under-prediction
in Fig. 12a. The over-predictions in zones 2 and 4 result
in smaller values forfKv2 in these zones compared to the
best parameter set in Table 3, whereas the opposite occurs for
zone 3, where heads were consistently under-predicted. Note
that the scaling factors are again relative to the originally es-
timated hydraulic conductivities using well log and specific
capacity data. Although in Table 5, the optimal values of
fKv2 for zones 2 and 4 are at or near the prior minimum
value of 0.01, the results could not be improved by letting
fKv2 reach even lower values. In other words, oncefKv2 is
small enough very little water will percolate vertically. Final
calibrated maps ofKv2 andKh3, obtained by multiplying the
original estimates with the optimal scaling factors in Table 5,
are shown in Fig. 13. The large horizontal conductivities in
the northern part of the study area agree with the occurrence
of coarse gravel deposits observed in the well logs of that
area.
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Figure 14 

 

Fig. 14. Time-series of observed (triangles) and simulated (solid lines) aquifer heads for various locations, shown in Fig. 5. The dark solid
line corresponds to the optimal solution of the single-objective calibration. The grey lines represent all simulations with an RMSEaq less
than 6 m.

Finally, parameter uncertainty was estimated on a
set of behavioral models, defined by the criterion that
RMSEaq<6 m. Minimum and maximum parameter values
for this subset of 229 parameter sets are shown in Table 5,
and typically span an order of magnitude. The resulting pre-
diction uncertainty is shown in Fig. 14. This figure presents
time-series of observed and simulated aquifer heads for vari-
ous locations, which are identified by a number in each graph
corresponding to the numbered wells in Fig. 5. The opti-
mal model is shown as a dark solid line, whereas the grey
lines represent the range in prediction uncertainty associated
with all parameter sets that result in an RMSEaq<6 m. In
most cases, the ranges in predicted heads bracket the obser-
vations. Several simulated and observed heads decline dur-
ing the 1970s and into the early 1980s, followed by a recov-
ery in head levels after that. This corresponds to a period
of increased groundwater pumping in the early 1980s, fol-
lowed by an increase in surface water supply and a decrease
in groundwater pumping after 1985.

4 Conclusions

This paper presented the application of multi-objective op-
timization to calibrate a regional surface water-groundwater
model for the Yaqui Valley in Mexico. Irrigated agriculture
in this highly engineered hydrologic system with its surface
reservoirs empty is in serious jeopardy. Since groundwa-
ter storage in the Valley is about 16 times greater than the
available surface water in the reservoirs, sustainable water
resource allocation will undoubtedly rely on water pumped
from storage. A groundwater model will be an increasingly
important tool to ensure that water is better managed to sus-
tain crop production in the future. Our model integrates the
surface water and groundwater systems and accounts for the
spatial distribution of annual recharge from irrigation, sub-
surface drainage, agricultural pumping, and irrigation canal
seepage. A four-objective calibration problem was formu-
lated to find improved estimates of the hydraulic parameters
using head data from the shallow and deep aquifers, as well
as data on agricultural drainage and canal seepage volumes.
The main advantage of the method is that it accounts for both
parameter and model structural uncertainty. In this case, re-
sults show that the effect of including bare soil evaporation
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is greater than the effects of parameter uncertainty, as evi-
denced by a strong trade-off between the drainage and seep-
age objectives when bare soil evaporation is not included in
the model. Furthermore, by treating the different objectives
independently, the method allowed for better identification
of the model parameters compared to a single-objective ap-
proach, since the various objectives were sensitive to differ-
ent parameters. Large parameter variation (uncertainty) of
the Pareto set of solutions, which includes the best-fit end-
members for each of the objective functions, does not al-
ways point to a model structural error, because such large
parameter uncertainty may also be caused by the insensitiv-
ity of one of the objectives for the parameter. The shape of
the trade-off curve is a much better indicator of model struc-
tural error. The simulated water balance shows that 15–20%
of the water that enters the irrigation canals is lost by seep-
age to groundwater. The main discharge mechanisms in the
Valley are crop evapotranspiration (53%), non-agricultural
evapotranspiration and bare soil evaporation (19%), surface
drainage to the Sea of Cortez (15%), and groundwater pump-
ing (9%). In comparison, groundwater discharge to the estu-
ary was relatively insignificant (less than 1%). Heads in the
deep aquifer were most sensitive to the vertical conductivity
of the confining layer (Kv) and the horizontal conductivity
in the deep aquifer (Kh). The model was further refined by
identifying zonalKv andKh values based on a spatial analy-
sis of the model residuals. Subsequent calibration ofKv and
Kh to aquifer head only (single-objective) resulted in further
improvements in simulated heads. Although the model was
developed specifically for the Yaqui Valley, our results are
relevant to other irrigated agricultural systems with shallow
water tables. Future work will focus on an independent val-
idation of the calibrated model, such that the model can be
confidently used to identify optimal pumping strategies in the
Yaqui Valley.
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