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Abstract

Artificial neural networks (ANNSs) provide a quick and flexible means of developing flood flow simulation models. An important criterion for
the wider applicability of the ANNSs is the ability to generalise the events outside the range of training data sets. With respect to flood flow
simulation, the ability to extrapolate beyond the range of calibrated data sets is of crucial importance. This study explores methods for
improving generalisation of the ANNs using three different flood events data sets from the Neckar River in Germany. An ANN-based model
is formulated to simulate flows at certain locations in the river reach, based on the flows at upstream locations. Network training data sets
consist of time series of flows from observation stations. Simulated flows from a one-dimensional hydrodynamic numerical model are integrated
for network training and validation, at a river section where no measurements are available. Network structures with different activation
functions are considered for improving generalisation. The training algorithm involved backpropagation with the Levenberg-Marquardt
approximation. The ability of the trained networks to extrapolate is assessed using flow data beyond the range of the training data sets. The
results of this study indicate that the ANN in a suitable configuration can extend forecasting capability to a certain extent beyond the range of
calibrated data sets.

Keywords: artificial neural networks, activation function, backpropagation, hydrodynamic numerical model, multilayer perceptron, Neckar

River.

Introduction

The ability to simulate river flows quickly and accurately is
of crucial importance in flood forecasting operations.
Hydrodynamic models provide a sound physical basis for
this purpose and have the capability to simulate a wide range
of flow situations. However, these models require accurate
river geometric data, which may not be available in many
locations. It is also not possible to integrate observed data
directly at desired locations to improve the model results.
In this respect, artificial neural network (ANN) provides a
quick and flexible approach for data integration and model
development.

The use of ANN-based models for the simulation of flood
flows has been gaining popularity in recent years. Several
researchers have demonstrated the application for rainfall-
runoff modelling and streamflow simulation (Thirumalaiah
and Deo, 1998; Dawson and Wilby, 1999; Imrie et al., 2000;
Solas et al., 2000; Dolling and Veras, 2002; Shamseldin et

al., 2002; Shrestha, 2003). A recent review can be found in
the ASCE Task Committee on Application of Artificial
Neural Networks in Hydrology (2000). Typical applications
involve the training of two- to three-layer networks using
suitable network architectures like multilayer perceptron,
radial basis networks or recurrent networks. The
performances of the ANNs in river flow prediction have
been found to be comparable with other data driven
modelling approaches (Lekkas et al., 2001; Sivakumar et
al., 2002).

An important criterion in application of ANN for flood
flow simulation is to predict flows beyond the range of
calibrated data sets. The network may perform very well
for the training data set, but may be unable to generalise
flows beyond the range of training data sets. Minns (1996)
applied ANNSs to both real and theoretical catchments, and
found that the peak flows were considerably underestimated.
Thirumalaiah and Deo (1998) used ANNs for river stage
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forecasting and found that although lower water levels were
predicted fairly accurately, higher water levels were
underestimated. Solas ez al. (2000) used average, dry and
wet years’ mean annual precipitation in a rainfall-runoff
modelling application of ANNs, and observed that high
flows were overestimated for the wet years.

The reasons why the ANN's underestimate or overestimate
extreme flows may lie in the network structure used and
range of training data sets. Thirumalaiah and Deo (1998)
suggested that this could be due to a smaller number of
training patterns for higher water levels. Minns (1996)
emphasised the need to ensure that the training data sets
actually contain all conceivable events.

Several methodologies have been proposed to improve
the forecasting capability outside the range of training data
sets. In the ANN applications, the inputs data are generally
normalised in the range such as [0 — 1.0] or [-1.0 — 1.0]. To
accommodate the data beyond the training range, alternative
normalisation ranges have been suggested. The scaling of
training data in a range such as [0.1 — 0.9] or [0.2 — 0.8]
compared to the range [0.0 — 1.0] has been reported to be an
effective means of improving generalisation (Imrie et al.,
2000; Dawson et al., 2002). This can accommodate
validation and test data sets in excess of training data sets.
The upper and the lower limits of activation functions such
as [0 —1.0] or [-1.0 — 1.0] also provide limiting amplitude
to the data sets and affect the generalisation capability of
the ANNs. Imrie et al. (2000) investigated the effects of
different output activation functions for improving
generalisation using cascade correlation network building
strategy. Shamseldin et al. (2002) examined the significance
of different non-linear activation functions for the hidden
and the output layers in the context of overall performance
of the multilayer feedforward networks. An alternative
approach is the application of a non-linear activation
function at the hidden and the linear function at the output
layers. The application of linear activation in the output
layers enables the network to take any range of values
(Demuth and Beale, 2000).

This study explores methods for improving generalisation
with different activation functions at the hidden layers using
multilayer feedforward networks. A case study from the
Neckar River in Germany demonstrates the application using
historical flood data sets.

Artificial Neural Networks

Artificial neural networks (ANNs) are massively parallel
distributed processors with a natural propensity for storing
knowledge and making it available for use (Haykin, 1994).
Typical neural networks consist of layers of neurons with
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Fig. 1. Structure of a neuron of an Artificial Neural Network

weights providing inter-neuron connection for storage of
knowledge. A summing junction acts as an adder for
summing input signals weighted by respective weights. An
activation function provides limiting amplitude of the neuron
output, typically between [0.0 — 1.0] or [-1.0 — 1.0]. The
structure of a typical neuron of an ANN is shown in Fig. 1.

The ANNs may also consist of a number of hidden layers
between the input and output layers. Such networks are
commonly known as multilayer feedforward networks or
multilayer perceptrons (MLPs). The MLPs are one of the
most widely used types of neural networks, which can be
trained in a supervised manner to solve highly nonlinear
problems. The capability of the MLPs in modelling dynamic
systems can be enhanced using time delays. These provide
a sequence of input vectors that occur in a certain time order.
For the ANNs to predict a wide range of flow situations, it
is important that the networks are able to generalise different
ranges of data sets. A network with too few neurons may
not approximate different flow situations. A network that is
too complex may fit the noise, not just the signal, causing
over-fitting. This may lead to a network that performs very
well for the training data set, but becomes unable to
generalise to a new situation.

It is customary to use validation and test data sets to assess
the capability of the trained ANNs. Validation sets are
separate sets of data, to be used during the training process
to monitor the generalisation capability. Normally, the errors
ofthe validation data sets decrease during the initial training
iterations but begin to rise when the network begins to over-
fit the training data. When the validation errors increase for
the number of iterations in a criterion specified by ‘early
stopping’, the training process is stopped. The test sets are
independent sets of data, not used in training or validation,
and are to be used to evaluate the network performance.
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ACTIVATION FUNCTIONS
The activation function transforms signals y, at a neuron

using some function f (y,). Different activation functions
investigated in this study are given below.

i. Linear function calculates the neuron’s output by simply
summing all the input y, and bias b passed to it. This
may be modified by a factor a to provide different
limiting amplitudes. This function is defined as

fy)=ay forally, (D

ii. Sigmoidal function produces an output in the range 0
to +1. This function has the following form

1
fye)=—"" @)
V)= ooy, )

iii. Hyperbolic tangent function is mathematically
equivalent to tanh(y,) and produces an output in the
range -1 to +1. This function is given by

2
f =1 3
Vi) T+ exp(2y ) (3)

iv. Hyperbolic tangent + linear function can be used to
combine non-linearity of the hyperbolic tangent function
with the linear function using the weighing factor +.
This function is of the form

2 )_1ja+(1—a)yk 4)

fvi)= (1 +exp(-2y,

Figure 2 shows these four different activation functions for
the data range —2 to +2. From the figures it can be seen that
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Fig. 2. Activation functions

the sigmoidal function provides the lowest limiting
amplitude and the linear function the highest limiting
amplitude. The limited amplitude range provided by the
functional output of the sigmoidal and hyperbolic tangent
functions produces a ‘squashing effect’ to the input signals.
The sigmoidal and hyperbolic tangent functions are most
commonly used only at the hidden layers. If the output layers
use sigmoidal or hyperbolic tangent functions, the outputs
are restricted to a small range of values. The application of
the linear function at the output layer makes it possible for
the network to take any value.

Study area and data

The Neckar is a major tributary of the Rhine and flows
through the region of Stuttgart, Heidelberg and Mannheim
in south-west Germany. The study area consists of a reach
of about 100 km from Lauffen to Heidelberg (Fig. 3) with a
catchment area of 13 787 km? at the Heidelberg station. Time
series of flow and water level data at one hour intervals are
available from the gauging stations located at Lauffen,
Rockenau and Heidelberg and water level time series are
available from Gundelsheim station for the 1988, 1990 and
1993 flood events. Flow time series from the major
tributaries Kocher, Jagst and Elz and the smaller tributaries
Schwarzbach, Elsenz and Itter are also available for the same
years. There is also a functioning one-dimensional
hydrodynamic numeric (HN) model of the study area, with
cross-sections at 100 m interval. Only the simulated flows
from the HN model at Gundelsheim station, where no flow
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Fig. 3. Study Area
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Table 1. Statistical characteristics of the flow data at Rockenau and Heidelberg gauging stations

Data set Meanflow Maximum Minimum Standard
(m?s™) flow (m? s™) flow (m*s™)  deviation

Rockenau

Training set (1988) 958 1930 341 399

Validation set (1990) 583 2225 144 576

Test set (1993) 713 2680 232 579

HEIDELBERG

Training set (1988) 1060 1945 374 401

Validation set (1990) 666 2299 224 604

Test set (1993) 807 2706 275 597

data are available, are included for model training and
validation. The available flow data were divided in such a
way that the maximum flows of validation and test data sets
exceed the range of training data sets. The flow time series
from the 1988 flood event was used as training set, and
flood event data from 1990 and 1993 were used as validation
and test data sets. The statistical characteristics of the flow
data at the prediction stations Rockenau and Heidelberg are
summarised in Table 1.

A cross correlation analysis was performed on the time
series flows to identify a suitable lag time from upstream to
downstream points. The cross correlation analyses of the
time series water level data from Lauffen, Gundelsheim and
Rockenau stations yielded the suitable lag time for
Gundelsheim and Rockenau with respect to the upstream
stations. Similarly, the analysis between the flow data from
Rockenau and Heidelberg gave the lag time for the
Heidelberg station. The lag times for the tributaries’ inflows
were calculated based on their distances. The lag times with
respect to forecast stations Gundelsheim, Rockenau and
Heidelberg for the upstream stations in the Neckar river and
the tributaries are given in Table 2.

Table 2. Lag time with respect to forecast stations

Forecast station Upstream stations Lag time (hrs)

Gundelsheim (Neckar) Lauffen (Neckar)
Stein (Kocher)
Untergriesheim (Jagst)

N W

Rockenau (Neckar) Gundelsheim (Neckar)

Mosbach (Elz)

Heidelberg (Neckar) Rockenau (Neckar)
Eschelbronn (Schwarzbach)
Eberbach (Itter)

Meckesheim (Elsenz)

N NN N W
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The forecast horizons at Gundelsheim, Rockenau and
Heidelberg with respect to the upstream flows are each 2
hours. However, since the contribution from the tributaries
Elz, Schwarzbach, Elsenz and Itter are quite small compared
to flows in the rivers, their flows can be assumed to be
constant for the duration of forecast to increase the forecast
horizon. This increases the forecast horizon at Rockenau
station to 5 hours and Heidelberg station to 7 hours. The
forecast horizon can be increased further by integrating with
external models such as the rainfall-runoff models.

River flow prediction

The selection of appropriate input and output data sets is an
important consideration in the ANN modelling. A number
of experiments was performed with the division of river
reach into different ANN blocks. In the first experiment the
ANN was used to predict flows at the gauging station
Rockenau, based on the upstream flows from Lauffen
(Neckar), and the tributaries Kocher, Jagst and Elz. However,
although the network functioned quite well for the training
and validation data sets, it did not perform well for the test
data sets.

As a functioning HN model is available for the study area,
it was decided to integrate the HN simulated results from
Gundelsheim for the ANN training. It was observed that
the integration of HN model results from Gundelsheim
improved the performance of river flow prediction at
Rockenau. Accordingly, the river reach was divided into
three ‘sub-reaches’ represented by independently trained
ANN blocks. The observed flows at Lauffen, Rockenau and
Heidelberg stations, together with the tributaries and HN
model results from Gundelsheim, were integrated for the
ANN training. The inflows and the desired outflows for each
of the ANN blocks are summarised in Table 3. Outputs of
the best performing networks from previous blocks were
used as inputs to next blocks.
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Table 3. Network inputs and desired outputs

Network block  River sub-reach Network input Desired output

ANN block 1 Lauffen — Gundelsheim Measured flows from gauging stations at Simulated flows from the HN
Lauffen, and tributaries Jagst and Kocher model at Gundelsheim

ANN block 2 Gundelsheim — Rockenau Simulated flows from the ANN block 1 at Measured flows from gauging
Gundelsheim, and measured flow from stations at Rockenau
gauging station at the tributary Enz

ANN block 3 Rockenau — Heidelberg Simulated flows from the ANN block 2 at Measured flows from gauging

Rockenau, and measured flows from

stations at Heidelberg

gauging stations at the tributaries Schwarzbach,

Elsenz, and Itter

The input data sets for the ANN trainings were scaled in
the range [0.2 — 0.8]. Each of the ANN blocks was trained
with one input layer, two hidden layers and one output layer.
The number of neurons in the networks was kept to a
minimum of eight in the first hidden layer, four in the second
hidden layer and one in the output layer. There was no
significant improvement of the model performance with the
increase in number of neurons. Each of the networks
consisted of a linear activation function in the output layer.
The networks were trained with four different activation
functions in the first hidden layer, namely linear, sigmoidal,
hyperbolic tangent and a hyperbolic tangent + linear
function. The weighing factor + for the hyperbolic tangent
+ linear function was varied between 0.4 and 0.8 during
training process.

The networks were trained using the procedures from
MATLAB neural network toolbox. This involved network
designing using text files containing MATLAB code (M-
files). The training is done using a backpropagation
algorithm with Bayesian regularisation of the Levenberg-
Marquardt approximation. The early stopping criteria
provided by the validation data sets were used to prevent
overtraining. The test data sets were used independently for
the evaluation of the model performance. The best

Kocher ‘
ANN E)
Neckar(Lauffen) () Block 1 §
c
>
Jagst Oi ° Elzof
Correlated Model Validation
Inflows & Testing

ANN
Block 2

performing network blocks in each of the sub-reaches (with
the hyperbolic tangent and linear function in the first hidden
layer for the first and third blocks and hyperbolic tangent
function in the first and second hidden layers for the second
block) were combined in the Simulink environment and an
ANN simulation model was formulated. The combined ANN
simulation model is schematised in Fig. 4.

Error Measurement

Table 4 shows the statistics of the error comparison used in
this study. The error measurement process consists of
analysis of errors between observed and calculated values.
The overall performance of trained networks can be judged
with respect to criteria such as the coefficient of efficiency
(CE) and coefficient of determination (R?). These
coefficients are independent of the scale of data used and
are useful in assessing the goodness of fit of the model
(Dawson et al., 2002; Dawson and Wilby, 1999). The root
mean square error (RMSE) evaluates the error independent
of sample size and can give useful insights into amplitude
errors. The difference in peak flow between observed and
calculated flows was considered to assess the prediction
capability of the trained networks beyond the calibrated range.

Itter

Elsenz

Rockenau
Heidelberg

Schwarzbach()
Model Validation Model
& Testing Outflow

Fig. 4. ANN simulation model

317



Rajesh Raj Shrestha, Stephan Theobald and Franz Nestmann

Table 4. Error measurement formula

Error measurement Name Formula
S _ 2
Coefficient of efficiency CE . ;(0""5 )
D (Qus = Qu, )

I

Coefficient of determination R’

B

{ > (Que - Qu)(Qu —Qw,av)}

(Qu —Qav)}[i @ —Qw)}

Root mean square errors RMSE Ei(@m -Q,)
n i=1
Difference in peak flow DPF Q,s(max)— Q,, (max)

Where n is the number of observations, O, and Q_ are the
observed and calculated values respectively, and Q_,  are the
mean of the observed and calculated values. O, (max) and Q
(max) are the maximum of observed and calculated values.

cal

Results

PERFORMANCE OF THE ROCKENAU ANN MODELS

The performance of the ANN models for the test data sets
(1993 flood event) for the prediction of flow at Rockenau
station are summarised in Table 5. The ANNs were trained
with the upstream flows from Lauffen (Neckar) and the
tributaries Kocher, Jagst and Elz. All the ANN models using
different activation functions underestimated the flow at
Rockenau station for the test data sets. The ANN with the
activation function with a lower limiting amplitude such as
a sigmoidal and hyperbolic tangent function in the hidden
layer had a higher level of underprediction. Figure 5 shows
the partial results of the model corresponding to the 1993
flood event, for the period 21.12.1993 to 25.12.1993.

PERFORMANCE OF THE SUB-REACH MODELS

The performances of different activation functions for the
test data sets are summarised in Tables 6, 7 and 8. In the
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Fig. 5. Comparison of model performance of different activation
Sunctions at Rockenau using upstream flows from Lauffen and
tributaries

ANN block 1 between Lauffen and Gundelsheim, the
network could easily approximate the training data sets. For
training and test data sets, there was a tendency to decreasing
error when activation functions with higher limiting
amplitude were used. The application of the sigmoidal and
hyperbolic tangent functions underestimated the peak flows
whereas the linear function overestimated the peaks. The
application of the combination of hyperbolic tangent and
linear function (a = 0.5) at the first hidden layer gave the
best performance in terms of CE, R? and RMSE. The
difference in peak flow was also found to be least using this
activation function.

In the ANN block 2 between Gundelsheim and Rockenau,
the performance of the networks was similar to the ANN
block 1. The application of activation functions with higher
limiting amplitude produced better results. However, there
was an overall trend of underestimation of peaks, even with
the linear activation function. Only with the application of
hyperbolic tangent activation functions at the first and
second hidden layers was the network able to predict peak
flows with reasonable accuracy.

Table 5. Network performance in the reach between Lauffen and Rockenau

Activation functions

Coefficient of efficiency Coefficient of determination Root mean square error Difference in peak flow

CE R’ RMSE (m®s™) (m*s™)
Sigmoidal 0.9498 0.9771 141 273
Hyperbolic tangent 0.9565 0.9777 132 230
Hyperbolic tangent + linear 0.9534 0.9771 142 176
Linear 0.9535 0.9810 137 169
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Table 6. Network performance in the reach between Lauffen and Gundelsheim

Activation functions

Coefficient of efficiency Coefficient of determination Root mean square error Difference in peak flow

CE R’ RMSE (m®s) (m’s)
Sigmoidal 0.9847 0.9907 72 118
Hyperbolic tangent 0.9887 0.9922 62 54
Hyperbolic tangent + linear 0.9918 0.9937 56 -36
Linear 0.9895 0.9921 66 -176

Table 7. Network performance in the reach between Gundelsheim and Rockenau

Activation functions

Coefficient of efficiency Coefficient of determination Root mean square error) Difference in peak flow

CE R’ RMSE (m’ s ™) (m*s)
Sigmoidal 0.9698 0.9804 116 165
Hyperbolic tangent 0.9634 0.9820 121 246
Hyperbolic tangent + linear 0.9639 0.9801 119 205
Linear 0.9650 0.9787 122 154
Hyperbolic tangent in first ~ 0.9806 0.9877 95 -47

& second hidden layers

Table 8. Network performance in the reach between Rockenau and Heidelberg

Activation functions

Coefficient of efficiency Coefficient of determination Root mean square error Difference in peak flow

CE R’ RMSE (m’ s ™) (m*s)
Sigmoidal 0.9563 0.9671 136 215
Hyperbolic tangent 0.9566 0.9817 135 163
Hyperbolic tangent + linear 0.9581 0.9752 142 62
Linear 0.9649 0.9790 109 -126
The statistical performances of the model from Gundelsheim

Gundelsheim to Rockenau are compared with the Rockenau
ANN model, which do not integrate the HN model results
from Gundelsheim (Table 5 and 7). The statistical
performance in terms of CE, R?, RMSE and difference in
peak flow of the Gundelsheim to Rockenau ANN models
using all activation functions are found to be superior.
The performance ANN block 3 between Rockenau and
Heidelberg also improved with the application of activation
functions with higher limiting amplitude. There was also a
general trend of underestimation of peaks. The difference
in peak flow prediction was also found to be lower using
activation functions with higher limiting amplitude. The
hyperbolic tangent + linear function (& = 0.7) gave the best
performance in terms of CE, and difference in peak flow.
Partial results of the model showing peak discharges for
the test data sets in the period between 21.12.1993 and
25.12.1993 are shown in Figs. 6, 7 and 8. In Fig. 6, the

3000 T T T
=== HN-simulated

— Linear function
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2500 —— Hyperbolic tangent function
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Time (hrs)

Fig. 6. Comparison of model performance of different activation
Sunctions at Gundelsheim (Block 1)
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Fig. 7. Comparison of model performance of different activation
Jfunctions at Rockenau (Block 2)
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Fig. 8. Comparison of model performance of different activation
functions at Heidelberg (Block 3)

ANNSs results are compared with the simulated flows from
hydrodynamic numerical (HN) model. Figures 7 and 8 show
the comparison with both HN model results and measured
flow series.

It is to be noted that the statistical performance of the
ANN model for block 1 is not consistent with blocks 2 and
3 as the results of block 1 are compared with the HN model
simulations and blocks 2 and 3 with the measured data.

ANN MODELS FOR EXTREME FLOWS
To test the ability of ANNs to predict extreme events,

simulations were made with all the upstream inflows
multiplied by a factor 1.5. The ANN simulation model
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containing the best performing ANN blocks in the previous
section was used. Simulations using the HN models were
also made by multiplying the upstream flows by 1.5. The
outputs of the HN model and ANN simulated results were
compared with each other. Figures 8, 9 and 10 show the
comparison of the results at Gundelsheim, Rockenau and
Heidelberg respectively with 1993 flows multiplied by 1.5.
The comparison of results of the two models indicated a
good match for the Gundelsheim station and an under- or
overestimation for the Rockenau and Heidelberg stations.
The ANN outputs showed underestimation at Gundelsheim
(ANN block 1) and Heidelberg (ANN block 3), and

Gundelsheim
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2500
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Fig. 9. Comparison of model performance at Gundelsheim using 1993
Sflows multiplied by 1.5 (Hyperbolic tangent + linear activation
Junction)

Rockenau
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Fig. 10. Comparison of model performance at Rockenau using 1993
flows multiplied by 1.5 (Hyperbolic tangent activation function in
two hidden layers)
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Heidelberg
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Fig. 11. Comparison of model performance at Heidelberg using 1993
flows multiplied by 1.5 (Hyperbolic tangent + linear activation
function)

overestimation at Rockenau (ANN block 2). It is interesting
to note here that ANN blocks 1 and 3 have a combination of
linear and hyperbolic transfer functions at the first hidden
layers and ANN block 2 has hyperbolic transfer functions
at the first and second hidden layers.

The result highlighted a random behaviour of the ANNs
when used to predict extreme flow events. It might function
quite well in some cases and not so well in other cases.
Hence caution needs to be exercised in the use of ANNs for
forecasting extreme events. It is also important to specify
the forecasting range of the trained ANNs.

Conclusions

This paper has presented an ANN-based approach for the
simulation of flood flows in the Neckar River in Germany.
The river reach was divided into three ‘sub-reaches’ for the
ANN trainings. The effects of different activation functions
at the first hidden layer of multilayer perceptron (MLP)
neural networks were evaluated for predicting flows beyond
a calibrated range. This evaluation was made in terms of
test data sets with higher peaks, above the range of training
data sets. Four different activation functions, the sigmoidal,
hyperbolic tangent, linear, and a combination of hyperbolic
tangent and linear functions were investigated in this study.

The results of this study indicate that the ANNs provide
an efficient means of flood flow forecasting. Compared to
a HN model, which requires a lot of cross-sectional data,
the ANN model can be quickly trained to forecast flows at
specific sections in the river reach. The division of river
reach into ‘sub-reaches’ facilitates the integration of data

from observations and numerical model results. This also
provides guidance to the network training and enhances the
overall model performance. The assessment of results of
the trained networks shows that a combination of hyperbolic
tangent and linear transfer functions at the first hidden layer
generally produced the best performance. This function has
higher limiting amplitude and also imparts non-linearity to
the networks. Hence, the ANNS in a suitable configuration
can extend the forecasting capability to a certain extent
beyond the range of calibrated data sets. It is, however,
important to exercise caution in using ANNs for extreme
flood events.
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