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Abstract

Three updating schemes using artificial neural network (ANN) in flow forecasting are compared in terms of model efficiency. The first is the
ANN model in the simulation mode plus an autoregressive (AR) model. For the ANN model in the simulation model, the input includes the
observed rainfall and the previously estimated discharges, while the AR model is used to forecast the flow simulation errors of the ANN
model. The second one is the ANN model in the updating mode, i.e. the ANN model uses the observed discharge directly together with the
observed rainfall as the input. In this scheme, the weights of the ANN model are obtained by optimisation and then kept fixed in the procedure
of flow forecasting. The third one is also the ANN model in the updating mode; however, the weights of the ANN model are no longer fixed
but updated at each time step by the backpropagation method using the latest forecast error of the ANN model. These three updating schemes
are tested for flow forecasting on ten catchments and it is found that the third updating scheme is more effective than the other two in terms
of their efficiency in flow forecasting. Moreover, compared to the first updating scheme, the third scheme is more parsimonious in terms of
the number of parameters, since the latter does not need any additional correction model. In conclusion, this paper recommends the ANN
model with the backpropagation method, which updates the weights of ANN at each time step according to the latest forecast error, for use in

real-time flow forecasting.
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Introduction

The application of the artificial neural network (ANN) in
hydrology, especially in rainfall-runoff modelling, has
become very popular in recent years because the ANN
models have the ability to approximate any continuous (non-
linear) relationships (Hsu et al., 1995; Imrie et al., 2000;
Dekker et al.,2001). Such applications can be found in many
papers published recently (French et al., 1992; Zhu et al.,
1994; Hsu et al., 1995; Smith and Eli, 1995; Minns and Hall,
1996; Shamseldin, 1997; Campolo ef al., 1999; Gautam et
al., 2000; Imrie et al., 2000; Chang and Chen, 2001;
Shamseldin and O’Connor, 2001; Xiong and O’Connor,
2002; Campolo et al., 2003; Wilby et al., 2003; Jain et al.,
2004). All these works have demonstrated that ANN models
are indeed very flexible and sufficiently efficient to simulate
the rainfall-runoff processes.

In most cases, the ANN models used in hydrology are
regarded as black-box models that cannot provide any
physically realistic structure and parameters to represent the
hydrological processes in catchments, even though they are
capable of identifying complex non-linear relationships
between rainfall and runoff time series (Hsu et al., 1995).
In this sense, the ANN model is not an alternative to the
conceptual or the physically-based distributed model for the
analysis of the physical mechanisms of the hydrological
processes in the catchment. However, recent works (Wilby
et al., 2003; Jain et al., 2004) have demonstrated that a
trained ANN rainfall-runoff model can, to some degree,
reflect certain physical processes in catchments.

When any rainfall-runoff model, including an ANN
model, is intended for use in a real-time forecasting situation,
it will be associated with an explicit or implicit updating
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procedure whereby, at the time of making the forecast, errors
already observed in recent forecasts will be used to modify
the forecast. These errors result from inadequacies in the
model structure, incorrect estimation of the model
parameters, errors in the data or, indeed, the absence of any
consistent relationship in the data (Kachroo and Liang,
1992). Observation of the structure of the error persistence
can provide the basis for an updating procedure. Although
the ultimate objective of the updating procedure is to
improve flow forecasts, the items used in the updating
procedure can be one or more of the following: inputs:
rainfall, state variables such as soil moisture content, model
parameters, or outputs such as the simulated flow
(Georgakakos and Smith, 1990; WMO, 1992).

In this paper, the three updating schemes using ANN in
real-time flow forecasting are compared in terms of model
efficiency. The paper is organised as follows. Firstly, the
basic framework of employing an ANN in rainfall-runoff
modelling is presented. Secondly, three updating schemes
using an ANN in flow forecasting are described in detail.
Finally, these three updating schemes using an ANN are
applied to ten catchments and the results are compared.

Artificial neural networks (ANNs)

Many ANN structures have been proposed and explored
for tasks such as recognition, learning, forecasting and
controlling. Among these different structures, the multilayer
feed forward networks have the best performance in the
context of input-output function approximation (Haykin,
1994; Friedman and Kandel, 1999). As a matter of fact,
almost all ANNs explored in rainfall-runoff modelling are
multilayer feed forward networks (Campolo et al., 1999).

A typical multilayer neural network with a single hidden
layer is illustrated in Fig.1 (Friedman and Kandel, 1999). It
has inpl,llt nodes {Xi(p)}in:l (and a bias), hidden nodes

Z( p)} ;-1 (and a bias) and output nodes fY. ( p)}L”:l, where
X, Z, and Y represent the input, hidden and output layer
respectively, n, [, and m represent the number of the nodes
in each layer and p denotes training pattern. The weights
associated with the connections between the input and the
hidden nodes are denoted by V;;, 0<i<n, 1< j <1 and
those between the hidden and the output nodes are denoted
by Wj, 0<j<I,1<ks<m.

For node Zj in the hidden. layer (Fig.1), its effective
income signal, denoted by Z_In; , is calculated as

Z_inj=vo; + D VX 1< j<| (1)
i=1

where X;, 1< < n, represents the input to each node in
the input layer.
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Fig.1. A multilayer neural network with a single hidden layer

For node Z, its corresponding output signal, denoted

by Z;, is obtained by using an activation function f (X)
z,=f(z_inj), 1< j<lI )

The most widely used activation function is the sigmoid
function (Haykin, 1994; Friedman and Kandel, 1999;
Dekker et al., 2001). Among several different sigmoid
functions, the one most often used for ANNs is the logistic
function

1

Z:f(z_in-)=1+exp( ~c-z_in;) ®)

J ]

where O is an adjustable parameter used in the activation
function f(X).

Among the algorithms used to perform supervised
training, the backpropagation method (Rumelhart et al.,
1986) has emerged as the most widely used and successful
algorithm for the design of the multilayer feed forward
neural networks (Haykin, 1994) and in hydrology, the
backpropagation method has already been used (French et
al., 1992; Gautam et al., 2000; Wilby et al., 2003).

Application of ANN in rainfall-runoff
modelling

As any catchment has a certain storage capacity, the runoff
at its outlet is related not only to the current rainfall rate but
also to the past rainfall and runoff situations. For a discrete
lumped hydrological system, the rainfall-runoff relationship
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(Input layer)

(Hidden layer)

(Output layer)

Fig.2. The block diagram of the ANN for rainfall-runoff modelling (where B is the unit delay operator or the backward shift operator, defined
by B Q(t) = Q(t - rAt) forr=0,1,2.)

can be generally approximated as (Chow et al., 1988; Hsu
et al., 1995)

Q(t) = FR(), R(t - At),..., R(t — N, At), Q(t — At),
~Q(t—n,Ab)] €

where R represents rainfall, Q is runoff at the outlet of the
catchment, F is the appropriate model structure (i.e. the
mathematical functions), At is the data sampling interval,
and N, and Ny are positive integers reflecting the memory
length of the catchment. When the ANN is implemented to
approximate the above relationship between the catchment
average rainfall and runoff, there will be a number of
N, + N, +1 nodes in the input layer, i.e. n= N, + N, +1,
while there is only one node in the output, i.e. m = 1. The
corresponding ANN block diagram is plotted in Fig.2.

Three updating schemes for real-time
flow forecasting

Three kinds of real-time flow forecasting schemes involving
the ANN models are described in detail as follows.

UPDATING SCHEME NO.1

The first updating scheme is the ANN model in the
simulation mode plus an AR model, which involves three
steps. Firstly, use one of the global search methods (Duan
et al., 1992) to find a set of optimum values for the weights

in the ANN model, which are denoted by Vi?pl ,0<i<n,
1< j<I and Wﬂft, 0< j<Il, 1<k <m. The inputs to
the ANN model include the observed rainfall and the
estimated discharge at the previous steps. In this paper, the
selected optimisation algorithm is the Simplex method (Press
et al., 1989). The estimated runoffs, denoted by Q(t) , will
be determined as a function of those optimum weights of
the ANN, which is expressed as

Q(t) = Fau[R(), R(t — AL),..., R(t — N, A),
Q(t - AL),..Qt —n AV, WH] ()

i
Secondly, according to the simulation error series of the
ANN model, an AR model is employed to estimate such
errors

&t)=a, +aie(t—At)+aze(t—2At)+...+ase(t—sA(t2)

where e represents the flow simulation errors of the ANN
model, i.e. e= Q- (5, a, is the regression constant term,
a,,a,,...,a, are the regression coefficients, s is the order
of the AR model, and @ is the estimated error.

Finally, the updated forecast, denoted by Q'(t), is
calculated by

Q (1) = Q(t) +&(t) )

This first updating scheme, i.e. the ANN model in the
simulation mode plus the AR model as the corrective model,
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is the most widely used paradigm in real time flow
forecasting (Kachroo and Liang, 1992; WMO, 1992; Xiong
and O’Connor, 2002).

UPDATING SCHEME NO.2

The second updating scheme is the ANN model in the
updating mode using, rather than those simulated, the
observed discharges, together with the observed rainfall, as
the input. In this scheme, the weights of the ANN model are
obtained by optimisation and then kept fixed in the
procedure of flow forecasting. Mathematically, this updating
scheme is expressed as

QM= Fan[R(E), R(t - At),...,R(t—n, At), (8)
Q(t - At),...Q(t — nyAt) Vvor W?Et

i

The optimised values of the weights V{” and W' found
in this scheme will be different from those in the first
updating scheme because of the different inputs.

UPDATING SCHEME NO.3

The third updating scheme is the ANN model in the updating
mode but the weights of the ANN model are no longer fixed
but updated at each time step by the backpropagation method
(Rumelhart ef al., 1986) using the error in the latest forecast
of the ANN model. These new weights are used to forecast
the runoff at the next time step. Thus, it is no longer necessary
to find a fixed set of the optimum values for the weights
Vi,0<i<n,1<j<I and Wi, 0<j<l,1<k <m,but
rather to find a set of optimum values just for the initial
weights Vi(jo) and Wgﬁ) . This third real-time forecasting
scheme is explained mathematically as follows.

At time step (t — 2At), assume that updated weights for
the ANN model have been obtained by the backpropagation
method for the next time step (t—At); these updated
weights are denoted V;; (t — At) and W, (t — At) . The flow
forecast for Q(t—At), which is Q'(t—At), is then
calculated as:

Q'(t — At) = F [R(t — At), R(t — 2At),..., R(t — (n, +1)At),

Q(t - 2At),..Q(t - (n, +1)A)

v, (t - At), W, (t - At)]
©

At the next time step, i.e. the time step (t—At), the
measurement of the discharge, Q(t—At) is now available.
According to the error in the latest forecast i.e.
Q(t — At)—Q (t—At), the weights of the ANN will be
updated again as follows:
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\J ® =V (t_At)+Avij (t-At), 1<i<n,1<j<I
(10)

ij(t) :ij(t_At)+Aij(t_At)> 1<j<l,i<k<m
(11)

where V;; (t) and W, (t) are the updated weights to be used
for flow forecasting at the time step 7, AV; (t—At) and
ijk(t — At) are the weight correction terms, which are
determined according to the forecast error
Q(t —At) —Q'(t — At) .

With the weights V;; (t) and W, (t) now obtained, the flow
forecast of the ANN for the time step ¢, is expressed as

Q (t) = Fyw[R(), R(t — At),...,R(t — n, At),
Q(t - At),..Q(t — n, At)v; (t), w, (t)] (12)

where Q (t) is the real time forecast for the flow discharge
Q) -

At time step 7, when the observed discharge Q(t) is
available, then the weights will be updated again for
forecasting at the next time step (t+ At). The above
procedure will be repeated as time proceeds.

In this third updating scheme, the initial values for the
weights Vi(jo) and Wgﬁ) , in theory, can be determined by any
optimisation method. For example, the optimised weight
values Vi" (0<i<n,1<j<l) and w@ (0<j<I,
1<k <m), used in the second updating scheme, may be
taken as the initial weights Vi(jo) and wi .

Applications of the ANN in flow
forecasting

THE STUDY CATCHMEN'T
Ten catchments have been selected to test the efficiency of

the three updating schemes. Basic information on these ten
catchments and the data used are in Table I.

THE MODEL EFFICIENCY CRITERIA

The main model criterion for assessing the ANN model
efficiency is chosen to be the widely used Nash-Sutcliffe
model efficiency index R? (Nash and Sutcliffe, 1970). The
second index to assess the model performance is the index
of volumetric fit (/V'F), which is defined as the ratio of the
simulated runoff volume to that observed. In fact, many
different model forecast performance criteria are available
(e.g. WMO, 1975; ASCE, 1993; Legates and McCabe, 1999;
Beran, 1999), corresponding to different objectives and
different perspectives but the Nash-Sutcliffe index R? is
probably the most widely used and perhaps the most
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Table 1. Hydrological conditions of the ten catchments

Name Country Area (km?)  Topography Climate Data for calibration and
verification (days)
Brosna Ireland 1,207 Flat Temperate 2922/730
Chu Vietnam 2,090 Hilly Monsoon 2922/730
Thimbu Tanzania 2,480 Hilly Semi-arid 1096/730
Kizu Japan 1,445 Hilly Humid 1096/730
Shiquan-1 China 23,805 Mixed Temperate 2191/731
Shiquan-3 China 3,092 Mixed Temperate 2191/731
Sunkosi-1 Nepal 18,000 Hilly Cold 2192/730
Qingjiang China 15,300 Hilly Humid 1461/365
Wolomi Brook Australia 1,580 Mixed Arid 1461/365
Yanbian China 2,350 Flat Semi-arid 2191/731

important index for assessing the flood forecasting
efficiency. As Legates and McCabe (1999) and others have
reported, the Nash-Sutcliffe index R? is rather crude; it is
oversensitive to extreme values, because of the squared
differences in the definition, yet is insensitive to additive
and proportional differences between model predictions and
observations. Despite its recognised limitations, the R
criterion has been adopted as the main forecasting efficiency
index in this study, supplemented by the index of volumetric
fit and also by subjective visual comparisons of the simulated
and observed discharge hydrographs.

THE RESULTS
The simulations of the three different updating schemes are
listed in Table 2. Those of the first updating scheme include
those for the simulation mode as well as for the updating
mode. In the simulation model, using values of the weights
determined by the Simplex optimisation method, the average
efficiency , R2, is 78.64% in the calibration period and
66.17% in the verification period. Using the AR model to
simulate the error series of the ANN improves the value of
R? t0 90.11% in the calibration period and 82.69% in the
verification period. For the second updating scheme, the
average model efficiency value, R, is 89.63% in the
calibration period and 80.55% in the verification period.
The third updating scheme, using the backpropagation
method to update the weights at each time step, gives R?
as 92.95% in the calibration period and 85.07% in the
verification period. It should be noted that the initial values
for the weights in the third updating scheme are also found
by the backpropagation training method. The simulated and
observed hydrographs for the Sunkosi-1 catchment are in
Fig.3 and for the Yanbian catchment in Fig.4.

The above results show that all three updating schemes

are more efficient than the ANN model in the simulation
mode. The improvement in the average model efficiency
value R? by the first updating scheme is 11.47% in the
calibration period and 16.52% in the verification period. In
the second scheme, the increase in R? is 10.99% in the
calibration period and 14.38% in the verification period.
For the third updating scheme, the increases in R? are
14.32% and 18.90% respectively, both of which are the
largest increases.

In terms of the improvement of the updating schemes on
the average model efficiency value R?, the first updating
scheme is the least effective, probably because the
parameters used in both the ANN (the substantive model)
and the AR model (the correction model) are fixed and not
very flexible in reflecting the time-varying characteristics
of the hydrological processes in the catchment over rather
long periods. The same is true for the second updating
scheme. However, in the third updating scheme, the
continuous updating of all weights in the ANN according
to the forecast error at the previous time step enables the
ANN model to track the time-variation characteristics of
hydrological processes.

Furthermore, compared to the first updating scheme, the
third updating scheme is more parsimonious in the number
of parameters since it does not need any correction model,
i.e. the AR model. This is because the ANN has the ability
to self-adjust its weights (or parameters) according to new
information, when the backpropagation method is used to
train the ANN model.

THE VARIATION OF THE WEIGHTS IN THE THIRD
UPDATING SCHEME

In the third updating scheme, the weights in the ANN model
vary at each time step. As an example, the variation processes
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Table 2. The results of three real-time forecasting schemes using the ANN

Catchment ANN structure Scheme No. 1 Scheme No.2 Scheme No.3
simulation updating
n, n [ m R(%) IVF R(%) IVF R(%) IVF R(%) IVF
Brosna 1 3 3 1 Cali. 50.96  0.99 92.19  1.00 91.94 1.00 92.88 1.00
Veri. 40.55 098 93.64 1.00 93.29  1.00 93.33  1.00
Chu 1 4 3 1 Cali. 7825 1.07 80.93  1.00 7598 1.06 85.50 1.05
Veri. 71.26  1.09 76.53  1.02 70.25  0.99 70.11 1.09
Thimbu 1 3 3 1 Cali. 65.81 1.03 95.54  1.00 96.18 1.00 95.78  1.00
Veri. 5134  1.18 94.65 1.01 95.04 1.03 9546  1.00
Kizu 2 1 3 1 Cali. 89.37 1.01 9231 1.00 91.39 1.02 93.50 1.02
Veri. 69.65 1.31 80.73 1.10 81.31 1.20 86.67 1.09
Qingjiang 3 2 3 1 Cali. 88.45 1.01 90.68 1.00 91.66 1.00 92.00 1.00
Veri. 86.51 1.00 89.94 1.00 88.47 1.05 87.96 1.01
Shiquan-1 2 1 3 1 Cali. 82.14 1.08 87.01 1.00 82.54 1.04 91.53  1.00
Veri. 54.14  0.96 69.53  0.95 77.10  1.04 67.02 094
Shiquan-3 1 3 3 1 Cali. 86.07 1.04 88.28 1.00 88.50 1.07 9193 1.05
Veri. 61.66 1.52 70.52  1.25 68.59 1.34 7549 1.12
Sunkosi-1 1 2 2 1 Cali. 92.16 1.02 95.94  1.00 97.77  1.00 97.65 1.00
Veri. 82.14 0.78 97.35  0.96 98.60 0.97 98.07 1.00
Wolomi 4 2 3 1 Cali. 72.02  0.95 87.15 1.00 89.02 0.80 95.03 1.11
Brook Veri. 65.82 1.56 64.67 1.15 43.51  1.05 85.19 0.92
Yanbian 1 3 3 1 Cali. 81.18 1.09 91.08 1.00 91.28 1.00 93.68 1.00
Veri. 78.66 1.10 89.33  1.00 89.32  1.00 91.44 1.00
Mean 78.64 1.03 90.11 1.00 89.63 1.00 9295 1.02
66.17 1.15 82.69 1.04 80.55 1.07 85.07 1.02
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Fig.3. The simulated and observed hydrographs on the Sunkosi-1 catchment

of four weights are plotted in Figs. 5 to 8. Figure 5 plots the
variation of the weight v(1,1) and Fig. 6 of the weight w(1,1),
both on the Kizu catchment. Figure 7 is the plot of the
variation of the weight v(1,3) and Fig. 8 of the weight w(3,1),
both on the Shiquan-3 catchment,.

These four figures show that the variation in all four
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weights is small compared to its average value. For example,
in the Kizu catchment, the weight v(1,1) varies between
0.3445 and 0.3485, while the weight w(1,1) varies between
0.490 and 0.515. In the Shiquan-3 catchment, the weight
v(1,3) varies between 0.150 and 0.162, while the weight
w(3,1) varies between —2.0045 and —2.0020. These changes
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Fig.6 The variation of the weight w(l,1) in the third updating scheme on the Kizu catchment
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Fig.7. The variation of the weight v(1,3) in the third updating scheme on the Shiquan-3 catchment
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Fig.8. The variation of the weight w(3,1) in the third updating scheme on the Shiquan-3 catchment

are small but even these small variations make the third
updating scheme more effective than the first updating
scheme, without any additional parameters.

Discussions and conclusion

In this paper, the three updating schemes using ANN in flow
forecasting are compared in terms of model efficiency. The
first updating scheme is the ANN model in the simulation
mode plus an AR model. For the ANN model in the
simulation model, the inputs include the observed rainfall
and the previously estimated discharges, while the AR model
is used to forecast the flow simulation errors of the ANN
model. The second updating scheme is the ANN model in
the updating mode, which uses the observed rather than
the simulated discharges, together with observations of
rainfall as the input, while the values of the weights fixed
as the optimised values found by the Simplex method during
the calibration period. The third updating scheme for flow
forecasting is still the ANN model in the updating mode;
however, the weights of the ANN model are no longer fixed
but updated at each time step by the backpropagation method
using the latest error in the forecast of the ANN model.
Through updating the weights in the ANNs at the each step
according to the backpropagation method, the outputs of
the ANNs are also updated.

The results of comparing these three updating schemes in
flow forecasting on the ten catchments show that the third
updating scheme is more effective than the other two
schemes in flow forecasting. In the first and second schemes,
the parameters used in both the ANN (the substantive model)
and the AR model (the minor model) are fixed and unable
to reflect the time-varying characteristics of the hydrological
processes in the catchment over rather long periods. In the
third updating scheme, the continuous updating of all
weights in the ANN according to the error in the forecast at
the previous time step, enables the ANN model to track the
time-variation characteristics of the hydrological processes.
It is also more parsimonious in terms of the number of
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parameters; it does not need any correction model because
the ANN self-adjusts its weights (or parameters) according
to new information, when the backpropagation method is
used to train the ANN model. Hence, this paper recommends
that the ANN model with the backpropagation method,
which updates the weights of ANN at each time step
according to the latest forecast error, is used for real-time
flow forecasting.
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