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Abstract

Physically-based water balance models require a realistic parameterisation of land surface characteristics of a catchment. Alpine areas are
very complex with strong topographically-induced gradients of environmental conditions, which makes the hydrological parameterisation of
Alpine catchments difficult. Within a few kilometres the water balance of a region (mountain peak or valley) can differ completely. Hence,
remote sensing is invaluable for retrieving hydrologically relevant land surface parameters. The assimilation of the retrieved information into
the water balance model PROMET is demonstrated for the Toce basin in Piemonte/Northern Italy. In addition to land use, albedos and leaf
area indices were derived from LANDSAT-TM imagery. Runoff, modelled by a water balance approach, agreed well with observations

without calibration of the hydrological model.
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Introduction

In the EU project RAPHAEL (Runoff and Atmospheric
Processes for flood HAzard forEcasting and control)
(Bacchi and Ranzi, 2003), remote sensing methods were
used for land surface characterisation of alpine catchments.
The basic objective of the RAPHAEL project was to couple
meteorological and hydrological models at the regional scale
to improve flood forecasting in complex mountain
catchments, as in the European Alps. (Fig.1). Numerical
Weather Prediction (NWP) is used to forecast precipitation;
if it exceeds a warning level, a flood model is initiated. This
flood model incorporates information on the hydrological
situation of the catchment, including the antecedent moisture
conditions from continuous water balance simulations.
The catchment under investigation, the Toce (Piemonte/
Northern Italy, approx. 1500 km?), is characterised by
extreme topography with elevations ranging from 200 to
4600 m. Corresponding to the strong topographically-
induced gradient of environmental conditions, the land cover
and surface properties are highly variable in space. Hence,
for water balance modelling, remote sensing methods were
applied to parameterise land surface variables. Land use was
classified using a fuzzy logic approach based on a maximum
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likelihood classification of LANDSAT-TM data. Variables
such as albedo and leaf area were also derived from the
satellite images. All these remotely sensed variables, in
combination with meteorological input and GIS data on
elevation and soil, were incorporated in the water and energy
balance model PROMET to calculate fluxes, latent heat and
evapotranspiration. These simulate the soil moisture
dynamics between storms and define the initial state of the
system prior to a possible flood.

Remote sensing methods

PROCESSING OF SATELLITE DATA

Two LANDSAT-TM images, in spring (May 30th) and
autumn (October 16th) 1996, were analysed to estimate
surface parameters for the Toce catchment. In the spring
image, snow is still prevalent in the upper regions of the
catchment, whereas in the autumn image the landscape is
snow free, except for glaciated regions. However, the scene
in autumn shows strong influence of illumination effects
due to the relatively low incidence angle of the sun at this
time of the year.
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Fig. 1. Concept for coupling meteorological and hydrological models

The remote sensing methods applied in the analyses of the
Toce catchment are summarised in Fig. 2, which illustrates
which data sets are required and how the processing steps
interact. A thorough geometric and atmospheric correction
of'the satellite data must be performed prior to any successful
land surface parameter retrieval. The applied geometric
correction consists of an ortho-rectification using a high
resolution digital elevation model (DEM) with 50 m raster
size. Adapted from Itten and Meyer (1993), it compensates
relief induced pixel displacement of up to 600 m contained
in the unprocessed TM data. Figure 3 (above) shows the
resulting orthorectified TM scene of May 30, 1996.

A further processing step consists of the correction of
atmospheric and illumination effects in the satellite images.
This is mandatory, especially in alpine regions where
irradiance conditions vary strongly depending on slope and
aspect of each pixel. For this radiometric correction, the
atmospheric correction procedure PULREF (Procedure to
Use LOWTRAN for REFlectance Calibration) (Bach and
Mauser (1994) was improved to account for the illumination
effect in mountainous regions.

PULREF models the irradiance on each pixel depending
on topographic information (elevation, slope, local solar
incidence angle), atmospheric information (visibility,
radiosonde profile) and sensor information (time of

acquisition, observation geometry, spectral band). Changing
atmospheric conditions are considered, depending on
elevation and the different illumination of each pixel, as
determined by the local solar incidence angle and terrain
irradiance. The total signal measured by a sensor is modelled
as four components described in Eqn. (1). This allows
consideration of the variation of direct and diffuse irradiance,
the terrain irradiance and the path radiance for each pixel.
The results of this atmospheric correction are surface
reflectance values of each spectral band.

L, =L sin(sz)sin(s) cos(az.y) + cos(sz)cos(s) (1)
otal T s COS(SZ)
(direct irradiance component)
1+ cos(s)
2
(diffuse irradiance component)

+ Ly

L, +L) {17 1+cos(s) COS(S)}
d S 2

(terrain irradiance component)

+ LI+L

p po

(path radiance component)
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Fig. 2. Applied remote sensing methods for the determination of
land use, albedo and LAI

where:

L, = totalirradiance over an inclined surface

L, = direct irradiance over a horizontal surface
L, = diffuse irradiance over a horizontal surface
L+L, = path radiance reaching a sensor

sz = solar zenith angle

s = slope of pixel

az, = relative azimuth between sun and sensor

The horizontal visibility parameterises the optical depth of
the atmosphere. It is a function also of aerosol content and
varies strongly with elevation. For a proper atmospheric
correction in alpine areas, consideration of the influence of
the vertical change of the optical depth is crucial. To allow
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Fig. 3. Band 5 (Short Wave Infrared) of the geometrically corrected
(above) and illumination compensated (below) TM scene of May 30,
1996. Note the 3D-effect caused by varying illumination, which is
only visible in the geometrically corrected data set.
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for this, a relationship describing the change of horizontal
visibility with elevation provided by Elterman (1964) was
incorporated in the radiative transfer modelling of the
atmosphere. This incorporation results in a spectrally
dependent decrease of path radiance and diffuse irradiance
(Lp+Lp0, L,) with elevation while the direct irradiance (L)
increases over high alpine areas.

Using the radiative transfer calculations, the image data
are atmospherically corrected and ‘normalised’ to flat terrain
conditions. Figure 3 (below) shows the resulting TM scene
of May 30,1996, where illumination effects have been
reduced to the widest extent. A spectral band in the short
wave infrared was selected for illustration, since, in this
wavelength region, diffuse components are weaker. This
gives a good impression of the terrain effect and its
correction.
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Figure 4 illustrates how the spectral signatures of the same
land cover under changing illumination conditions relate
with and without correction of illumination effects. It is quite
obvious that a classification of illumination-compensated
images will yield higher precision in considering the
difference in spectral signatures without the correction of
terrain-induced effects in the imagery.

LAND USE CLASSIFICATION USING A FUZZY
LOGIC APPROACH

Land use information is required both for the hydrological
and meteorological models. In alpine areas, the classification
of land use from optical multispectral remote sensing data
often fails using the standard Maximum Likelihood (ML)
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Fig. 4. The effect of illumination compensation demonstrated for areas of differing aspect. The spectra of the same land cover show much
higher similarity when corrected for terrain induced illumination differences.
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approach. Because of the spatial heterogeneity of surface
covers and the high variability of environmental conditions,
separability of spectral classes is very difficult, as standard
classification methods use only the spectral information of
each individual pixel (picture element). They rely on
statistical properties to determine to which land use class a
pixel has a similar spectral signature. However, in
mountainous regions, the strong environmental gradients
and different phenological development of vegetation may
result in pixels of the same land-use class not necessarily
exhibiting equivalent spectral properties. For example, a
meadow in the valley is spectrally not comparable with an
alpine meadow because their plant development and, hence,
their spectral characteristics differ. Also, typical land cover
such as rock surfaces and urban areas frequently lead to
spectral confusion, resulting in unsatisfactory classification
results.

To overcome these difficulties in the land-use
classification of a mountainous catchment, a fuzzy logic
classification algorithm is applied. The spectral probabilities
of the ML classifier are combined with the terrain
information on altitude and slope (termed geofactors), that
in a fuzzy manner are responsible for the spatial distribution
of land cover types.

The possibility of a specific land cover type varies with

the geofactors, which influence their spatial distribution.
Depending on the geofactor elevation, for instance, the type
of forest may change. Thus, at different elevations, each
forest type has a changing probability of occurrence; as this
change is gradual, the delimitation of the altitude where this
forest type occurs is fuzzy. The possibility of a certain land
use described by the geofactors can be combined with the
ML results based on the spectral information of the satellite
imagery, through the application of the Fuzzy Logic decision
procedure ENPOC (ENvironmental POssibility Classifier,
Stolz (1998)).

The description of these fuzzy limits for a land cover is
achieved through membership functions, which describe
gradual changes by assigning possibilities for a land cover
class to values of a geofactor (Fig. 5). The expression
‘possibility’ refers here to the grade of membership to a
fuzzy set. Physical laws, ecological rules or local
observations can be used to define membership functions
for each land cover to be classified and for each geofactor
available. The whole set of membership functions describing
the spatial distribution of classes comprises the knowledge
base for the classification.

The applied ENvironmental POssibility Classifier
(ENPOC) uses this knowledge base and combines it with
the standard ML classifier (Stolz, 1998). In the classification
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Fig. 5. Selected membership functions from the knowledge base for the fuzzy logic classification (ENPOC)
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of a pixel x, the possibilities for each class are determined.
The local possibilities m  and m_ are taken from the defined
membership functions according to the topical values of
each geofactor (el=elevation, sl=slope). The spectral
possibilities m_ are derived by first applying the maximum
likelihood classifier to the 6 spectral bands of the TM scene
(Eqn. 2). This step yields the probabilities of class
membership of a pixel.

1 1 ~
p(X|e)= nlexp[— E(X -m)'CH(X - m)j:
(27)?|C2 @)
where:
p(X |a)i ) = the conditional probability density for
class w,
|Ci | = the determinant of the variance-/
covariance matrix of the training set
for class w,
C - = inverse variance-/covariance matrix
X = data vector of the pixel to be classified
m = mean vector for class w,
n = number of spectral bands

To obtain the spectral possibilities for each class, the spectral
probabilities are standardised by the maximum probability
of the classification of a pixel (Eqn. 3)

p(x‘wi)

") oo, ®

Now the spectral possibilities can be combined with the
possibilities of each geofactor. The total possibility IT __ for

each class o, at pixel x is calculated using the fuzzy algebraic
product (Eqn. 4).

I (X|a)i ) =My (X|a)i )* Mmy (X|a)i )* Mg, (X|a)i ); 4)

Finally, defuzzification is carried out by determining the
land cover class with the highest IT_  and by assigning this
class to the pixel. A pixel remains unclassified when two
classes have the same value for IT_ .

Figure 6 shows the result of the standard ML-classifier
compared to the fuzzy logic approach for a TM-scene from
May 30th 1996. Clearly, the reduction of noise can be noted.
The integration of environmental information helps to
produce a realistic image of land cover in an alpine
landscape. Accuracy analyses of the classification using an
independent set of validation sites showed that the fuzzy
logic approach improved the results significantly (see
Table 1). Validation sites were selected from homogenous
sites elaborated in a field study in September 1997. These
were different from the training sets used for the
classification. One site per class was available for validation.
In Table 1 the term ‘producer’s accuracy’ refers to the
number of correctly classified pixels in each class divided
by the number of training set pixels used for that class. The
user’s accuracy is computed by dividing the number of pixels
correctly classified in each category by the total number of
pixels that were classified into that category. Finally, the
overall classification accuracy is obtained by relating the
total number of pixels correctly classified to the total number
of pixels classified (Lillesand and Kiefer, 2000).

Table 1 compares the accuracies of the classification of
single scenes with both approaches (ML and ENPOC). This
is improved in all cases through the consideration of
geofactors using fuzzy logic rules. For example, the overall
classification accuracy of the satellite image from May 1996
increased from 71% with the ML method to 90% applying
ENPOC.

The two satellite images were classified separately and
were combined consecutively using majority decision rules.
If a pixel was classified differently on the two occasions, it
was assigned the class for which IT_  is maximal. Further
enhancement of the result was achieved by complementing
the multitemporal classifications: if a pixel could not be
classified in one image, for instance when pixels were
shadowed in the October scene, the classification result of
the other image was selected. Likewise, if snow were

Table 1. Accuracy analyses of Maximum Likelihood (ML) and ENPOC fuzzy logic classification of the

Toce catchment. Through multitemporal combinations the ENPOC classification achieved best results.

ML ENPOC ML ENPOC  Mutiltemp.

May May Oct Oct ENPOC
Producer's accuracy [%] 60.3 83.0 56.2 82.0 92.2
User's accuracy [%] 56.8 84.5 59.4 83.1 94.0
Overall performance accuracy [%] 71.0 90.2 62.3 90.7 95.3
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classified in the image of May, the land use from the October
analyses was inserted. The resulting combined land use map,
derived from the multitemporal LANDSAT-TM data set, is
shown in Fig. 7 for the Toce basin. Using multitemporal
TM data of the Toce catchment and consecutive logical
combination of the respective classification result increased
the overall accuracy to 95%.

DERIVATION OF ALBEDO VALUES

The albedo of the land surface is important in the energy
balance and, thus, for the modelling of hydrological and
meteorological processes. The atmospheric correction of the
satellite data results in the transformation of radiance
measurements of the sensor to spectral reflectance values.
Figure 4 shows selected reflectance spectra derived from
the TM scenes, with the central wavelengths for each band
ofthe sensor indicated by symbols. The Landsat-TM sensor
bands cover only a fraction of the complete reflective
spectral range. Therefore, these reflectance values were
converted into albedos, which represent the reflectance over
the entire range from 0.4 to 2.5 um.

The two LANDSAT-TM scenes from May and October
were processed to provide albedo-maps of a spring and
autumn situation, respectively, using the procedure of
Gratton et al. (1993). Weighted functions of the TM-Bands
2, 4 and 7, listed in Table 2, were used to calculate albedo
values for different surface covers. The land cover resulting
from the Fuzzy Logic classification of the TM-scenes was
used to determine the appropriate function applied to a pixel.
Table 3 lists the results of the albedo calculation. The
temporal dynamics of the albedo of a land surface due to
the seasonal development of vegetation canopy is obvious.

DERIVATION OF LEAF AREA INDEX (LAT)

The leaves of a vegetative canopy can be critical for
hydrological modelling. The Leaf Area Index (LAI)
describing the leaf area per terrain surface area is highly
correlated to Vegetation Indices such as the commonly used

NDVI. The NDVI is derived from near infrared (NIR) and
visible bands (VIS) of remotely sensed data:

NDVI = (NIR-VIS)/(NIR+VIS) 5)

Exponential functions proven to describe the relationship
between LAI and NDVI were used to derive LAI values
for the Toce catchment using an exponential equation
proposed by Spanner ef al. (1990) for coniferous forests in
the Rocky Mountains. Equation (6) was adjusted to
formulate the LAI/NDVI relationship for different
vegetation types.

LAI=a * NDVI® (6)

For grassland, alpine meadows and agriculture, the
function could be fitted to a relationship of Ludwig et al.
(1999) and for deciduous and coniferous forests that of
Gregoire and Raffy (1997) These functions were then used
to determine LAI values. All LAI/NDVI relationships rely
on field measurements and the fitted functions represent
these findings through the coefficients a and b in Eqn. (6).
Again, the Fuzzy Logic classification results served to select
the appropriate function to be applied for an individual pixel.
The results of the LAI calculation for individual land use
classes are given in Table 4; the total means weighted for
the areas were 2.9 and 2.0 for May and October respectively.

Figure 8 shows the albedo and LAI map derived from the
LANDSAT-TM scene of May, 30th 1996. The albedo values
of up to 60% refer to snow which still covers the higher
altitudes in the spring scene. The lowest albedo values of
approximately 2% belong to water bodies like Lago
Maggiore.

The spatial distribution of the leaf area behaves quite
differently from the albedo. Minimum LAI values of zero
refer to areas free of vegetation at higher altitudes. Maximum
values occur on the forest stands on the slopes of the valleys.
Compared to the leaf area of forest, the agriculture and
grassland in the Toce valley have LAI values between 1
and 2.

Table 2. Land cover dependent weighted functions for the retrieval of albedo (a) from LANDSAT-TM-band-calculated reflectances

(TM2 - TM7) (after: Gratton et al., 1993)

Land cover type

Functions for albedo retrieval from TM bands

Bare ground, water bodies
Vegetated surfaces
Snow

a=0.493 (TM2) + 0.507 (TM4)
a=0.493 (TM2) + 0.353 (TM4) + 0.154 (TM7)
a=0.493 (1.12 [TM4]) + 0.203 (TM4) + 0.150 (0.30 [TM4]) + 0.154 (TM7)
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Table 3. Albedo values of individual surface-covers on a spring and autumn day in the Toce basin.

May 30th, 1996

October 16th, 1994

Land use class Mean AlbedoSt. Dev. % of Area Mean Albedo  St. Dev. % of Area
Snow 474 10.2 23.3 40.2 16.3 1.5
Settlements 16.5 2.3 2.2 10.5 3.2 1.8
Water 2.3 2.3 1.1 2.3 1.5 1.3
Grassland 17.8 2.8 7.1 15.0 2.4 3.0
Agriculture 19.8 1.4 0.3 12.9 1.5 0.2
Coniferous Forest 11.6 2.7 5.5 3.9 2.2 7.4
Rock 20.0 3.5 2.7 11.4 5.6 9.8
Gravel 21.4 33 2.1 20.0 3.6 3.5
Larches 13.2 1.9 10.2 83 3.7 10.2
Deciduous Forest 17.2 2.1 254 10.8 2.0 21.5
Mixed Forest 14.5 1.7 6.6 10.4 2.8 4.6
Alpine Meadows 20.8 4.1 7.4 14.9 2.8 11.0
Alder 15.8 1.3 4.3 12.0 1.3 4.0
Unclassified/Shadow - - 1.8 - - 20.2

Application of remotely sensed
variables in water balance models

THE WATER BALANCE MODEL PROMET

PROMET (PRocess Oriented Multiscale Evapo-
Transpiration model) is a family of land-surface processes-
models that describe the actual evapotranspiration at
different scales, ranging from field based modelling to
microscale and mesoscale modelling (Mauser 1989, 1991;
Mauser and Strasser, 1997). PROMET comprises a kernel
model, which handles the modelling of the actual
evapotranspiration process, and a spatial data modeller,
which consists of a set of parameter models providing and
organising adequate spatial input data on the field-, micro-
and mesoscale. The schematic structure of PROMET is
shown in Fig. 9.

Process modelling in PROMET
PROMET is based on the following assumptions and
formalisms:

® The kernel model uses the Penman-Monteith equation
(Eqn. 7) as an approximation to the actual
evapotranspiration for a large variety of natural

conditions.
1 pc
=——————|(RG)A+—"(e (T(Z))e(Z))} 7
A+7(ra+rc)/ri ra @
with A = latent heat of vaporisation of water
E water vapour flux per unit area
A slope of saturated water vapour curve
1% psychrometer constant
r, aerodynamic resistance
r, = canopy resistance

Table 4. Land use dependent functions for the retrieval of LAI from NDVI and resulting mean LAI values of
vegetated surface covers on a spring and autumn day in the Toce basin as derived from satellite measurements.

LAl =a * NDVI b

May 30th, 1996

October 16th, 1994

Land use class a b Mean LAI St. Dev. Mean LAI St. Dev.
Grassland 1.60 3.00 1.7 0.8 1.3 0.8
Agriculture 1.60 3.00 0.8 0.5 0.1 0.1
Coniferous 1.86 6.06 6.0 5.3 4.7 4.9
Larches 1.86 6.06 1.8 2.4 1.8 2.4
Deciduous 1.63 4.70 3.9 2.0 2.2 1.4
Mixed Forest 1.75 5.40 4.6 3.8 2.7 2.4
Alpine Meadows 1.60 3.00 0.2 0.3 0.3 0.2
Alder 1.63 4.70 0.2 0.2 0.5 0.4
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Fig. 8. Spatial distribution of Surface Albedo and LAI in the Toce Basin on May 30th 1996
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R, = flux density of net-radiation

G = flux density of soil heat flux

P = density of air

¢, = specific heat of air at constant pressure

e(T(2) = saturated waper vapour
pressure at temperature T [K] and
height z [m]

e(z) = partial pressure of water vapour at

height z [m]

In the Penman-Monteith equation, the influence of the
land-surface and its reaction to environmental
conditions is summarised in a surface resistance/
conductance. Stomatal resistance in the model is
determined as a function of intercepted PAR.
Temperature, humidity and soil moisture are introduced
as limiting factors for the stomatal resistance in the form
of an environmental influence function g:

b(PAR)
r.(PAR)= —PAR ™ (8)
g

with:
r. = stomatal resistance (m™')
r, = plant specific minimum stomatal resistance (m™)
PAR = photosynthetically active radiation (Wm™)
b = plant specific parameter
g = environmental influence function

Plant growth in the model is represented through the
temporal evolution of green leaf area index (LAI), plant
height and albedo. These can be provided through
analyses of remote sensing data. LAI is used in a 10-
layer radiative transfer model (Norman, 1979) to convert
the incoming PAR into fractions of shaded and sunlit
leaves depending on the solar elevation angle and
assuming that the leaf orientation is spherical. The
fraction of shaded and sunlit leaf area is used to convert
the stomatal conductance into a canopy conductance.
Soil water balance, soil suction and moisture in the root-
zone are determined through a simplified solution of
the Richards equation (Eagleson, 1978). For
homogeneous soils, the change in soil moisture © is
calculated using the one-dimensional Philip equation,
with time ¢, soil depth z, hydraulic conductivity K and
diffusivity D:

56—5[ )

ot oz

D(@)m} — §K7(®)

oz oz

The static soil hydraulic parameters necessary for the
calculations are pore volume, pore size distribution

index (Brooks, 1966) and bubbling pressure head. The
actual soil suction is determined from the soil moisture
budget, which results from infiltration, evapo-
transpiration, percolation, surface runoff and capillary
rise. Only one soil layer was considered in the soil model
with a depth variable depending on the rooting depth
of the land cover, which can vary from 20 to 200 cm.

® The snow cover is modelled in a one-layer sub-model
called ESCIMO (Energy Balance Snow Cover
Integrated MOdel) (Strasser and Mauser, 2001).
ESCIMO is designed as a physically-based model for
the hourly simulation of the energy balance, the water
equivalent and the melt rate of a snow cover. To simulate
the energy balance, the short- and long-wave radiation,
the sensible and latent heat fluxes, the energy conducted
by solid or liquid precipitation and a constant soil heat
flux are taken into account.

A detailed description of PROMET is in Mauser and
Schidlich (1998) which also describes the results of
sensitivity studies and validation with station measurements.
A long term application with 30 years of model calculations
with PROMET in the Weser catchment is demonstrated and
validated in Strasser and Mauser (2001).

Lateral flows of water and energy are considered only in
an extended version of PROMET (Ludwig, 2000), which
was not available for this study. Therefore, the applied
PROMET version treated each model cell independently.
Runoff concentration and flood routing were not calculated.

Spatial modelling in PROMET

The kernel model of PROMET is embedded in a GIS shell,
which provides and handles the necessary spatially
distributed input parameters. The following spatial parameter
fields are used as input to PROMET:

® soil physical parameters derived from soil maps

® terrain parameters derived from a digital terrain model,

e land use information from classification of remote
sensing data,

e meteorological variables: solar irradiance, air-
temperature, wind-speed, relative humidity and
precipitation, which are interpolated between station
measurements using terrain parameters.

As meteorological inputs, PROMET needs the spatial
distribution of the five meteorological variables for the
whole catchment. In interpolation, the elevation of each pixel
is required to determine the terrain dependency of the
respective meteorological variable. Except for irradiance,
this is achieved through correlation between measured
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meteorological variable (e.g. temperature or rainfall) and
the elevation of the station. A spatial bilinear interpolation
is then performed on the residues of the regression. Finally,
the trend surface, which is determined by the regression
and calculated from the DEM, is added to the spatially
interpolated field. This method ensures that the station
measurement itself is not modified but that the topography
in the regions between stations is considered.

The spatial distribution of net radiation is modelled
according to the geographic position of the modelled pixel;
its slope and aspect, together with the solar elevation
determine the local illumination conditions. Especially in
alpine regions, the terrain dependent simulation of net
radiation is crucial.

MODEL SETUP FOR THE TOCE CATCHMEN'T

The following spatial parameter fields are used for the
simulations in the Toce catchment:

® Soil physical parameters were derived from a water
permeability map provided by the University of Brescia
(Bacchi and Ranzi, 2000). The permeability map is
based on an intense field survey of 60 samples
widespread in the Toce catchment. These measurements
were assumed to be representative for a soil type and a
map with 50m spatial resolution was provided.

e The Italian Regione Piemonte DEM was made available
at a 50m spatial resolution by DIIAR, Politecnico di
Milano.

e Land use, LAI and albedo were derived from remote
sensing data as described earlier.

® Meteorological fields of solar irradiance, air-
temperature, wind-speed, relative humidity and
precipitation were interpolated from station
measurements. Since not all these parameters were
available at all stations, the missing measurements were
modelled on the basis of the available data. Eighteen
stations were finally used for the interpolation of the
meteorological input fields.

The water balance simulations used a grid size of 100 m.

Model results

Model runs were conducted for the whole Toce catchment
as well as for selected points in the catchment which differed
in their physiographic attributes (e. g. altitude, soil type or
land use). The annual courses of meteorological variables
selected on the basis of the point calculations obviously
demonstrate the influence of the physiographic attributes

on the meteorological variables. As shown in Fig. 10, a high
snow water equivalent (upper left grey curve) until the
beginning of May caused by a rather high altitude is the
reason for a decrease in soil moisture under the snow that
suddenly increases when the snow melts. The earlier starting
evapotranspiration of agriculture in the valleys leads to a
stronger decrease of soil moisture in summer compared to
the forested regions. The difference in soil moisture can
further be explained by the different soil types. So even a
high precipitation (e.g. middle of August) is not sufficient
to saturate the loamy sand, whereas the clay soil reaches
saturation.

Spatial model runs for the whole Toce basin were carried
out from 1994 to 1997. For calculating the spatially
distributed water balance, the model results for 1996 and
1997 were used. The modelled annual sums of precipitation
and evapotranspiration were averaged for these two years.
The runoff was calculated as the difference between
precipitation and evapotranspiration. Figure 11 shows the
results. The mean modelled water balance for the whole
basins is 1486 mm precipitation, 366 mm evapotranspiration
and thus 1120 mm runoff. The comparison of this runoff
value with measurements at Candoglia gauge station (1018
mm) shows a good agreement, especially considering that
the measurements (both station rainfall and runoff) are not
free of errors and the applied water balance approach does
not consider changes in the water storage in the soil and
snow pack.

The low values of precipitation in the South West corner
of the catchment with high elevations may be surprising in
Fig. 11. However the nearby Passo del Moro rainfall gauge
measured only an annual precipitation of 507 mm during
the years 1996 and 1997. Since the station measurements
are crucial for the spatial interpolation of the meteo-fields,
this region is dominated by the station measurement.

The water balance calculations were performed on an
hourly time interval. Thus, for any time during the model
calculation it is possible to determine the soil moisture
distribution. This information is especially important before
heavy rainfall, because the soil moisture determines whether
rainfall produces runoff or is stored in the soil layer.
Therefore for all Toce flood events addressed in the course
ofthe RAPHAEL project the soil moisture distributions prior
to the floods were calculated, stored and provided as starting
conditions for the hydrological flood models.

The results are shown in Fig. 12. In the interpretation of
the soil moisture map, one has to consider that the soil
moisture refers to the root zone that varies strongly
depending on the land use (e.g. 10 cm for alpine meadows,
100 cm for agriculture, 150 cm for deciduous forest). The
relatively low soil moisture values reflect the higher
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Fig. 10. Annual courses of PROMET model results for two selected land-use types in 1996

transpiration of the agriculture in the valley and the
unconsidered lateral flow in the performed PROMET
simulations.

In Fig. 12 it becomes obvious that the spatial and temporal
variation of this hydrologically critical parameter is very
high. Using the PROMET water balance model and satellite
information it is possible, however, to derive this information
to characterise the status of a catchment prior to a flood
event.

Discussion

Land cover maps are crucial to hydro-meteorological
modelling. With the proposed fuzzy logic approach, cost-
efficient derivation of land cover information from satellite
imagery can be obtained, even in rugged mountainous
terrain. Other land cover dependent variables such as the
albedo of the Earth’s surface as well as the Leaf Area Index
(LAI) can be derived, respectively, from spectral reflectance
values by land cover dependent spectral integration and by
formulating land cover dependent NDVI-LAI relationships
from classification results and remote sensing data. Based
on the ENPOC classification, both variables were derived
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within the RAPHAEL-project for an improved extraction
of surface parameters in alpine areas.

Concerning the image processing, further improvements
to the radiometric correction can be expected by taking into
account the irradiance of surrounding surfaces as well as
anisotropy of diffuse irradiance, as described in Sandmeier
(1995). These were, however, not implemented in this study
since they were expected to be only of secondary
importance. The spatial resolution of the DEM has a larger
influence. Unfortunately, the original spatial resolution of
the DEM did not comply fully with the requirements for
optimal results of a radiometric correction, which would
need a resolution of 50% of the pixel size, i.e. 15m. The
lower resolution of the DEM compared to the satellite image
creates artefacts in the corrected images. These become most
obvious along the mountain crests. Improvements in image
processing should thus start with an improved DEM.

It was demonstrated that a water balance model like
PROMET can be driven with remotely-sensed land surface
parameters. The water balance of the Toce catchment was
calculated with PROMET without any calibration of the
model. The comparison of measured and modelled runoff
showed the quality of the model. This agreement could be
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Fig. 11. Water balance for the Toce basin based on PROMET model results from 1996 and 1997
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Fig. 12. Spatial distributed soil moisture in the Toce basin prior to the selected flood events

achieved without calibration because the land surface was be provided to compare the model results with measured
well represented by using the remotely-sensed input discharges. Also, comparison of the simulated soil moisture
variables. Unfortunately, runoff concentration and flood with measured values was not possible, since the MAP
routing were not calculated. Thus hydrographs could not Intensive Observing Periods with extensive field survey in
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the Toce area (Ranzi et al., 2003) occurred only after the
end of the RAPHAEL project.

Nevertheless, the concept that remotely-sensed
information can be used for hydrological parameterisation
in Alpine catchments has been justified. Further, since
remote sensing observations are available all over the globe,
the methodology can also be applied to a wide range of
catchments outside the Alps.

Acknowledgements

This work was funded within the EU-Project RAPHAEL
(ENV4-CT97-0052) co-ordinated by DICBS, University of
Brescia, Italy. Many thanks to the RAPHAEL team, who
facilitated the success of the study, specially to Robert Ranzi
(DICBS) who supported this work significantly. Thanks also
to the reviewers for their profound and helpful comments.

References

Bacchi, B. and Ranzi R., 2000. Raphael Runoff and Atmospheric
Processes for flood HAzard forEcasting and control project.
Final report of EU contract ENV4-CT97-0552

Bacchi, B. and Ranzi R., 2003. The Raphael project: an overview.
Hydrol. Earth Syst. Sci., 7, 784—798.

Bach, H. and Mauser, W., 1994. Atmospheric correction of
hyperspectral data in terms of the determination of plant
parameters. In: Recent Advances in Remote Sensing and
Hyperspectral Remote Sensing, EUROPTO Series, SPIE 2318.
52-62.

Baldocchi, D.D., Hicks, B.B. and Camara, P., 1987. A canopy
stomatal resistance model for gaseous deposition to vegetated
surfaces. Atmos. Environ., 21, 91-98.

Brooks, R.H. and Corey, A.T., 1966. Properties of porous media
affecting fluid flow. J. Irrig. Drain. Eng. Div., ASCE., IR2,
61-88.

Eagleson, P.S., 1978. Climate, Soil and Vegetation: A simplified
model of soil water movement in the liquid phase. Water Resour.
Res., 14, 722-730.

Elterman, L., 1964. Rayleigh and Extinction Coefficients to 50km
for the Region 0.27p to 0.551. Applied Optics, 3, 1139-1147.

Gratton, D.J., Howarth, P.J. and Marceau, D., 1993. Using Landsat-
5 thematic mapper and digital elevation data to determine the
net radiation field of a mountain glacier. Remote Sens. Environ.,
43, 315-331.

Gregoire, C. and Raffy, M., 1997. Elaboration of Multispectral
Models for Heterogeneous Media: Application to the LAIL
Remote Sens. Rev., 15, 223-234.

876

Itten, K.I. and Meyer, P., 1993. Geometric and radiometric
correction of TM data of mountainous areas. /[EEE Trans.
Geosci. Remote Sens., 31, 764—770.

Lillesand, T.M. and Kiefer, R.W., 2000. Remote Sensing and Image
Interpretation. Wiley, New York, USA. 724pp.

Ludwig, K., 2000. Die flichenverteilte Modellierung von
Wasserhaushalt und AbfluBibildung im Einzugsgebiet der
Ammer. Miinchener Geographische Abhandlungen, B32, 173pp.

Ludwig, R., Bach, H., Griiner, V. and Mauser, W., 1999. The Use
of Imaging Spectrometer Data to Determine Vegetation
Parameters for SVAT-Modelling. EARSEL Workshop on
Imaging Spectroscopy, Ziirich, Switzerland.

Mauser, W., 1989. Die Verwendung hochauflésender
Satellitendaten in einem Geographischen Informationssystem
zur Modellierung von Fldchenverdunstung und Bodenfeuchte.
Habilitationsschrift, Geowiss. Fakultédt Univ. Freiburg, Freiburg,
382pp.

Mauser, W., 1991. Modelling the spatial variability of soil-moisture
and evapotranspiration with remote sensing data. Proc. Int.
Symp. Remote Sensing and Water Resources, Enschede, Aug.
20-24, 1990. R. van Ackern Pub., Lingen.

Mauser, W. and Strasser, U., 1997. Modelling actual
evapotranspiration of the Weser catchment with the multiscale
SVAT-model PROMET. In: Landwirtschaftsokologie und
Umweltforschung, B. Diekkriiger and O. Richter (Eds.): H. 25.
Braunschweig, Germany. 161-164.

Mauser, W. and Schédlich, S., 1998. Modelling the spatial
distribution of evapotranspiration on different scales using
remote sensing data. J. Hydrol., 212-213, 250-267.

Norman, J.M., 1979. Modelling the complete crop canopy. In:
Modification of the Areal Environment of Plants, B.J. Barfield,
and J.J. Gerber (Eds.). Amer. Soc. Agr., 249-277.

Ranzi, R., Bacchi, B. and Grossi, G., 2003. Runoff measurements
and hydrological modelling for the estimation of rainfall
volumes in an Alpine basin. Quart. J. Roy. Meteorol. Soc., 129,
653-672.

Sandmeier, S.R., 1995. A physically-based radiometric correction
model; correction of atmospheric and illumination effects in
optical satellite data of rugged terrain. Remote Sensing Series,
26, Universitédt Zurich, Switzerland. 144pp.

Spanner, M.A., Pierce, L.L., Peterson, D.L. and Running, S.W.,
1990. Remote sensing of temperate coniferous forest leaf area
index, the influence of canopy closure, understorey vegetation
and background reflectance. /nt. J. Remote Sens., 11, 95—111.

Stolz, R., 1998. Die Verwendung der Fuzzy Logic Theorie zur
wissensbasierten Klassifikation von Fernerkundungsdaten — Ein
methodischer  Ansatz ~ zur  Verbesserung  von
Landnutzungsklassifikationenen in mesoskaligen heterogenen
Ré&umen, dargestellt am Einzugsgebiet der Ammer. Miinchener
Geographische Abhandlungen, Bnd. B 26.

Strasser, U. and Mauser, W., 2001. Modelling the spatial and
temporal variations of the water balance for the Weser catchment
1965-1994. J. Hydrol., 254, 199-214.



