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Abstract

An honest declaration of the error in a mass, momentum or energy balance, &, simply raises the question of its acceptability: “At what value
of €1is the attempted balance to be rejected?” Answering this question requires a reference quantity against which to compare €. This quantity
must be a mathematical function of all the data used in making the balance. To deliver this function, a theory grounded in a workable
definition of acceptability is essential. A distinction must be drawn between a retrospective balance and a prospective budget in relation to
any natural space-filling body. Balances look to the past; budgets look to the future. The theory is built on the application of classical
sampling theory to the measurement and closure of a prospective budget. It satisfies R.A. Fisher’s “vital requirement that the actual and
physical conduct of experiments should govern the statistical procedure of their interpretation”. It provides a test, which rejects, or fails to
reject, the hypothesis that the closing error on the budget, when realised, was due to sampling error only. By increasing the number of
measurements, the discrimination of the test can be improved, controlling both the precision and accuracy of the budget and its components.
The cost-effective design of such measurement campaigns is discussed briefly. This analysis may also show when campaigns to close a
budget on a particular space-filling body are not worth the effort for either scientific or economic reasons. Other approaches, such as those
based on stochastic processes, lack this finality, because they fail to distinguish between different types of error in the mismatch between a

set of realisations of the process and the measured data.
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Introduction

This paper is a contribution to theory, in the belief that theory
justifies practice.

BALANCES

Making mass, energy, or momentum balances is a ‘research
method of choice’ in many areas of Earth System science.
Goldberg (1976a and b) has suggested that mass balances
“can pinpoint areas where surveillance measurements must
be made and assist in the determination of the frequency of
such measurements”. For some, balances have the additional
attraction of requiring a minimum of theory. They are also
eclectic and liberal in the following sense. The members of
each scientific community contributing to a balance carry
out their measurements and reduce their data in accordance
with their own traditions. On the day of reckoning, there is
a brief coming together, when the balance is debated and
closed. The compulsion to process the data to deliver a

perfect balance is justified by an appeal to theory, namely, a
law of balance or conservation. Nevertheless, there is always
a closing error!

THE PROBLEM — THE ERROR IN THE BALANCE

An honest declaration of the error in the balance, &, simply
raises the question of its acceptability: “How small should
€ be for an acceptable balance?” or, alternatively, “At what
value of € is the attempted balance to be rejected?”
Answering these questions requires a reference quantity
against which to compare €. This quantity must be a
mathematical function of all the data used in making the
balance. To deliver this function, a theory grounded in a
workable definition of acceptability is essential. The theory
proposed here answers the second form of the question, but
not the first. In other words, acceptability will mean failure
to reject the balance. The theory presented in this paper will
incorporate the relevant law of balance in a manner which leaves
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open the possible rejection of the attempted balance. The goal
of balancing the books is not to test the conservation law itself.
If that were the case, the physics laboratory would be a far
better facility for doing so. The objective of balancing the books
is to gain insight into relative magnitudes of fluxes in the study
of the Earth System in particular circumstances of place and
time. Sampling variability, and errors of omission or
commission, can cloud such insight. This paper is a theoretical
contribution to the better design of measurement campaigns
where the primary objective is to balance the books.

BALANCE AND CONSERVATION LAWS

Scientific balances in Earth System science are suggested
by the seven independent principles of rational mechanics
that govern the dynamics of space-filling bodies:

Conservation of mass

Balance of linear momentum
Balance of rotational momentum
Conservation of energy
Conservation of electric charge
Balance of electric field
Irreversibility

Nk L=

Discussion of these principles from very different points of
view may be found in Feynman (1965, 1989, 1992),
Truesdell and Toupin (1960), and Truesdell (1980, 1984).
Peixoto and Oort (1992) have applied five of them to make
exemplary retrospective balances for understanding the
earth’s climate.

Modern physics insists that the fundamental conservation
laws hold at all scales from the sub-atomic to the extra-
galactic, and at all relative speeds less than the speed of
light. Since mass depends on velocity in relativistic
mechanics, conservation of mass is no longer a fundamental
law of physics. However, on planet Earth, the speed of
particles of the solid earth, its watery surface, the oceans,
and the atmosphere, are so far below the speed of light that
the relativistic correction to classical mechanics is negligible.
In the case of the bio-geochemical cycles — among which
the water cycle is pre-eminent — the measurement of mass
can, in principle, be replaced by a physico-chemical counting
of discrete molecules, atoms, ions, or isotopes. Dividing by
Avogadro’s number converts a counting balance to a mass
balance measured in moles. The concepts developed in the
remainder of this paper are presented in terms of a balance
of mass but they are applicable to all other balances and
conservation laws in Earth System science.
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Mass balances

The five steps in making a mass balance are:

(1) The choice of a substance S to be studied and the
elaboration of techniques for its measurement;

(2) The identification of the reservoir B, as a space-filling
body, where S is accumulated;

(3) The identification of (a) all mass flows of S into and
out of B and (b) all sources and sinks of S within B,
during some interval of time (0, 7);

(4) The measurement of each mass flow rate, each source
rate, each sink rate, and the quantities of S in the
reservoir B at the beginning and end of the interval (0, 7);

(5) The processing of the measurements to produce the
balance.

THE PERFECT MASS BALANCE
The reservoir to be balanced is idealised as a space-filling
body B located in a three-dimensional Euclidean space with
spatial coordinates (x,),z). The boundary of B is a complete,
continuous, smooth, oriented surface 4B in the same space.
In this paper, B does not move or change shape. Hence the
space-filling body or reservoir is synonymous with the fixed
space it occupies. The statement of conservation of mass is
simplest in this case:
the instantaneous rate of increase of the mass of S
contained in B is equal to the net mass flux of S into B
across the boundary 8B of B.
This statement may be written in the precise language of
the vector calculus (Kaplan, 1952; Lin and Segel, 1974) as

%J:Us(x, y,z,t)dxdydz =
- ﬁﬁ(x, Y,2)-V(X,Y,zt)s(X, Y, zt)ds (1a)

On the left-hand side, s(x,),z,¢) is the instantaneous mass
density of S at time ¢ throughout B measured in kg m™. It is
a dynamic scalar quantity. This is integrated over B to yield
the total mass S(?) in B at time ¢. Its derivative with respect
to time is the instantaneous rate of increase of the mass of S
contained in B.

On the right-hand side, » is the ‘outward normal’ vector
perpendicular to the surface of B. n(x,),z) is a vector field
defined on 4B and is constant in time. The vector v(x,),z,¢)
is the dynamic velocity field transporting S into and out of
B at all points in its surface. The vector dot-product of n
and v is a dynamic scalar quantity equal in magnitude to the
component of the velocity /m s, which is perpendicular
to the surface. It is positive or negative depending on the
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Table 1. The hydrological cycle [Peixoto and Kettani, 1973]. Units
are 10"”m’ per year.

From

Atmosphere Totals

Atmosphere g 361 423

Oceans 324 37 361
To| Land 99 _‘

Totals 423 ‘ 99 883

Table 2. The hydrological cycle [Baumgartner & Reichel,
1975]. Units are 10"”m’ per year.

From

Atmosphere | Oceans | Land | Totals

Atmosphere [ 424 | 71| 495

Oceans 385 |-| 40 | 425
To Land 111 0 111
Totals 496 424 | 111 | 1031

transport direction; outwards is the positive direction.
Tangential flow in the boundary of B does not transport
material through 4B. Hence, the vector dot-product n.v is
also the instantaneous volume flux per unit area /m* m~ s7']
through any infinitesimal surface element ds in B.
Multiplying by s, gives the instantaneous mass flux per unit
area [kg m” s7'], the so-called mass flux density, a dynamic
scalar quantity, at all points in #B. Integrating this over B,
gives M(t), the instantaneous net rate of mass flux of S out
of B. Multiplying by minus one, converts it to a flux into B.
The surface and volume integrals over B and B respectively
are limiting sums in the sense of Riemann (Kaplan, 1952;
Bressoud, 1994). If chemical transformations of S are
possible, each chemical pathway gives rise to additional
internal ‘source’ or ‘sink’ rates at all points in B. These are
excluded from expression (2a) in the interests of clarity. If
the body B is in motion with respect to the coordinate system
(x,y,z), or if it changes shape with time, the statement of
conservation of mass in (l1a) becomes considerably more
complicated.

Rewriting (1a) in terms of S and M yields

%S(t) = —M() (1b)

Integrating over the duration 7 of the mass balance gives

S(T)-S(0) = — jOTM(t)dt

- _TM
where the average whole-body mass flux during the interval
(0,7) is defined as

(2a)

M = @T) jOTM(t)dt (2b)

For convenience, the body B should be defined so that its
boundary 4B can be partitioned into planar surfaces, each
having a fixed outward normal vector. This partitions M
into a set of fluxes M, that sum to M. These fluxes should
be significant in themselves for some aspect of Earth System
science. When T'is large, the quantity (S(7) —S(0))/T is often
assumed to be negligible, and the perfect mass balance (2a)
simplifies to an algebraic sum of average fluxes

M = M+ M,+..+M,+.. =0 (20)
where the subscript f runs over the set of planar surfaces
into which 4B has been partitioned.

If there is more than one substance S, or more than one
reservoir B, multiple copies are made of Eqns. (2a—2c),
writing balances for each substance in each reservoir and
including the obvious additional terms for all mass flows
between them.

Tables 1 and 2 provide an illustration. They contain two
water balances for the Earth taken from Figure 12.2 of
Peixoto and Oort (1992) and are referenced as Peixoto and
Kettani (1973) and Baumgartner and Reichel (1975)
respectively. There are three reservoirs in the balance: the
atmosphere, the oceans and the land. The balance is made
on the fluxes connecting the reservoirs, assuming no change
in water storage. The tabulated data correspond to three
copies of Eqn.(2c) and are in almost perfect balance with
each other.

Prospective budgets

A retrospective balance is a balance calculated from data
which is already to hand and which has not been collected
following an appropriate statistical design. Given the eclectic
provenance of such data, no compelling general theory is
possible for the closing error on retrospective balances. In
contrast, prospective budgets are planned in great detail
before the measurements are made, in order to achieve the
goal of judging the closure on the budget. Balances look to
the past; budgets look to the future. This distinction between
the ex post retrospective balance and the ex ante prospective
budget is suggested by similar distinctions in comparative
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Time 0 T
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fluxes |1 |2 4 |5 |6 |7 |8 10
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Fig. 1. The sampling frame for simple random sampling of several
mass fluxes M, The duration of the mass balance is the interval
(0,7T). This is divided into N=10 sub-intervals each of duration T/10.
One row in the array corresponds to one mass flux. Each unit in the
frame is denoted by a rectangle. Each rectangle corresponds to one
member of the “real” population of sampling sub-intervals. The
black rectangles in each row show samples of three units drawn at
random from the sampling frame without replacement, using, for
example, a table of random numbers. From the table, it is clear that
a maximum of two samples must be taken simultaneously in the case
of this particular random sample.

statistics (Anderson, 1980) and the theory of experiments
(Fisher, 1966). It is not to be found in textbooks on applied
statistics in hydrology.

A prospective mass budget for a space-filling body lays
down procedures for the collection of data at unique places
and at unique times in the future, together with their
subsequent processing. The procedures are defined so that
logically consistent statements may be made about the
closing error on the budget. In the remainder of this paper,
the word budget is used everywhere instead of balance to
indicate concern with the design of a plan for a future
campaign of measurement. While the goal is to close the
budget, the plan must leave open the possibility of failure
by allowing future data to determine the outcome. Also, the
design process must recognise the possibility of abandoning
the proposed campaign because (a) it cannot achieve its
scientific objectives with respect to accuracy and precision,
or (b) it costs too much. Consequently, the concepts
presented below may find some degree of acceptance by
both the scientific community and its funding agencies.

THE STATISTICAL MASS BUDGET

The theory of prospective mass budgets must be a statistical
theory because it is impossible to measure (a) the
simultaneous change in mass at the infinitely large number
of points within a given space-filling body B, and (b) every
instantaneous flux across its surface, during a unique finite
interval of time. Hence, from now on, a finite, but often
very large number of small sampling intervals in both space
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(Ax, Ay, Az) and time Af must be considered, instead of points
in space and instants in time. These small sampling intervals
are chosen to agree with the time it takes to make a
measurement in a small volume of space using a particular
instrument. For example, Az could be the time it takes to fill
a sampling bottle, the shape of which is the sampling interval
(Ax, Ay, Az) in space. All measuring devices record
measurements averaged, or accumulated, over some small,
but finite, interval of both space and time. The size and
response times of these devices allow appropriate sampling
intervals to be chosen.

The great counter-intuitive discovery of classical statistics
is that a properly conducted, prospective, sampling
experiment can deliver a precise result with a surprisingly
small number of samples (Cochran, 1977) selected from
the very large number of possible samples.

The statistical mass budgets that correspond to the perfect
balances Eqns. (2a and ¢) may be defined by the expressions

SM-SO)+T Iif, =€ (32)
f
b M, =€ (3b)

They differ in three fundamental respects from the perfect

balances:

(a) the error on the budget € is equal to the numerical value
of the sum on the left hand side,

(b) the caret symbol indicates an estimate of a population
characteristic, made from a statistical sample taken from
the appropriate population,

(c) the population characteristics are total mass at the
beginning and end of the budget, S(7) and S(0), and the
average mass fluxes during the interval (0,7) M .

If the distribution of mass in B were perfectly uniform in
space and steady in time, i.e. S(T) = S(0) , and if all the
fluxes were constant, one measurement of each M at any
time between 0 and 7 would yield the estimates M with
no sampling error. If the value of € were different from 0, it
would be concluded that either (S(7) -S (0))/T was not zero,
or there was a systematic error in the measurement
technique, or the mass flows were not specified correctly,
or a combination of all three reasons. Failure to include a
mass flow in the budget is called an error of specification.

However, bodies are rarely in dynamic equilibrium.
Measurements at many points in time are required to estimate
average mass flow rates. Similarly, when the distribution of
S in B is not uniform, S(7) and S(0) must be estimated by
measuring the concentration of S at many points in B. Hence,
the detection of errors of measurement and of specification,
is obscured by errors due to statistical sampling.
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Consequently, it may appear that there are no objective
grounds for rejecting any attempted budget, and that all are
acceptable, as is the case with retrospective balances. It shall
be shown that this is not so for prospective budgets.

THE POPULATION AND I'TS SAMPLING FRAME

The key step in the development of the theory is the
definition of the population to be sampled. Two different
populations are defined, one for B, and one for the time
interval (0,7). In the case of the time interval (0,7), its
duration is divided into N, sub-intervals each equal to the
sampling interval A Hence,

T=N, At (4a)

The population to be sampled is the set of NV, sub-intervals.
A sampling frame is constructed by placing the sub-intervals
in one-to-one correspondence with the integers, with one
line of the frame for each mass flux. This is shown in Fig. 1
for four different mass fluxes with N=N, =10 and At=T7/10
in each case. In practice, there would be a very much larger
number.

In a similar manner, B is divided into N, sub-bodies, ABJ,,
each of volume AV, Since B is a space-filling body, the
following conditions on the union and intersection of the
point-sets corresponding to the sub-bodies are imposed

Ng Ng
B=UAB,, [|B =0 (4b)
j=1 “j=1

The volume AV, is d¢ srmined by the measuring system.
One may think of AV as a small cube in direct contact with
the instrument while it makes a single measurement. The
sub-bodies are mapped onto cubes in a Euclidean space with
a suitable co-ordinate system and distance metric. The cubes
stack without gaps to cover B. They can then be placed in
one-to-one correspondence with the integers defining their
sampling frame. Any sub-body selected from the frame for
measurement can be located easily in the Euclidean space.
This frame will have two lines, one for the mass in B at the
beginning of the budget, and a second for the mass in B at
the end. One line of the frame for a body varying in one
space dimension is illustrated in Fig. 2 where N=N,=10. In
this figure, the summation of AB, represents the union along
a line of the uniform sub-bodies, or elements.

Applying a sequence of random numbers to the sampling
frames, whether taken from a published table of random
numbers, or generated by a pseudo-random procedure,
specifies when and where measurements are to be made.
Figure 2 shows »n=3 random samples in the case of each of

the four mass fluxes; the samples selected in each column
must be measured simultaneously. Figure 1 shows n=3
simultaneous random samples in the case of the mass Sin B
at one point in time. Population statistics are estimated from
statistical samples such as these. Since two measurements
cannot be made simultaneously at the same location, the
sampling is without replacement in the population.

Depending on the detailed objectives of the budget, more
complicated populations may be envisaged involving
stratification in time and space, or Cartesian products of the
point sets corresponding to the time interval of the budget
and parts of the surface of B.

Such populations may be described as ‘real’ since observers
can choose to make measurements at any place and time in the
sampling frame. Every member of the population is accessible
in this sense. The notional, or imaginary, populations that
underpin the application of stochastic processes to Earth System
data, lack this concrete reality. Such real and notional
populations are compared again later in the paper.

The following section illustrates these ideas by presenting,
in outline, the application of classical sampling theory to the
estimation of precipitation on a forest floor.

THE APPROACH OF SAMPLING THEORY

To estimate the total volume of rainfall falling on the floor
of a forest during some interval of duration 7, as part of a
prospective water budget, the forest floor F is divided into
a grid of N non-overlapping squares AF, each equal in size
to the footprint of the standard rain gauge, and which
completely covers the floor. If F has an area of 1 km? and
the rain gauge an area of 1 m?, N is 1 000 000. The squares
AF are placed in one-to-one correspondence with the points
of an integer-valued coordinate system. The corresponding
set of pairs of integers is the sampling frame for F. Selecting
a pair of integers using a table of random numbers, or other
similar device, locates the first rain gauge in the frame and
this is positioned in the forest using differential GPS.
Repeating this ‘simple random sampling’ » times without
replacement, allocates # rain gauges to positions on the forest
floor. Now consider the complication of the trees themselves
and their stem-flow. The trees are separated by introducing
a stratification in space, which partitions F into squares that
can be covered with ‘square (2 m x 2 m) stem-flow collars
on trees’, or ‘square (1 m x 1 m) rain gauges on the floor’.
A second sampling frame allocates p collars to trees.

Now, the time interval 7 is divided into m subintervals
each of duration AT Since rain gauges are integrating
devices, AT is arbitrary in this case and may be taken as one
day, one week, one month, or one season. During each
subinterval, the random allocation of rain gauges to squares
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B divided
into 10 sub-
units

Indexi 1/2|3 |4|/5|6 |7 |8 |9 |10

Massin each 21 3 |55
subunit

Fig. 2. The sampling frame for simple random sampling of the mass
Sin B at time 0. The body B is divided into 10 sub-bodies which do
not overlap and which together just cover B. They are enumerated
with the index 1 to form the sampling frame. One unit in the frame
corresponds to one member of the “real” population of sub-bodies.
A sample of three units is drawn simultaneously without replacement
from the population of 10 units in the frame using a table of random
numbers. The measurements on the corresponding sub-bodies yield
masses, for example (21, 3, 55), from which the total mass and its
sampling error can be estimated. The masses of the seven other sub-
bodies remain hidden and unknown. If an estimate of the mass of S
in B is required at any other time t, a new sampling frame is
constructed and sampled in a manner similar to that at time 0.

may be repeated, so that the rain gauges perform a random
walk. In other words, the sampling frame is now the
Cartesian product of the set of squares times the set of
subintervals. There is always some discrepancy in locating
a sample in space and time; if there is a bias, it will appear
in the closing error of the budget and will be included in the
test on the budget.

Minimising the cost of estimating the total volume of rain
during the interval 7 subject to a predefined sampling error,
determines the values of p, n and m. The sampling error
arises from the fact that not every unit of the sampling frame
is chosen for measurement. A pilot study is necessary to
provide the data (sampling variances) to solve this
optimisation problem. Also, sampling schemes, other than
simple random sampling, are possible, such as stratified or
cluster sampling. The central assumption in the underlying
probability model is that the measurement campaign is
carried out with known probabilities assigned to each unit
of the sampling frame. Consequently, the sampling
procedure guarantees the assumptions used in estimating
the sampling variance of the total rainfall over a unique area
F during a unique interval of 7 since they are completely
‘covered’ by the sampling frame.

The word ‘sample’ has different meanings for the
statistician and the environmental chemist. A statistical
sample, in the context of this paper, is a unit selected from a
sampling frame using a random device, such as a roulette
wheel, table of random numbers, or pseudo-random
algorithm, which specifies when and where a measurement
is to be made in a space-filling body. A sample for an
environmental chemist is a volume of water, or other
medium, taken from the environment and analysed in
accordance with a specific protocol.
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STATISTICAL THEORY

The theory of the prospective budget rests on two classical

statistical techniques applied to the sampling frames. They

are

(1) probability sampling for estimating the terms of the
budget, the closing error, S, ﬁf, € and their sampling
precision;

(2) Hypothesis testing that any particular value of € is due
to chance alone.

Both techniques must satisfy R.A. Fisher’s (1966; page 34)
“vital requirement that the actual and physical conduct of
experiments should govern the statistical procedure of their
interpretation”. This requirement is impossible to achieve
in a retrospective balance.

Probability sampling is any sampling procedure governed
by sets of random numbers. Applying the calculus of
probability to the chosen procedure, one can calculate the
theoretical probability distribution of the terms of the budget
and the closing error, S, M, €, on the assumption that there
are no systematic errors of measurement or missing fluxes.
In the simplest case, simple random sampling may be used.
Random samples are statistically independent, by construction!
Appropriate ‘construction’ is a key part of Fisher’s “vital
requirement”. Consequently, all possible correlations between
the estimators in relations (3a and b) are made zero, no matter
what degree of correlation may be present in the underlying
time series being sampled. When the number of independent
samples (measurements) is sufficiently large, the central limit
theorem implies that the closing error € in 3a and 3b is normally
distributed. The following argument delivers the mean (and
variance) of this Normal Distribution. The expected value E(g)
is zero because (1) there are no systematic errors of
measurement and no missing fluxes, by assumption, (2) the
probability sampling used e.g. simple random sampling,
delivers unbiased estimates of average fluxes and stored masses
of S, by construction, and (3) the law of conservation of mass
holds, by agreement.

Definite statements which can now be made about any
observed value of g, are logically consistent with the law of
conservation of mass, the measurement/sampling procedure,
and the data reduction. If the future observed value of &
lies outside its theoretical distribution, the hypothesis that
this could have occurred only by chance is rejected. It is
much more likely that systematic errors are present so that
the attempted budget should be rejected. If the observed
value of ¢ lies within its distribution, there are no grounds
for rejecting the hypothesis or the budget. However, by
increasing the number of measurements, Var(€) can be
reduced, so refining the discrimination of the test.

All other types of measurement procedure lack this logical
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and objective conclusion. Measurement campaigns designed
without using a random device, or procedures that forbid
measurements at weekends, at night or during lunchtime,
allow only subjective judgements to be made about the
closing error.

PROBABILITY SAMPLING

The simplest form of probability sampling is simple random
sampling.

By using a table of random numbers, »n equally likely
sampling units of duration AT can be selected without
replacement and this can be repeated independently for each
mass flow. The result defines the sequence of measurements
in the field. The mass flow rates which are subsequently
measured are denoted by m(i) where i is an index which
spans the sampling units chosen from 1 to n.

Following Cochran (1977), lower case letters refer to
samples and capitals to the population.

SIMPLE RANDOM SAMPLING

In this section S means sampling variance, not the mass of
substance S in the reservoir. This change should not cause
confusion since the next two sections are concerned
exclusively with relation (3b).

Using simple random sampling, an unbiased estimate of

A .
each mean mass flow rate f -is given by the sample mean

mg

M, est m; def > me(i)/n Q)
- = i=1

where “def” means “by definition” and “est” means “is
estimated by”. An unbiased estimate of the sampling
variance of the sample means m; is

2
_ 2 st (N-n) (6)
) ot sy et DOG
where S% is an unbiased estimate of the variance of the
mass flow rate M

§ et g def 3 (m()-m)*/(n-D) (7)

The quantity Sy, (lower-case) is also called the standard
error of the estimate of My Proofs can be found in Cochran
(1977), page 26.

If n=N, the mass flow rates are measured completely
and Eqns. (5) and (6) yield correctly v(ms)=0,
M =M; and S% = 52f . In most cases, however, N>>n>>1

and
v(mi) est § /'n ®)

Hence, the precision with which I\ﬁf = m; is estimated
depends directly on the variance of the mass flows
themselves and, inversely, on the number of measurements.
It does not depend on N, which for many is counter-intuitive.
It appears, therefore, that #» should not be the same for all
mass flows but should vary in proportion to i . This is
discussed further below.

TESTING THE CLOSING ERROR ON THE BUDGET

The application of independent random numbers to the
sampling frame makes the sampling distributions of the
estimates I\ﬁf of Mt mutually independent by construction.
Randomisation destroys any correlation that may be present
during the measurement of the components of the budget
and which might bias the estimation. Independence allows
the means and variances of the estimates of the individual
terms of the budget to be added i.e.

E(e) =X my €))
f
Var(e) =Y &, =Xsi/n (10)
f f

When # is large, say greater than 100, the central limit
theorem suggests that the distribution of € is approximately
normal. See Cochran (1977), section 2.15, for a discussion
of'the effect of skewness on the speed with which the normal
distribution is approached as » increases.

Since the m; are unbiased estimators of M , the law of
conservation of mass requires that

E(e)=0 (1
when there are no errors of measurement or of specification.

Let €, be a particular value of the closing error. Now compare
it with a normal distribution of mean 0 and variance
> § / N . There are two possible results:

f

(1) &,is an outlier and the hypothesis that €, could have
arisen solely from the mechanisms of chance which
were applied to the sampling frame is rejected. It is much
more likely that errors of measurement and of
specification are present.

(2) g,isnotan outlier and there are no grounds for rejecting
this hypothesis. Consequently, the mass budget as a
whole cannot be rejected.
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An outlier is defined to be any & for which
led > 2 Var: (€) (12)

This gives a probability of 1% % of a type I error, that is of
rejecting the hypothesis when it is true. If the total number
of measurements is less than 50, Student’s t distribution
should be used instead of the Normal distribution.

The discrimination of this test can be increased by
increasing n. This decreases the variance of the normal
distribution and improves its validity as an approximation.
In addition, the precision of the estimated My , is also
improved. Hence, not only the precision but also the
accuracy of the measurements can be controlled by closing
the budget to within a chosen variance Var(e).

Campaign design — the simplest case

If the variable costs of measurement are
C= Ef‘, C N (13)

where c is the unit cost of measurement and »  measurements
are to be carried out on each mass flow. Hence, the total
number of measurements is

n:§ ng = Clc (14)
The design problem is

What allocation of measurements will minimise
the sampling variance of the closure at a given cost?

It can be shown that Var(€) is minimised for fixed » and C
by taking » proportional to s , not & (Cochran, 1977, page
98). Hence, the optimal nj are

ni =ns /(§ Sf) (15)

Substituting in Var(e) = zf: St/ ng the corresponding
minimum-closing-variance V"is

2
(VAR (; sf) /n (16)
Eliminating » from Eqn. (16) using Eqn. (14), gives the

hyperbolic cost-effectiveness function for the
measurement campaign

2
A =(;sf) c/C 17
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To design the campaign, preliminary estimates of s, are
needed A pilot campaign can be used to find them. Given a
money budget C — set by the funding agency — Eqn. (17)
shows what minimum-closing-variance, V*, will be
delivered; or, alternatively, a closing variance V" — set by
the scientists — can be chosen and Eqn. (17) gives the lowest
price at which it can be achieved. Then, # can be determined
from Eqn.(14) and the n; from Eqn. (15).

Analogous results are available when c varies with fas ¢
(see Cochran, 1977, page 97). Further discussion on the
problem of advance estimates of population variances may
be found in section 4.7, page 78 of Cochran (1977).

The fixed costs have been ignored in this illustrative
example of campaign economics. A part of the fixed cost
sets the maximum possible number of simultaneous samples
that can be made at each point in time during the campaign.
This is an important constraint, which should be checked,
or better, included in the optimisation.

Clearly, one outcome of such an analysis is the
demonstration in advance that a mass, energy, or momentum
budget on a particular body B may not be worth the effort
for either scientific, or economic reasons. This possibility
is a requirement for a useful theory of budgets.

STRATIFIED RANDOM SAMPLING

Probability sampling plans, which are more complex than
simple random sampling, can be designed to give a smaller
variance of the estimate using the same number of samples.
For example, in stratified sampling, the population is divided
into non-overlapping sub-populations or strata. It can be
shown that the sampling variance of an estimated mean is a
minimum for a specified cost, when the number of samples
in each stratum is proportional to the true standard deviation
of each sub-population. (Cochran, 1977; page 97).

This idea arose earlier, whereby the individual mass flows
M, can be regarded as a particular stratification in space of
the mass of S, which flows across the open boundary of B.
Stratification may also be applied in time, especially to flows
that change direction across the boundary of B. Oscillating
flows are especially difficult because they give rise to
differences between large uncertain numbers — their
sampling variances add when the estimates are independent.
It is usually better to redefine the body B to avoid oscillating
flows altogether. Details of the stratification technique can
be found in Chapters 5 and 5A of Cochran (1977).

UNIFORM SAMPLING

Many modern measuring systems sample on a uniform grid
in space or time e.g. remote sensors mounted on aeroplanes
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or satellites. If the origin of the grid is chosen at random,
uniform grids can sometimes be brought within the ambit
of classical sampling theory. See Cochran (1977) for further
details. Uniform sampling may not be used when
components in the measured signal have periods less than
the interval of the grid. These unknown components are
said to alias the measurements in the frequency domain.
Spectral analysis of data collected at very high frequencies
in a pilot survey may show what uniform sampling interval
should be used to avoid aliasing. This is very rarely done.
Consequently, absence of aliasing is usually an unverified
assumption.

MEASUREMENTS OF M (1)

Mass flows are often measured as a flow rate of water at a
point, multiplied by a concentration of S. Rating curves are
used to convert water level into discharge in rivers. The
statistical theory of sampling can be applied to these too.
See for example, ratio and regression estimators in Chapters
6 and 7 of Cochran (1977).

Other stories

The approach advocated here, based on sampling theory, is
compared and contrasted with an alternative approach based
on stochastic processes.

THE ALTERNATIVE PROBABILISTIC APPROACH

In what may be called the traditional approach, samples
are allocated according to preconceived ideas of
representativity, e.g. placing rain gauges at the circumcentres
of triangles formed by adjacent trees by analogy with
Thiessen polygons in hydrological practice, or on a uniform
quincunx or square grids, and so on. Since these are
representative sites, they remain fixed in space. Summing
the rain depths at all the gauges and collars during the
interval T and multiplying by the appropriate areas delivers
the total rainfall. However, there is no simple way in which
the error in this total can be quantified. Consequently, the
simple traditional approach cannot contribute to the judgement
on the water balance without a probability model.

In the alternative probabilistic approach, a probability
model, or stochastic process with certain stationarity and
covariance properties, is assumed. The model may account
for (a) the spatial variation in total canopy drip, or stem
flow, during the interval 7, or (b) the spatio-temporal
variation in these quantities during 7. The data are regarded
as a single realisation of the chosen spatial or spatio-temporal
process. See for example Chapter 6 Multidimensional

Hydrologic Processes in Bras, R.L. and Rodriguez-Iturbe,
L. (1985), or Chapter 9 The Modelling of Spatial Processes
in Clarke, R.T. (1994). Such models, when fitted to the data
of the previous paragraph, can deliver sampling variances
induced by the probability model, for both the canopy drip
and stem flow at all points in the forest and, consequently,
for the whole forest.

However, these models fail to meet R.A. Fisher’s (1966;
page 34) “vital requirement that the actual and physical
conduct of experiments should govern the statistical
procedure of their interpretation”. For example, if uniform
sampling is used, there is no way in which it can be planned ex
ante to guarantee the absence of aliasing ex post. Absence of
aliasing is always a more or less plausible assumption dependent
on models, and very rarely on data, at frequencies greater than
the Nyquist frequency.

One could make a numerical example to show that the
two approaches deliver similar, or different, numerical
results. But this would prove nothing! Ultimately, the choice
lies between the probability models that underpin these two
approaches and their usefulness in judging the closing error.

ALTERNATIVE PROBABILITY MODELS

In random sampling, the underlying probability model is a
sampling device, or scheme, which produces independent
samples, drawn from the uniform probability distribution.
This device or scheme can be tested before it is applied,
using as many realisations and tests as necessary, to ensure
that it delivers random samples from the sampling frame
with the required properties. In other words, there need be
no errors in the probabilistic model that underpins random
sampling; the population being sampled is real.

In the alternative probabilistic approach, a complex spatial
or spatio-temporal probability model is based on a single
realisation, which cannot be verified at those places in F
where the possibility of measurement has been excluded.
The underlying probabilistic model has unknown errors at
all locations where there are no rain gauges or collars. In
this case, the population being sampled is imaginary, or
notional.

If the choice is so clear-cut, why are stochastic models so
dominant in the hydrological and geological literature today?
Because, in retrospective analyses of existing data, there is
nothing better that can be done! This is not the case with
prospective data intended for a well-defined goal. This can
be done better. The distinction between retrospective balance
and prospective budget was introduced to highlight this
point. The closure of a future budget must be regarded as
an experiment and Fisher’s vital requirement of logical
coherence between experiment and interpretation must be
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satisfied. Random sampling, in all its many forms, and any
subsequent hypothesis-testing, possess this coherence,
whereas stochastic process models, at least in their present
form, do not.

THE CLOSING ERROR — FALSE TRAILS

If the data are already available, the best that can be done is
a retrospective balance, ex post. The steps are:

(a) calculate the closure on the retrospective balance;

(b) make plausible assumptions about stationarity and
covariance and fit a probability model to the
retrospective data;

(c) extract the variance of the sum of all the terms in the
budget induced by the probability model;

(d) compare the closing error with the variance in (c).

The introduction to this paper called for a quantity such
as (c) which is a function of all the data and which is
delivered by a theory. However, no compelling conclusion
is possible in (d) since one cannot separate the different
contributions to the variance of the closing error, namely,
errors in the assumed probability model, errors of
specification in the balance, errors arising from the failure
to measure at certain places and times and not at others, and
errors of measurement; all are confounded together.

Stochastic differential equations may be regarded as the
most advanced form of the approach based on stochastic
processes. See for example Dagan (1989). When a
conservation law is a part of the set of stochastic differential
equations, a perfect balance is imposed on every realisation
ofthe process and all errors are confounded in the mismatch
between the state variables and measurements.

On the other hand, in planning a prospective budget,
classical sampling theory can be applied once the sampling
frame has been defined. Furthermore, the errors can be
separated into those due to sampling and those due to
everything else. Consequently, the null hypothesis that the
closing error in the prospective budget is due to sampling
error alone can be tested. A definite conclusion is the
outcome: the null hypothesis on a particular body during a
unique interval of time is either rejected, or not. Rejection
leads to a search for systematic error: missing fluxes,
instrument errors, etc. The test can be strengthened by taking
a larger number of samples. The trade-off between cost and
the precision and accuracy of the budget can be examined
using optimisation. It can also show that the budget is not
worth the effort. These are the fruits of Fisher’s vital
requirement.
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THE PERFECT BUDGET — ANOTHER WAY

In contrast to all that has been said, a perfect balance (ex
post), or a perfect budget (ex ante), can also be imposed on
a particular space-filling body B during a unique interval of
time, by building the conservation law into a model of B
based on deterministic differential or integral equations. If
the time-varying state variables in such equations are spatial
or temporal averages, an approach similar to that presented
in this paper is possible, which meets Fisher’s vital
requirement. If random sampling is used to estimate the
spatial or temporal averages, one can, in principle, test the
null hypothesis that the errors between the estimated
averages in space and/or time and the corresponding values
of the state variables are due solely to sampling. But that is
another story for another day.

Conclusions

Classical sampling theory has been shown to be applicable
to the problem of estimating and closing prospective budgets
on a particular body during a unique interval of time.
Retrospective balances cannot be brought within this
theoretical framework. Only prospective budgets can satisfy
R.A. Fisher’s vital requirement that the actual and physical
conduct of measurement campaigns be logically consistent
with the statistical procedures used in their design and
interpretation. The key step is the definition of the sampling
frame to which randomisation is applied.

The theory provides a test, which rejects, or fails to reject,
the hypothesis that the closing error on a budget, when
realised, is due to sampling error only. Increasing the number
of measurements improves the discrimination of the test,
controlling both the precision and accuracy of the budget
and its components.

The theory delivers a cost-effective design for a sampling
campaign, which aims to close a budget on a particular
space-filling body. Both scientific communities and their
funding agencies would welcome knowing in advance when
it is not worth the effort to estimate the closure on a budget
for either scientific or economic reasons. Only prospective
random sampling offers such finality.

The proof of this theory, its concepts and procedures, will
be their first successful application in Earth System science.
For the moment, it remains a counsel of perfection.
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